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Abstract. The continuity of the density function of the invariant probability measure for piecewise C2

Bernoulli transformations is proved.

1. Introduction

The purpose of this article is to show that the continuity of the density function of an

invariant probability measure for piecewise C2, expanding, and Bernoulli transformations of
the unit interval [0, 1]. We study Markov (not necessarily Bernoulli) transformations approxi-
mating them by piecewise linear transformations. To deal piecewise linear transformations as
symbolic dynamics, Mori defined Fredholm matrices in [2] and [3]. First using these matrices,
we construct a recurrent formula between the eigenvectors of them, and show the existence of
an eigenfunction of Perron-Frobenius operator of original transformation which is the density
function of the invariant probability measure. Secondly, we show that the density function is
continuous for Bernoulli transformations. For piecewise C2 and expanding transformation,
Lasota and York have shown the existence of the invariant measure in [1]. The first part of
this paper gives another proof of the Lasota and York’s result for restricted cases.

2. Notations and Results

Let F : [0, 1] → [0, 1] satisfy the following conditions.

(C1): piecewise C2. There exists a partition 0 = p0 < p1 < · · · < pr = 1 of
[0, 1] such that the restriction of F to (pi−1, pi), i = 1, 2, · · · , r is C2 and mono-

tone function which can be extended to [pi−1, pi ] as a C2 function. We call a set
A = {a1, a2, · · · , ar } ‘alphabet’ and (pi−1, pi) is labeled by 〈ai〉. Here #A = r is
finite.
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(C2): transitive. For any x, y ∈ [0, 1], and for any neighborhoods V (x), V (y) of x and
y, respectively, there exists n ∈ N such that

Fn(V (x)) ∩ V (y) �= ∅ ,

here Fn is the n-th iteration of F .
(C3): expanding.

ξ ≡ lim inf
n→∞ ess inf

x∈[0,1]
1

n
log |Fn′

(x)| > 0 .

F is called ‘Markov’ if for any a ∈ A, there exist letters b1, b2, · · · , bk (bi ∈ A) such that

F(〈a〉) =
k⋃

i=1

〈bi〉 , (1)

where J̄ stands for the closure of J . F is called ‘Bernoulli’, if F for any a ∈ A, F(〈a〉) =
[0, 1]. Throughout this paper, we assume that F is Markov, and in section 5 we assume that
F is Bernoulli.

To express F as symbolic dynamics, we prepare several notation. We call a finite se-
quence of letters w = b1b2 · · · bn (bk ∈ A) a word, and we define

|w| = n (the length of a word) ,

w[k] = bk for 1 ≤ k ≤ |w| (n-th coordinate) ,

w[k, l] = bkbk+1 · · · bl for 1 ≤ k < l ≤ |w| ,
〈w〉 =

n⋂
i=1

F−i+1(〈w[i]〉) ,

h(w) = b1 · · · bn−1 ,

t (w) = b2 · · · bn .

We say a word w F -admissible if 〈w〉 �= ∅, and define the sets of F -admissible words as
follows:

Wn = {w ∈ An : |w| = n,w is F -admissible} ,

W̃n =
n⋃

k=0

Wk = {w : w is F -admissible, |w| ≤ n} ,

W∞ = {w ∈ AN : w[1, n] ∈ Wn for all n} .

It is well known that there exists a unique invariant probability measure µ under F and the
dynamical system ([0, 1], µ, F ) is mixing, therefore it is ergodic. From the condition that F

is expanding, for any ε > 0 there exists N0 such that for any N ≥ N0 and for any w ∈ WN ,

Lebes(〈w〉) ≤ e−(ξ−ε)N , (2)

where Lebes(〈w〉) denote the Lebesgue measure of 〈w〉.
Let us introduce orders among admissible words.



ON THE DENSITY FUNCTION OF AN INVARIANT MEASURE 157

DEFINITION 1. For two F -admissible words w and w′, we define w < w′ if one of the
following holds:

1. |w| < |w′|
2. |w| = |w′| and x < y holds for all x ∈ 〈w〉 and y ∈ 〈w′〉.

The orders in WN and W∞ are introduced by the above definition.

Let PN = {〈w〉 : w ∈ WN }. Then PN gives a partition of [0, 1]. For M < N , PN is
a refinement of PM . On 〈w〉 ∈ PN , we define a piecewise linear transformation FN , whose
graph is the segment from (p−

w, limx↓p−
w

F (x)) to (p+
w, limx↑p+

w
F (x)), where p−

w and p+
w are

the left and the right end points of 〈w〉, respectively. We call FN the N-th approximation of

F . Let ηw = |(FN |〈w〉)′|−1. Here, we note that for w ∈ WN ,
⋂|w|

i=1 F−i+1
N (〈w[i]〉) = 〈w〉.

