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Abstract. The continuity of the density function of the invariant probability measure for piecewise C 2
Bernoulli transformations is proved.

1. Introduction

The purpose of this article is to show that the continuity of the density function of an
invariant probability measure for piecewise C2, expanding, and Bernoulli transformations of
the unit interval [0, 1]. We study Markov (not necessarily Bernoulli) transformations approxi-
mating them by piecewise linear transformations. To deal piecewise linear transformations as
symbolic dynamics, Mori defined Fredholm matrices in [2] and [3]. First using these matrices,
we construct a recurrent formula between the eigenvectors of them, and show the existence of
an eigenfunction of Perron-Frobenius operator of original transformation which is the density
function of the invariant probability measure. Secondly, we show that the density function is
continuous for Bernoulli transformations. For piecewise C> and expanding transformation,
Lasota and York have shown the existence of the invariant measure in [1]. The first part of
this paper gives another proof of the Lasota and York’s result for restricted cases.

2. Notations and Results
Let F : [0, 1] — [0, 1] satisfy the following conditions.

(C1): piecewise C2. There exists a partition 0 = py < p; < --- < p, = 1 of
[0, 1] such that the restriction of F' to (pi—1, pi),i = 1,2,---,r is C? and mono-
tone function which can be extended to [p;_i, pi] as a C? function. We call a set
A = {ay,az,---,a,} ‘alphabet’ and (p;—1, p;) is labeled by (a;). Here #4 = r is
finite.
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(C2): transitive. Forany x, y € [0, 1], and for any neighborhoods V (x), V (y) of x and
v, respectively, there exists n € N such that

F'(Vx)NV(y) #9,
here F" is the n-th iteration of F'.
(C3): expanding.

1 /
& = liminfessinf — log |[F" (x)| > 0.

n—oo xel0,1] n

F is called ‘Markov’ if for any a € A, there exist letters by, ba, - - -, by (b; € A) such that
k
=1

F({a)) =

1

(bi) 1)

where J stands for the closure of J. F is called ‘Bernoulli’, if F for any a € A, F({(a)) =
[0, 1]. Throughout this paper, we assume that F' is Markov, and in section 5 we assume that
F is Bernoulli.

To express F as symbolic dynamics, we prepare several notation. We call a finite se-
quence of letters w = b1by - - - b, (by € A) a word, and we define

|w| =n (the length of a word),
wlk]l =b; forl <k <|w| (n-thcoordinate),
wlk,l] = bibgs1---by forl <k <l <|w|,
n
(w) = F"* (wlil))
i=1
h(w) =by--bp—1,
t(w)y=">by---by.

We say a word w F-admissible if (w) # ¢, and define the sets of F-admissible words as
follows:

W, ={w e A" : |w| =n, wis F-admissible},

n
W = Wi = {w: wis F-admissible, [w| < n},
k=0

Woo = {w € AN : w[1,n] € W, forall n}.

It is well known that there exists a unique invariant probability measure @ under F and the
dynamical system ([0, 1], u, F) is mixing, therefore it is ergodic. From the condition that F
is expanding, for any ¢ > 0 there exists Ny such that for any N > Ny and for any w € Wy,

Lebes((w)) < e~ ¢V (2)

where Lebes((w)) denote the Lebesgue measure of (w).
Let us introduce orders among admissible words.
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DEFINITION 1. For two F-admissible words w and w’, we define w < w’ if one of the
following holds:

1. |w| < |w]
2. |w| = |w'| and x < y holds for all x € (w) and y € (w’).
The orders in Wy and W, are introduced by the above definition.
Let Py = {{w) : w € Wy}. Then Py gives a partition of [0, 1]. For M < N, Py is
a refinement of Py;. On (w) € Py, we define a piecewise linear transformation Fy, whose
graph is the segment from (p,,, lim, | - F(x)) to (p, lim , + F(x)), where p,, and p.l are
the left and the right end points of (w), respectively. We call Fy the N-th approximation of
F. Let n,, = |(Fylwy)'|~". Here, we note that for w € Wy, (") Fy'™ (wlil)) = (w).
That is, for w € WN, (w) is equal under F and Fl.
Let P : L' — L! be the Perron-Frobenius operator associated with F, that is, for

felLl,
Pfx)y= Y fOIFMI™,
yiF(y)=x

and Py be the one associated with Fy.
Operating Pj to the indicator function 1, (a € A), from the Markov condition (1) we
obtain