That is, for w ∈ W̃N , 〈w〉 is equal under F and FN .

Let P : L1 → L1 be the Perron-Frobenius operator associated with F , that is, for

f ∈ L1,

Pf (x) =
∑

y:F(y)=x

f (y)|F ′(y)|−1 ,

and PN be the one associated with FN .
Operating P1 to the indicator function 1〈a〉 (a ∈ A), from the Markov condition (1) we

obtain

P11〈a〉(x) = ηa

∑
b:ab∈W2

1〈b〉(x) .

In general, for w ∈ WN ,

PN 1〈w〉(x) = ηw

∑
b:wb∈WN+1

1〈t (wb)〉(x) . (3)

Let ΦN be the Fredholm matrix for FN , that is, ΦN is a WN × WN matrix:

(ΦN)w,w′ =
{

ηw t (w) = h(w′) ,

0 otherwise .

For a partition PN , let iN and |i|N be the vectors corresponding to words w ∈ WN , whose
components are (iN)w = 1〈w〉, and (|i|N)w = Lebes(〈w〉), respectively. Then the equations
(3) can be written

PN 1〈w〉 = (ΦN iN)w . (4)

EXAMPLE 1. Let

F(x) =
{

x/ηa 0 ≤ x ≤ ηa ,

(x − ηa)/ηb ηa ≤ x ≤ 1 .
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FIGURE 1. F(x) and F 2(x)

Here, 1
2 < ηa < 1 and 1−ηa = ηaηb holds. Fig. 1 shows the graphs of F(x) and F 2(x). Then

A = {a, b}, and 〈a〉 = (0, ηa), 〈b〉 = (ηa, 1). W2 = {aa, ab, ba}. For this transformation,

i1 =
(

1〈a〉
1〈b〉

)
, |i|1 =

(
ηa

1 − ηa

)
and

Φ1 =
(

ηa ηa

ηb 0

)
, Φ2 =


ηaa ηaa 0

0 0 ηab

ηab ηab 0


 .

According to the property of Perron-Frobenius operator, it is well known that PN is
contractive, the eigenvalues of ΦN are less than or equal to 1 in modules. A nonnegative
eigenfunction of P associated with eigenvalue 1 is the density function of an invariant measure
under F . Because ΦN is nonnegative, then by the Perron-Frobenius’ theorem, the maximal
eigenvalue of ΦN is simple, and its eigenvector can be taken that all the components are
positive.

The Markov condition (1) can be expressed as |i|N = ΦN |i|N . This shows that ΦN has
an eigenvalue 1 and |i|N is its eigenvector. Consequently, 1 is the maximal eigenvalue of ΦN .
Let ρN = (ρw)w∈WN be the eigenvector of Φ∗

N associated with eigenvalue 1 normalized in the
sense (ρN, |i|N) = 1. Here, A∗ denotes the transpose matrix of A. We call the vector |i|N
the interval vector of FN , and the vector ρN the density vector of FN . Then we can express
the density function of FN -invariant measure with ρN .

LEMMA 1. Let RN(x) ≡ (ρN, iN)(x) = ∑
w∈WN

ρw1〈w〉(x). Then RN(x) is the den-

sity function of the invariant probability measure under FN .

PROOF. From (4)

PNRN(x) =
∑

w∈WN

ρwPN 1〈w〉(x)

= (ΦN iN,ρN)(x)
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= (iN,Φ∗
NρN)(x)

= (iN,ρN)(x) = RN(x) .

This shows that RN(x) is an eigenfunction of PN associated with eigenvalue 1. On the other
hand, from the definition of ρN ,

∫
[0,1]

RN(x)dx =
∑

w∈WN

ρw

∫
[0,1]

1〈w〉(x)dx

=
∑

w∈WN

ρw(|i|N)w

= (ρN, |i|N) = 1 .

Thus the lemma is proved. �

The aim of this paper is to prove the following theorems.

THEOREM 1. The limit function R(x) = limN→∞ RN(x) exists in L1, and R(x) is the
density function of the F -invariant probability measure.

THEOREM 2. Suppose F is Bernoulli and ξ > 1
2 log r , then R(x) is continuous on

[0, 1].

3. Framework

Before we proceed to the proof of Theorem 1, we need to examine several properties
of FN . Since the partition PN+1 is a refinement of PN , for an admissible word w ∈ WN

〈w〉 is the disjoint union of 〈wa〉, wa ∈ WN+1. Then 1〈w〉(x) = ∑
a:wa∈WN+1

1〈wa〉(x). For

wa ∈ WN , we get

PN 1〈wa〉(x) = ηh(wa)

∑
b∈A

1〈t (wab)〉(x)

= ηw

∑
b∈A

1〈t (wab)〉(x) . (5)

From (3) and (5), PN+11〈w〉 (w ∈ WN) turns out to be

PN+11〈w〉(x) = (PN + (PN+1 − PN))1〈w〉(x)

= PN 1〈w〉(x) + (PN+1 − PN)
∑
a∈A

1〈wa〉(x)

= ηw

∑
a∈A

1〈t (wa)〉(x) +
∑
a∈A

(ηwa − ηw)
∑
b∈A

1〈t (wa)b〉(x) .
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Using this relation recursively, for M < N , and w ∈ WM , we get

PN 1〈w〉(x) = ηw

∑
b∈A

1〈t (w)b〉(x)

+
N−M∑
k=1

(ηwb1b2···bk − ηwb1b2···bk−1)
∑
b∈A

1t (wb1···bk)b(x) . (6)

Let us rewrite this relation with a matrix, in the same way as (4).

DEFINITION 2. For words w,w′ ∈ W̃N we say that w′ is connectable to w if there
exists an integer k (0 < k < |w′|) such that t (w) = hk(w′) and the connected word w[1]w′
is F -admissible.

Let Φ̃N be a W̃N × W̃N matrix as

(Φ̃N )w,w′ =




ηw t (w) = h(w′) ,

ηw[1]h(w′) − ηw[1]h2(w′) if |w| < |w′| ≤ N and w′ is connectable to w ,

0 otherwise ,

and ĩN be the vector of indicator functions similarly as iN , that is, (ĩN)w(x) = 1〈w〉(x), for

w ∈ W̃N . Take the example 1, we have

Φ̃2 =




ηa ηa ηaa − ηa ηaa − ηa ηab − ηa

ηb 0 ηba − ηb ηba − ηb 0
0 0 ηaa ηaa 0
0 0 0 0 ηab

0 0 ηab ηab 0


 , ĩ2 =




1〈a〉
1〈b〉
1〈aa〉
1〈ab〉
1〈ba〉


 .

Using Φ̃N , the equations (6) can be written by PN 1〈w〉(x) = (Φ̃N ĩN(x))w. The eigenvalues

and eigenvectors of Φ1,Φ2, · · · ,ΦN are related to the one of Φ̃N . Hence we shall be partic-

ularly interested in studying Φ̃N . To write this relation precisely, let us prepare the following
matrices. For k < l, let Mk,l be Wk × Wl matrix as

(Mk,l)ww′ =
{

1 if w = hl−k(w′) ,

0 otherwise .

Mk,l expresses the Markov structure which is naturally induced from Wk to Wl . For xk ∈
C#Wk and xl ∈ C#Wl , if xk = Mk,lxl then (xk)w = ∑

v:hl−k(v)=w(xl )v , and if xl = M∗
k,lxk

then (xl )w = (xk)hl−k(w). Let us divide Φ̃N into the following blocks and define Di,j as
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Wi × Wj matrix:

Φ̃N =




Φ̃N−1

D1,N

D2,N

...

DN−1,N

0 ΦN


 . (7)

LEMMA 2.

Di,j =
{

Mi,j−1Dj−1,j if 1 ≤ i < j − 1 ,

Mj−1,jΦj − Φj−1Mj−1,j if i = j − 1 .
(8)

PROOF. By the definition of Φ̃N , we note that (Dj−1,j )w,w′ = (Dj−2,j )h(w),w′ =
(Di,j )hj−1−i (w),w′ . Then for i < j − 1,

(Mi,j−1Dj−1,j )w,w′ =
∑

v∈Wj−1

(Mi,j−1)w,v(Dj−1,j )v,w′

=
∑

v:w=hj−1−i (v)

(Dj−1,j )v,w′ .

If w is connectable to w′ then this value is equal to (Dj−1,j )w[1]h2(w′),w′ . In this case

hj−1−i(w[1]h2(w′)) = w. If w is not connectable to w′ then it is equal to 0. For i = j − 1,
for w ∈ Wj−1 and w′ ∈ Wj

(Mj−1,jΦj − Φj−1Mj−1,j )w,w′

=
∑
v∈Wj

(Mj−1,j )w,v(Φj )v,w′ −
∑

v∈Wj−1

(Φj−1)w,v(Mj−1,j )v,w′

=
∑

v:w=h(v)

(Φj )v,w′ −
∑

v:v=h(w′)
(Φj−1)w,v

=
∑

v:w=h(v),t (v)=h(w′)
ηv[1]h(w′) − (Φj−1)w,h(w′)

=
{

ηw[1]h(w′) − ηw[1]h2(w′) if t (w) = h2(w′) ,

0 otherwise .