Pl =na Y lipy().

b:abeW,

In general, for w € Wy,

Pyl =nw Y Lpwsy®). 3)
b:wbEWN_H

Let @y be the Fredholm matrix for Fy, thatis, @y is a Wy x Wy matrix:

N t(w) =hw),

(PN)w.w =
e 0 otherwise .

For a partition Py, let i y and |i|y be the vectors corresponding to words w € Wy, whose
components are (i y)w = l(w), and (Ji|n)w = Lebes({w)), respectively. Then the equations
(3) can be written

Pyn1luy = (PNiN)w - 4

EXAMPLE 1. Let

Flx) = X/Na 0<x<n4q4,
(x—=na)/mp Na<x=1.
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0 <a> <b> L 0 <am> <ab> <ba> |

FIGURE 1. F(x) and F2(x)

Here, % < ng < land 1—n, = ngnp holds. Fig. 1 shows the graphs of F(x) and F?(x). Then
A = {a, b}, and {(a) = (0, ny), (b) = (N4, 1). W = {aa, ab, ba}. For this transformation,

1
i = ( <“>), il = ( Ml )and
Ly I —nq

Naa MNaa 0
@1:(% 77(1)’ P=10 0 7na

Nab  Nab 0

According to the property of Perron-Frobenius operator, it is well known that Py is
contractive, the eigenvalues of @y are less than or equal to 1 in modules. A nonnegative
eigenfunction of P associated with eigenvalue 1 is the density function of an invariant measure
under F. Because @y is nonnegative, then by the Perron-Frobenius’ theorem, the maximal
eigenvalue of @y is simple, and its eigenvector can be taken that all the components are
positive.

The Markov condition (1) can be expressed as |i|y = @y |i|n. This shows that @y has
an eigenvalue | and |i |y is its eigenvector. Consequently, 1 is the maximal eigenvalue of @y .
Let py = (pw)wew,y be the eigenvector of d>;’(, associated with eigenvalue 1 normalized in the
sense (o, |i|n) = 1. Here, A* denotes the transpose matrix of A. We call the vector |i|y
the interval vector of Fy, and the vector py the density vector of Fy. Then we can express
the density function of F-invariant measure with p .

LEMMA 1. Let Ry(x) = (py,in)(x) = ZweWN Pw L) (x). Then Ry (x) is the den-
sity function of the invariant probability measure under F.

PROOF. From (4)

PyRN(x) = puPylm(x)

weWyn

(@NiN, pN)(X)
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= (N, Pypy)(X)
=(@{n,py)x) =Ry(x).

This shows that Ry (x) is an eigenfunction of Py associated with eigenvalue 1. On the other
hand, from the definition of py,

Ry(x)dx = p/ 1wy (x)dx
/[0,1] Z v [0,1] vl

weWy
= > puwliln)w
weWy
= (py- liln) = 1.
Thus the lemma is proved. a

The aim of this paper is to prove the following theorems.

THEOREM 1. The limit function R(x) = limy_~ Ry (x) exists in L', and R(x) is the
density function of the F-invariant probability measure.

THEOREM 2. Suppose F is Bernoulli and & > %log r, then R(x) is continuous on
[0, 1].
3. Framework

Before we proceed to the proof of Theorem 1, we need to examine several properties
of Fy. Since the partition Py is a refinement of Py, for an admissible word w € Wy

(w) is the disjoint union of (wa), wa € Wy41. Then 1) (x) = ZaIwaEWN+1 L{wa) (x). For
wa € Wy, we get
Py 1 way(X) = Nhwa) Z Lit (waby) (X)
be A
=0w Y Lj(waby (X) . (5)
be A

From (3) and (5), Py+11(w) (w € Wy) turns out to be
Pyi1lwy(x) = (Py + (PN+1 — PNn)) 1wy ()

= Pyl (¥) + (Pns1 — Pv) D Luwa) (x)

acA

= Mw Z Lt (wayy () + Z(nwa = 1w) Z Lt waypy (x) -

acA acA beA
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Using this relation recursively, for M < N, and w € Wy, we get

Py L) (x) =nw Z Lt uypy (%)

be A
N-M

+ Z (Mwbyby--br — Nwbiby---bi_y) Z Lt (wby--b)p (X) - (6)
k=1 beA

Let us rewrite this relation with a matrix, in the same way as (4).