Therefore we get (8). �

In the remainder of this section, we will consider subspaces of C#W̃N to which Φ̃N oper-
ates. Let δww′ be

δww′ =
{

1 w = w′ ,
0 w �= w′ ,
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and ew = (δww′)w′∈Wk
(w ∈ Wk, k = 1, 2, · · · , N). Then we easily see that

ew[1,k] = Mk+1ew[1,k+1] (k = 1, 2, · · · , |w| − 1) . (9)

For w ∈ Wk , let ẽw ∈ C#W̃k be a vector

ẽw =




ew[1]
ew[1,2]

...

ew[1,k−1]
ew


 .

We identify ẽw =




ew[1]
ew[1,2]

...

ew[1,k−1]
ew


 ∈ C#W̃k with ẽw =




ew[1]
ew[1,2]

...

ew[1,k−1]
ew

0
...

0




∈ C#W̃N for k ≤ N .

PROPOSITION 1. 1. The set {ẽw : w ∈ W̃N } forms a basis of C#W̃N .
2. Let Xk be a linear span of {ẽw : w ∈ Wk} then Xk is #Wk dimensional subspace of

C#Wk , and C#W̃N equals to the direct sum X1 ⊕ X2 ⊕ X3 ⊕ · · · ⊕ XN .
3. For any x̃k ∈ Xk, k = 1, 2, · · · , N ,

(x̃k)w =
∑

a:wa∈W̃k

(x̃k)wa (|w| < k) . (10)

4. Xk is invariant under Φ̃N . The restriction Φ̃N |Xk is isomorphic to ΦN on C#WN .

PROOF. 1. The set of vectors {δ̃w = (δww′) : w ∈ W̃N } becomes the natural basis of

C#W̃N . The claim follows from δ̃w = ẽw − ẽh(w) .
2. By (10) dim XN is at most #WN . Moreover by the definition ẽw (w ∈ Wk) are

linearly independent. Thus dim Xk = #Wk . Take x ∈ Xk ∩ Xl (k < l). Since x ∈ Xk , (x)w

is equal to 0 for |w| > k, particularly for |w| = l. On the other hand x ∈ Wl , this leads to the
conclusion x = 0.

3. From the definition of ẽw, it is obvious.
4. From the definition of Φ̃N , (Φ̃N )bhl(w),hk(w) = ηbhk+1(w) − ηbhk+2(w), for w ∈ WN

and k < l < |w|. Then

Φ̃N ẽw =
∑

w:bh(w)∈WN

ηbh(w)ẽbh(w) ,
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here bh(w) ∈ WN , therefore Φ̃N ẽw ∈ XN . �

Take yk ∈ C#Wk (k = 1, 2, · · · , N − 1) arbitrary, and fix them. Let ẽ∗
w =


y1

y2 − M∗
1,2y1

...

ew − M∗
N−1,NyN−1


 for w ∈ WN . Then {ẽ∗

w : w ∈ WN } is the dual basis of

{ẽw : w ∈ WN }. Indeed, by (9),

(ẽu, ẽ
∗
v) = (ẽu[1], y1) +

N−1∑
i=2

{(ẽu[1,i], yi ) − (M∗
i−1,iyi−1)}

+(eu, ev) − (M∗
N−1,NyN−1)

= (y1)u[1] +
N−1∑
i=2

(yi − M∗
i−1,iyi−1)u[1,i] + (ev − M∗

N−1,NyN−1)u

= (ev)u = δuv .

Consequently X∗
N , the dual space of XN , is the linear span of {ẽ∗

w : w ∈ WN }. In the definition

of ẽ∗
w , we can take y1, y2 · · · , yN−1 arbitrarily. This means that X∗

N � C#W̃N
/ ∼N . The

relation ∼N is defined by

x̃N =




x1

x2
...

xN


 ∼N x̃′

N =




x′
1

x′
2
...

x′
N


 ⇔

N∑
k=1

M∗
k,Nxk =

N∑
k=1

M∗
k,Nx′

k .

"If we rewrite x̃N and x̃′
N to x̃N =




ξ1

ξ2 − M∗
1,2ξ1

...

ξN − MN−1,N ξN−1


 , and x̃ ′

N =




ξ ′
1

ξ ′
2 − M∗

1,2ξ
′
1

...

ξ ′
N − MN−1,N ξ ′

N−1


 , then this equivalent relation implies that ξN = ξ ′

N .
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PROPOSITION 2.

Φ̃∗
N




y1
y2 − M∗

1,2y1
...

yN − M∗
N−1,NyN−1


 =




Φ∗
1 y1

Φ∗
2 y2 − M∗

1,2Φ
∗
1 y1

...

Φ∗
NyN − M∗

N−1,NΦ∗
N−1yN−1


 .

Especially,

ρ̃N =




ρ1
ρ2 − M∗

1,2ρ1

ρ3 − M∗
2,3ρ2

...

ρN − M∗
N−1,NρN−1




is the eigenvector of Φ̃∗
N associated with eigenvalue 1, where ρk is the density vector for Fk

(k = 1, 2, · · · , N).

PROOF. We get the proof by induction. Since Φ1 = Φ̃1, the claim is true for N = 1.
Let

ỹk =




y1
y2 − M∗

1,2y1
...

yk − M∗
k−1,kyk−1


 , (11)

and assume that the claim is true for k − 1. Then for |w| < k, by the formula of (7), we get

(Φ̃∗
k ỹk)w = (Φ̃∗

k−1ỹk−1)w .

By Lemma 2,

(Φ̃∗
k ỹk)w = ((D∗

1,k · · · D∗
k−1,k)ỹk−1 + Φ∗

k (yk − M∗
k−1,kyk−1))w

= (D∗
1,ky1 + D∗

2,k(y2 − M∗
1,2y1) + · · ·

+(Dk−1,k(yk−1 − Mk−2,k−1yk−2) + Φ∗
k (yk − M∗

k−1,kyk−1))w

= (D∗
k−1,kyk−1 + Φ∗

k (yk − M∗
k−1,kyk−1))w (12)

= ((Φ∗
k M∗

k−1,k − M∗
k−1,kΦ

∗
k−1)yk−1 + Φ∗

k (yk − M∗
k−1,kyk−1))w

= (Φ∗
k yk − M∗

k−1,kΦ
∗
k−1yk−1)w. (13)

Hence when |w| = k, we get the conclusion. �

In the above calculation, we get the following equation:
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LEMMA 3.

(EN − Φ∗
N)(ρN − M∗

N−1,NρN−1) = D∗
N−1,NρN−1 ,

where EN is the #WN dimensional identity matrix.

PROOF. In (12) and (13), for k = N , we substitute ρN−1 and ρN for yN−1 and yN ,
respectively. This leads to the conclusion. �

By Proposition 2, to take ρ1,ρ2, · · · ,ρN−1 as y1, y2, · · · , yN−1, in (11) we can identify

Φ̃N on X∗
N with ΦN on C#WN .

Now, we define norms of xN = (xw)w∈W̃N
∈ XN as follows:

‖xN‖N ≡ sup
1≤k≤N

∑
w∈Wk

|xw| =
∑

w∈WN

|xw| .

Then norms of x∗
N = (x∗

w) ∈ X∗
N are induced by

‖x∗
N‖∗

N = sup
zN∈XN,‖z‖N =1

|(zN, x∗
N)| = sup

w∈WN

|x∗
w| .

4. Proof of Theorem 1

We can now proceed to the proof of Theorem 1. This will require some additional
preliminary lemmas. Let us decompose C#WN into the generalized eigenspace of Φ∗

N . Let
λi(i = 1, 2, · · · , s) be the eigenvalues of Φ∗

N . Since 1 is an eigenvalue of Φ∗
N , we set λ1 = 1.

Set Gi
N = {x ∈ C#WN : (Φ∗

N − λiEN)ki x = 0}, then C#WN = G1
N ⊕ G2

N ⊕ · · · ⊕ Gs
N ,

here ki is the index of λi , and EN is the #WN dimensional identity matrix. Note that G1
N is

the eigenspace associated with eigenvalue 1. Since 1 is simple, dim G1
N = 1. Let us denote

G2
N ⊕ G3

N ⊕ · · · ⊕ Gs
N by ḠN , that is, C#WN = G1

N ⊕ ḠN .

LEMMA 4. ρN − M∗
N−1,NρN−1 belongs to ḠN .

PROOF. Let us decompose the vector ρN − M∗
N−1,NρN−1 = xρN + v, where v ∈ ḠN .