DEFINITION 2. For words w, w’ € Wy we say that w’ is connectable to w if there
exists an integer k (0 < k < |w’|) such that 7 (w) = h*(w’) and the connected word w[1]w’

is F-admissible.

Let qSN bea WN X WN matrix as

Nw t(w) = hw'),
(PN)w,w' =\ Nwlllhw) = M2y if [w] < [w’| < N and w’ is connectable to w,
0 otherwise ,

and iy be the vector of indicator functions similarly as iy, that is, (IN)w(x) = 1wy (x), for

w e WN. Take the example 1, we have

Na MNa MNaa —MNa MNaa —Na MNab — Na l(a)
y Mo 0 Nba —nb Nba = Mb 0 3 Lip)
P=10 0 Naa Naa 0 , I = l(aa)
0 0 0 0 Nab Lab)
0 0 Nab Nab 0 L(ba)

Using dy, the equations (6) can be written by Py 14, (x) = (qSNfN(x))w. The eigenvalues
and eigenvectors of @1, @, - - -, @y are related to the one of CISN. Hence we shall be partic-
ularly interested in studying @y . To write this relation precisely, let us prepare the following
matrices. For k < [, let My ; be Wy x W, matrix as

1 ifw=h"%w),

(Mk,l)ww’ = .
0 otherwise.

M1 expresses the Markov structure which is naturally induced from Wy to W;. For x; €
C*We and x; € CW if x4 = My x; then (xg)y = Zv:hsz(v):w(xl)v, and if x; = M,f!lxk

then (x;)y = (Xk)hl—k(w). Let us divide qSN into the following blocks and define D; ; as
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W; x W; matrix:

DN
& Dy N
= N—1 .
Oy = : . @)
Dyn-1,n
0 | oy
LEMMA 2.
M; ;1D fl<i<j-—1,
Dij=q " e ®)
Mj—l,j(pj_(pj—le—l,j ifi=j—1.

PROOF. By the definition of ®y, we note that Dj-1.pww = (Dj=2. ). =
(Di,j)ni=1~i (w),u- Thenfori < j —1,

M; j1Dj1,)ww = Z M j—Dw,o(Dj—1,)v,w

veW;_;

= Z (Dj-1,j)v,u -

viw=h/—1-1(v)

If w is connectable to w’ then this value is equal to (Dj_1,;) ()42 In this case

(w/)’w/.
hj_l_i(w[l]hz(w’)) = w. If w is not connectable to w’ then it is equal to 0. Fori = j — 1,
forw e Wj_jand w’ € W;

Mj_1,j®;— P Mj—1,j)wuw

=Y Mi Dun@or = D (@i Dwn(Mj 1 o

veW; veW;_;

= Y @)= Y. @ Duo
viw=h(v) viv=h(w’)

= Z Mo’ — (Pj—1Dw,h(w)

viw=h(v),t(v)=h(w’)

) Nwitihw’ — Nw[11h2w") if t(w) = h*(w"),
0 otherwise .

Therefore we get (8). ]

In the remainder of this section, we will consider subspaces of C*W¥ to which @y oper-
ates. Let §,,, be

s 1 w=uw',
" o w#Ew,
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and ey, = (Syu)wew, (W e Wi, k=1,2,---, N). Then we easily see that

eyl k] = Mi+iewik+1y k=1,2,---, |w[=1). 9)

For w € Wy, let &, € C*Wk be a vector

€yll]
€w(1,2]
ey =
ew[l,k—1]
€y
€w[l]
€w(1,2]
€ywl1] .
€y(1,2]
. A T~ e _ 7
We identify e,, = e C*We with é,, = w[;’k Ul e ¢ for k <N.
w
ey[l,k—1] 0
€y
0

PROPOSITION 1. 1. The set {é, : w € Wy} forms a basis afC#WN.