Then

(|i|N,ρN − M∗
N−1,NρN−1)

= (Φ
j

N |i|N,ρN − M∗
N−1,NρN−1)

= (Φ
j

N |i|N, xρN + v) = (|i|N, (Φ∗
N)j (xρN + v))

= (|i|N, (Φ∗
N)jxρ) + (|i|N, (Φ∗

N)jv) = x(|i|N,ρ) + (|i|N, (Φ∗
N)jv) .
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Since ḠN , Φ∗
N is strictly contractive on ḠN , (Φ∗

N)jv converges to 0 as j → ∞. On the other
hand, by the definition of ρk , (ρ, |i|k) = 1, then

(|i|k,ρk − M∗
k−1,kρk−1) =

∑
wa∈Wk

(ρwa − ρw)|〈wa〉|

=
∑

wa∈Wk

ρwa |〈wa〉| −
∑

w∈Wk−1

ρw

∑
a:wa∈Wk

|〈wa〉|

=
∑

wa∈Wk

ρwa |〈wa〉| −
∑

w∈Wk−1

ρw|〈w〉|

= (ρk, |i|k) − (ρk−1, |i|k−1)

= 0 .

Consequently, x = 0 therefore ρN − M∗
N−1,NρN−1 belongs to ḠN . �

The next lemma has a crucial role in the proof of Theorem 1.

LEMMA 5. For w ∈ W∞, the sequence {(ρN)w[1,N]} converges uniformly in W∞ as
N → ∞.

PROOF. For simplicity, we write (ρN)w instead of (ρN)w[1,N]. By Lemma 4, ρN −
M∗

N−1,NρN−1 belongs to ḠN , so EN − Φ∗
N is invertible on ḠN . Put ΨN = (EN − Φ∗

N)|−1
ḠN

.

Then by Lemma 3

ρN − M∗
N−1,NρN−1 = ΨND∗

N−1,NρN−1 . (14)

Therefore,

ρN = (M∗
N−1,N + ΨND∗

N−1,N )ρN−1

= (M∗
N−1,N + ΨND∗

N−1,N )(M∗
N−2,N−1 + ΨN−1D

∗
N−2,N−1)ρN−2

= (M∗
N−1,N + ΨND∗

N−1,N ) · · · (M∗
1,2 + Ψ2D

∗
1,2)ρ1 . (15)

On the other hand, operator norm of D∗
N,N−1 is evaluated as follows:

‖D∗
N−1,N‖ = sup

x∗∈X∗
N,‖x∗‖N =1

‖D∗
N,N−1x

∗‖∗
N

= sup
w∈WN−1

∑
b∈A,bw∈WN

|ηbw − ηh(bw)|

≤ r max
w∈WN

|ηw − ηh(w)|

≤ r max
x,y∈〈w〉

∣∣∣∣ 1

|F ′(x)| − 1

|F ′(y)|
∣∣∣∣

≤ r max
c∈〈w〉 Lebes(〈w〉)

∣∣∣∣ F ′′(c)
(F ′(c))2

∣∣∣∣ .
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Here recall r = #A < ∞. Therefore from (2), for N ≥ N0, we get

‖D∗
N−1,N‖ ≤ K0e

−(ξ−ε)N ,

where K0 = r · maxx∈[0,1]
∣∣∣ F ′′(x)

(F ′(x))2

∣∣∣. On ḠN , Φ∗
N is strictly contractive and

(EN − Φ∗
N)|−1

ḠN
=

∑
n≥0

(Φ∗
N |ḠN

)n ,

and, since ΨN : ḠN → ḠN ,

‖ΨN‖ = ‖(EN − ΦN)|−1
ḠN

‖ ≤ 1

1 − ‖Φ∗
N |ḠN

‖ .

Note that the eigenvalues of ΦN converge to the eigenvalues of the Perron-Frobenius operator
P restricted to the set of functions with bounded variation ([4]). This says that there exists
δ > 0 such that for sufficiently large N

‖ΨN‖ ≤ 1

1 − δ
< ∞ .

Moreover, there is just one 1 on each column of MN−1,N , so

‖M∗
N−1,N‖ = sup

‖x∗‖∗
N =1

|M∗
N−1,Nx∗| = 1 .

Then by (15) and (2),

‖ρN‖N ≤ ‖M∗
N−1,N + ΨND∗

N−1,N‖‖M∗
N−2,N−1 + ΨN−1D

∗
N−2,N−1‖

· · · ‖M∗
1,2 + Ψ2D

∗
1,2‖‖ρ1‖1

≤ (‖M∗
N−1,N‖ + ‖ΨN‖‖D∗

N−1,N‖)(‖M∗
N−2,N−1‖ + ‖ΨN−1‖‖D∗

N−2,N−1‖)
· · · (‖M∗

1,2‖ + ‖Ψ2‖‖D∗
1,2‖)‖ρ1‖1

≤ (1 + K1|‖D∗
N−1,N‖)(1 + K1‖D∗

N−2,N−1‖) · · · (1 + K1‖D∗
1,2‖)‖ρ1‖1

≤ K2

N∏
j=N0

(1 + K1e
−(ξ−ε)j ) ,

where K1 = 1
1−δ

, and K2 = (
∏N0−1

j=1 (1 + K1‖Dj ‖))‖ρ1‖1. We can take ε such that 0 <

ε < ξ , then
∑∞

j=N0
K1e

−(ξ−ε)j < ∞. By the convergence of the infinite product, ‖ρN‖N is

bounded. Then for m > n > N0, using (14) again,

|(ρm)w − (ρn)w| ≤
m−1∑
k=n

|((ρk+1)w − (ρk)w)|
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≤
m−1∑
k=n

‖ρk+1 − M∗
k,k+1ρk‖k+1

=
m−1∑
k=n

‖Ψk+1D
∗
k,k+1ρk‖k+1

≤ K3

m−1∑
k=n

e−(ξ−ε)k

= K3e
−(ξ−ε)n

m−n−1∑
k=0

e−(ξ−ε)k ,

where K3 = 1
1−δ

supN ‖ρN‖N . We can take this term arbitrarily small for large enough

m and n. So the sequence {(ρN)w[1,N]} is a Cauchy sequence and converges uniformly on
W∞. �

To prove Theorem 1, we need one more lemma which is proved in [4].

LEMMA 6. ‖P − PN‖ → 0 in L1[0, 1].
PROOF OF THE THEOREM 1. First we will show that {RN(x)}N∈N is a Cauchy se-

quence in L1[0, 1]. By Lemma 1, for M > N ,

‖RM − RN‖L1 =
∑

w∈WM

∫
〈w〉

|(ρM)w − (ρN)h(w)|dx

=
∑

w∈WM

Lebes(〈w〉)|(ρM)w − (ρN)h(w)|

≤ max
w∈WM

|(ρM)w − (ρN)hM−N (w)| .

By Lemma 5, this converges to 0 as M,N → ∞. So let R(x) be the limit function of {RN(x)}.
Now, we show that R(x) is an eigenfunction of P associated with the eigenvalue 1.

‖PR − PNRN‖ ≤ ‖P‖‖R − RN‖ + ‖P − PN‖‖RN‖ . (16)

Here by the definition of R(x) and by Lemma 6, if N is large enough, then we can make the
right hand side of (16) arbitrarily small. Thus for any ε > 0, we can take large enough N such
that

‖PR − R‖ ≤ ‖PR − PNRN‖ + ‖PNRN − RN‖ + ‖RN − R‖
< ε .

Therefore, R(x) is an eigenfunction of P associated with eigenvalue 1. �
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5. Proof of Theorem 2—Bernoulli case

We will give now the proof of Theorem 2 with a direct estimation of the value RN(x).
First we prepare the next lemma.

LEMMA 7. Let ρN be the density vector for FN . For w,w′ ∈ WN , if h(w) = h(w′)
then (ρN)w = (ρN)w′ .

PROOF. Denote (ΦN)w the w’th column of ΦN . From the definition of ΦN , if h(w) =
h(w′) then (ΦN)w = (ΦN)w′ . Since Φ∗

NρN = ρN ,

(ρN)w = ((Φ∗
N)w,ρN) = ((Φ∗

N)w′ ,ρN) = (ρN)w′ . �

From now, we assume that F is Bernoulli, then all the words that belong to AN are
F -admissible.

Now we are ready to prove Theorem 2.

PROOF OF THE THEOREM 2. Let RN(x) be the density function of the FN -invariant
probability measure. Then by Lemma 1 RN(x) = (ρN, iN)(x). Note that RN(x) is constant
on 〈w〉 for w ∈ WN . For simplicity, we denote (ρN)w = ρw for w ∈ WN . As is well
known, the Lebesgue measure is invariant with respect to F1, so R1(x) ≡ 1. Now we take
F2. Then for words b1b2 and c1c2, if b1 = c1 then ρb1b2 = ρc1c2 by Lemma 7. Therefore, the
points where the discontinuity of R2(x) might happen are restricted to the dividing points of
the partition P1. Suppose R2(x) is not continuous at the point x0. Since F is Bernoulli, the
left and the right intervals of x0 are of the form 〈aνar〉 and 〈aν+1a1〉 (ν = 1, 2, · · · , r − 1),
respectively. From ρ2 = Φ∗

2 ρ2, for any b, c ∈ A, we get

ρbc =
r∑

k=1

ηakbρakb .