2. Let Xy be a linear span of {,, : w € Wy} then Xy is #Wy, dimensional subspace of
C*Wr | and C*Wn equals to the direct sum X1 ® Xo @ X3 D --- ® Xn.

3. ForanyXy € Xy, k=1,2,---,N,

Ew= Y Euwa (wl<h. (10)

a:waeWy
4. Xy is invariant under @ . The restriction @y |x, is isomorphic to Py on CHWn

PROOF. 1. The set of vectors {Sw = (8pw) : w € Wy} becomes the natural basis of
C*WN . The claim follows from 8y =&y — ehw) -

2. By (10) dim Xy is at most #Wx. Moreover by the definition €,, (w € Wy) are
linearly independent. Thus dim X = #Wj. Take x € X3 N X; (k < [). Since x € Xi, (X)y
is equal to O for |w| > k, particularly for |w| = [. On the other hand x € W, this leads to the
conclusion x = 0.

3. From the definition of €, it is obvious.

4. From the definition of @y, (éN)bhl(w)’hk(w) = Nppkt () — Mppk+2 () fOr w € Wy
and k <[ < |w|. Then

Byéw =D ohw)Ehw)
w:bh(w)eWy
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here bh(w) € Wy, therefore ®yé, € Xy . O

Take y, € C*Wi (k = 1,2,---,N — 1) arbitrary, and fix them. Let e} =

Y1

Y2 = Mion i . .
L for w € Wy. Then {e} : w € Wy} is the dual basis of

ey — M]T/_LNnyl
{ew : w € Wy}. Indeed, by (9),

N-1
@, &) = @unt Y1) + ) _{@uni, y2) — (M 1 y;i21))
i=2
+(ey, ey) — (M]T/_LNyN—l)
N-1
= 0w+ Y i = My Duniin + (€0 — My yYn—Du
i=2

= (ey)u = buv -

Consequently X%, the dual space of X, is the linear span of {€}, : w € Wy}. In the definition

of €}, we can take yy, y,---, yy_; arbitrarily. This means that X}, =~ C#WN/ ~n. The
relation ~ is defined by

X1 xl
X %) N N
Xy = . NN-£§V: . @ZM;ka:ZM;Nx;(.
. . k=1 k=1
Xy x'y

&

“;:2_M;k’2‘i:l

"If we rewrite Xy and X) to Xy = , and ¥, =

EN — My—1.NEN-1

&1
§ — M7 a8 o . /
. , then this equivalent relation implies that &y = &;.

Ey — Mn_1.nEN_,
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PROPOSITION 2.

» D1y
-, Y2 = M,y Pyyr — Mi, 1y,
&% . = _
YN =My nIN- PNYN =My NPy YN
Especially,
Py
P2 — M ,py
Py = p3 — M3 30,

PN — My | nPN-1

is the eigenvector of 43;‘:, associated with eigenvalue 1, where p, is the density vector for Fj

(k=1,2,---,N).

PROOF. We get the proof by induction. Since ®; = @, the claim is true for N = 1.

Let

J1
Yo — M{,y,

Vi — M/j—l,kykfl

(1)

and assume that the claim is true for k — 1. Then for |w| < k, by the formula of (7), we get

(@} 5w = (D1 Fx—Dw -
By Lemma 2,

(BF 50w = (D] -+ Dy D Fk—1 + P 0k — Mi_y g Yi—)w
= (Di ¥+ D5 (yo = Moy + -
+(Dr—1.k(Yp—1 — Mk—2k-1Yk—2) + PF (Y — M{_{ 1 Yi—1)w
= (DF_ 1 Yi—1 + PL Ok — ME_ 1 Y- 1))w
= (P M_y ) — My kP ) Yi—1 + Pk — My Yi—1))w
= (Prye — My kP Y- Dw-
Hence when |w| = k, we get the conclusion.

In the above calculation, we get the following equation:

12)

(13)

O
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LEMMA 3.