Then,

ρaνar − ρaν+1a1 =
r∑

k=1

(ηakaν − ηakaν+1)ρakaν .

Similarly, the points that RN(x) is not continuous are the dividing points of the partition
PN−1. Therefore, for w ∈ WN ,

ρw =
r∑

k=1

ηakh(w)ρakh(w)

=
r∑

k=1

ηakh(w)

r∑
j=1

ηaj akh
2(w)ρaj akh

2(w)

=
∑

v:|v|=N−1

ρvw[1]
N−1∏
k=0

ηtk(v)hN−k(w) . (17)
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Denote the word a bb · · · b︸ ︷︷ ︸
n

by ab(n). For the partition PN , the left and the right intervals

of above x0 are of the form 〈aν ar · · · ar︸ ︷︷ ︸
N−1

〉 and 〈aν+1 a1 · · · a1︸ ︷︷ ︸
N−1

〉, that is, 〈aνar (N − 1)〉 and

〈aν+1a1(N − 1)〉.
Since ρvaν = ρvaν+1 , we get

ρaνar (N−1) − ρaν+1a1(N−1)

=
∑

v:|v|=N−1

ρvaν

( N−1∏
k=0

ηtk(v)aνhN−k−1(ar (N−1)) −
N−1∏
k=0

ηtk(v)aν+1h
N−k−1(a1(N−1))

)

=
∑

v:|v|=N−1

ρvaν

( N−1∏
k=0

ηtk(v)aνar (k) −
N−1∏
k=0

ηtk(v)aν+1a1(k)

)
. (18)

For fixed v ∈ WN−1,

N−1∏
k=0

ηtk(v)aνar (k) −
N−1∏
k=0

ηtk(v)aν+1a1(k)

=
N−1∑
j=1

(ηtj (v)aνar (j−1) − ηtj (v)aν+1a1(j−1))

( j−1∏
k=0

ηtk(v)aνar (k)

N−1∏
k=j+1

ηtk(v)aν+1a1(k)

)

≤ max
w∈WN

Lebes(〈w〉) max
x∈[0,1]

|F ′′(x)|
|F ′(x)|

N−1∑
j=1

( j−1∏
k=0

ηtk(v)aνar (k)

N−1∏
k=j+1

ηtk(v)aν+1a1(k)

)

≤ Ke−(ξ−ε)N

( N0−1∑
j=0

+
N−N0∑
j=N0

+
N−1∑

j=N−N0+1

)( j−1∏
k=0

ηtk(v)aνar (k)

N−1∏
k=j+1

ηtk(v)aν+1a1(k)

)
.

(19)

According to the note in (2), for N > 2N0

(19) ≤ Ke−(ξ−ε)N(2N0c
N0e−(ξ−ε)(N−N0) + (N − 2N0)e

−(ξ−ε)N)

≤ Ke−2(ξ−ε)N{N + 2N0(c
N0e(ξ−ε)N0) + 1} .

Therefore,

(18) ≤ Ke−2(ξ−ε)N(N + K ′)
∑

v:|v|=N−1

ρv

≤ Ke−2(ξ−ε)N(N + K ′)rN−1‖ρN‖N

≤ KrN−1e−2(ξ−ε)N(N + K ′) ,

where K ′ = 2N0(c
N0eξ−ε)N0 + 1. By the assumption ξ ≥ 1

2 log r and ‖ρN‖N < ∞, this
converges to 0 as N → ∞.
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The other discontinuities of RN(x) are between 〈waνar(m)〉 and 〈waν+1a1(m)〉 for w ∈
WN−m−1, m = 1, 2, · · · , N − 2. All the discontinuity of RN(x) is of this form. Similarly to
(17), we get

ρwaνa1(m) =
∑

v:|v|=m

ρvwaν

m∏
k=0

ηtk(v)waνar (k) .

Therefore,

ρwaνar (m) − ρwaν+1a1(m)

=
∑

v:|v|=m

ρvwaν

m∏
k=0

ηtk(v)waνar (k) −
∑

v:|v|=m

ρvwaν+1

m∏
k=0

ηtk(v)waνa1(k)

=
∑

v:|v|=m

ρvwaν

( m∏
k=0

ηtk(v)waνar (k) −
m∏

k=0

ηtk(v)waνa1(k)

)
.

For the fixed discontinuity, m → ∞ as N → ∞. Then by the similar calculation as (18), this
difference converges to 0. Thus the theorem is proved. �
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