(EN — PNy — My_y nPN—1) = Dy_y NPN_1

where Ey is the #Wy dimensional identity matrix.

PROOF. In (12) and (13), for k = N, we substitute p,_; and p for yy_; and yy,
respectively. This leads to the conclusion. O

By Proposition 2, to take p, p5, -+, py—1 @S ¥, Y2, - -+, Y y—1. 10 (11) we can identify
dy on Xy with @y on C*Ww |
Now, we define norms of x y = (xw)wEWN € Xy as follows:

lenliv = sup D lxwl= Y |xul.
<

I<k<N we Wy weWy

Then norms of x73, = (x;)) € X}, are induced by

lxy Iy = sup [(zn, Xy)I = sup |x]|.
ZveXn,lzlin=1 weWy

4. Proof of Theorem 1

We can now proceed to the proof of Theorem 1. This will require some additional
preliminary lemmas. Let us decompose C*"V into the generalized eigenspace of @y Let
Ai(i =1,2,---,5) be the eigenvalues of 45;‘\‘,. Since 1 is an eigenvalue of @5, we set A} = 1.

Set Gy, = {x € C*"V . (@} — LEy)kix = 0}, then C*"V = G, ® G} @ -~ ® G,
here k; is the index of A;, and Ey is the #Wy dimensional identity matrix. Note that G ]1\, is
the eigenspace associated with eigenvalue 1. Since 1 is simple, dim GL, = 1. Let us denote
GX ® G @ @ G by Gy, thatis, C*"V = G, @ Gy.

LEMMA 4. py — My | ypy—; belongs to Gn.

PROOF. Let us decompose the vector py — My,_ | yPy_] = Xpy + v, Where v € Gy.
Then

(iln, py = My_y yPN-1)
= (¢1</|i|N: Py —My_i nPN-1)
= (D} liln. xpy + ) = (ily, (@}) (xpy +v)
= (liln. (@) xp) + (iln. (@3)/v) = x(liln. p) + (liln. (@}) v).
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Since Gy, CD]’(, is strictly contractive on Gw, (CD]’(,)j v converges to 0 as j — oo. On the other
hand, by the definition of p;, (p, |i|x) = 1, then

(ilks o = My i) = D (Puwa — pu)l(wa)|

wae Wy
= > pualwa)l— Y pu Y lwa)l
wae Wy weWi_1 a:waeWy
= > pualwa)l = Y pul(w)
wae Wy weWi_1
= (0g lE1) = (Pg—1- |Elk—1)
=0.
Consequently, x = 0 therefore py — My,_, ypy—; belongs to Gn. o

The next lemma has a crucial role in the proof of Theorem 1.

LEMMA 5. For w € Wy, the sequence {(py)w[1,N]} converges uniformly in Wy as
N — 0.

PROOF. For simplicity, we write (o), instead of (op)w[1,n]- By Lemma 4, py —
M;‘,fl)NpN,l belongs to Gy, s0 Ey — @} is invertible on Gy. PutWy = (Ey — @;)%}V.

Then by Lemma 3
PN —My_ nPN—1 =¥NDy_| NON-1 - (14)
Therefore,

pn =My |y +¥NDy_ N)ON-1
=My_, y +TUNDN_  NMy_ 5 y_y +ON-1Dy 2 N_1)PN—2
=My_\n +ONDy_yN) - (M{5+¥2D75)p; . (15)

On the other hand, operator norm of D}"V_ N1 1s evaluated as follows:

IDy_y §Il = sup 1Dy n—1%" Iy
XXy lx* =1

sup Z [bw — Mhbw)!
weWy-1 be A, bweWy

< r max —
= W [Mw nh(w)|

we
1 1 ‘
<r max —
xyew) [[F'(x)|  [F'(0)]
F"(c)
< r max Lebes({(w)) | ————
ce(w) (F'(c))?
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Here recall r = #.4 < oco. Therefore from (2), for N > Ny, we get
—(E—&)N
ID%_y vl < Koem G0N,

F// (.X)
(F'(x))?

(Exn = @RIzt =D @yl

n>0

.On Gy, @3 is strictly contractive and

where Ko = r - max,¢[o, 1] ‘

and, since Wy : Gy — Gy,

¥yl = II(Exy — PM)IZ I < —— .
Gv: T 1= Dylg,

Note that the eigenvalues of @ converge to the eigenvalues of the Perron-Frobenius operator
P restricted to the set of functions with bounded variation ([4]). This says that there exists
& > 0 such that for sufficiently large N

1
||WN||§m<OO~

Moreover, there is just one 1 on each column of My_1 y, so

||M;f,71!N|| = sup |M;7])Nx*| =1.
llx* Iy =1

Then by (15) and (2),
lonln < IMi_y y + ¥ Dy, M5yt + ON—1 DYy sy
M5+ DYy
< (IME_y Il + 1N Dy y IDAMG_y i |+ 1981 1Dy g 1D
(ML |+ 191D, D Ly I

<A+ KDYy yIDA + KilIDy_p y_1 ) - (L+ K11 DY 5 DIl eyl

N
<K [T+ Kie &),
J=No
No—1
j=1
e < &, then Z?‘;NO Kie~¢=8)J < co. By the convergence of the infinite product, lonlln is

where K| = 1175’ and K, = ([] (I + K1lIDjlINIell1. We can take & such that 0 <

bounded. Then for m > n > Ny, using (14) again,

m—1

[Pm)w = Pwl < Y 1(Prs)w — (0)w)]

k=n
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m—1
< Z lPkr1 — Mg gy 1Pk lli+1
k=n
m—1
=D W1 D} gy 1 pxllis
k=n
m—1
< Ks Z e~ (o)
k=n
m—n—1
= Kze (o Z e~ ok
k=0
where K3 = ﬁ supy lloylly. We can take this term arbitrarily small for large enough
m and n. So the sequence {(py)w[1,n]} 1S @ Cauchy sequence and converges uniformly on
Weo. a

To prove Theorem 1, we need one more lemma which is proved in [4].
LEMMA 6. |P — Py| — 0in L'[0, 1].

PROOF OF THE THEOREM 1. First we will show that {Ry(x)}nyen is a Cauchy se-
quence in Ll[O, 1]. By Lemma 1, for M > N,

1R = Rty = 3 [ 10w = (ol
(w)

weWy

- Z Lebes((w)[(0 ) w — (PN n(w)l

weWy
wng% [or)w = (PN =N (-

IA

By Lemma 5, this converges to 0 as M, N — o0o. So let R(x) be the limit function of { Ry (x)}.
Now, we show that R(x) is an eigenfunction of P associated with the eigenvalue 1.

[PR—PNRy| < [IPIIIR = Ryl + 1P = PNIlIRNII- (16)

Here by the definition of R(x) and by Lemma 6, if N is large enough, then we can make the
right hand side of (16) arbitrarily small. Thus for any ¢ > 0, we can take large enough N such
that

PR —R| < |IPR— PNRNIl + IPNRn — Rn|l + IRy — R

<E€.

Therefore, R(x) is an eigenfunction of P associated with eigenvalue 1. a
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5. Proof of Theorem 2—Bernoulli case

We will give now the proof of Theorem 2 with a direct estimation of the value Ry (x).
First we prepare the next lemma.

LEMMA 7. Let py be the density vector for Fy. For w,w' € Wy , if h(w) = h(w’)
then (pN)w = (pN)u/~

PROOF. Denote (®y),, the w’th column of @y. From the definition of @y, if h(w) =
h(w') then (@n)y = (PN)yr- Since Pypy = py,

(Pn)w = (@Y w, px) = (PN)w PN) = (PN w' - O

From now, we assume that F is Bernoulli, then all the words that belong to AN are
F-admissible.
Now we are ready to prove Theorem 2.

PROOF OF THE THEOREM 2. Let Ry (x) be the density function of the Fy-invariant
probability measure. Then by Lemma 1 Ry (x) = (py, in)(x). Note that Ry (x) is constant
on (w) for w € Wy. For simplicity, we denote (py)w = pw for w € Wy. As is well
known, the Lebesgue measure is invariant with respect to Fj, so Rj(x) = 1. Now we take
F>. Then for words b1b; and ¢ ¢z, if by = ¢; then pp,p, = p¢,c, by Lemma 7. Therefore, the
points where the discontinuity of R»(x) might happen are restricted to the dividing points of
the partition P1. Suppose R»(x) is not continuous at the point xo. Since F is Bernoulli, the
left and the right intervals of x¢ are of the form (a,a,) and (ay+1a1) (v = 1,2,---,r — 1),
respectively. From p, = @5 p,, forany b, c € A, we get

-
Pbc = Z Nagb Payb -
k=1

Then,

r
Payar — Payyia; = Z(namv - naka\,ﬂ)/oakav .
k=1

Similarly, the points that Ry (x) is not continuous are the dividing points of the partition
Pn_1. Therefore, forw € Wy,

,
Pw = Z Nayh(w) Pagh(w)
k=1

r r
=D Maghtw) ) Najaih? (w)Pajaih? (w)
k=1 j=1

N-1
= Z pvw[l]nmk(v)hzv—k(w). (17)
k=0

vijlv|=N—1
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Denote the word a bb - - - b by ab(n). For the partition Py, the left and the right intervals
——

n
of above x¢ are of the form (a, a, - --a,) and {(a,4+1 a1 ---ay), that is, {(aya,(N — 1)) and
——

N—1 N—1
(ap+1a1(N — 1)).
Since pya, = Pva,, ;> We get
Paya,(N—1) — Pay,1a;(N—1)
N—1 N-—1
= Z Pvau( 1_[ Nk @wya, kN ==V (a,(N—1)) ~ 1_[ ”tk(v)ath—k—l(al(N1)))
v:lv|[=N—1 k=0 k=0
N—1 N—1
= > Pvau( [T waaw =11 ”tk(vm“al(k)) (18)
v:|v|=N-—1 k=0 k=0
For fixed v € Wy_1,
N—1 N—1
l_[ Nekyava, (k) — l_[ Ntk (v)ay41a; (k)
k=0 k=0

N-1 j—1 N-1
= Z (i yava, (1) — 77t-"(v)avﬂal(jl))( l_[ Nik(v)ayar (k) l_[ ntk(v)avﬂal(k))

= k=0 k=j+1
N—
F//(x)

5;)2% Lebes((w))xren[m |F'(x)] 2_: 1_[’hk(wauar(k)klllW(v)au+1a1<k>

No—1 N—Ny N—1 j—1

—(E—&)N

< Ke =) <Z Z + Z ><1_[nt]‘(v)auay(k) 1_[ nt"(v)au+1al(k)>

j=0  j=Ny j=N—No+1 k=j+1

(19)

According to the note in (2), for N > 2N
(19) < Ke~EON QN Moo= E—ON=No) L (7 _ 2 Np)e~E—N)
< Ke 267NN 4 2Ny (cNoeE=8Noy 4 1y,
Therefore,

(18) < Ke?EONN + K Y p,
vilv|=N—-1
< Ke 2NN 4 KV Ny lin
S KrN*lefz(Efs)N(N + K/) ,

where K’ = 2No(cMoef=¢)No 4 1. By the assumption £ > %logr and ||[pylly < oo, this
converges to 0 as N — oo.
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The other discontinuities of Ry (x) are between (wa,a,(m)) and (wa,41a1(m)) forw €
Wn-m-1, m =1,2,---, N — 2. All the discontinuity of Ry (x) is of this form. Similarly to
(17), we get

m
Pwayai(m) = Z Pvway, 1_[ Ntk (wywayar (k) -
v:|v|=m k=0
Therefore,

Pwayar(m) — Pwayiia;(m)

m m
Z Pvwa, l_[ Nek(vywayar (k) — Z Pvway l_[ Nek (wywayay (k)
k=0

v:|v|=m k=0 v:|v|=m
m m
= Z Pvwa, < l_[ Nek (wywayay (k) — l_[ ntk(v)waval(k)) .
vi|v|=m k=0 k=0

For the fixed discontinuity, m — oo as N — oo. Then by the similar calculation as (18), this
difference converges to 0. Thus the theorem is proved. a
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