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Abstract. We calculate some invariants determined by the spectrum of the Jacobi operator J of n-dimensional
totally real submanifolds of the quaternionic projective spaceQPn and we use such invariants to characterize parallel
submanifolds of QPn.

1. Introduction

The Jacobi operator J is a second order elliptic operator associated to an isometric im-

mersion of a compact Riemannian manifold M into a Riemannian manifold M̄ . J is defined
on the space of smooth sections of the normal bundle TM⊥ by the formula

J = D + R̃ − Ã ,

where D is the rough Laplacian of the normal connection ∇⊥ on TM⊥, R̃ and Ã are linear

transformations of TM⊥ defined by means of a partial Ricci tensor of M̄ and of the second
fundamental form A, respectively. J appears in the formula which gives the second variation
for the area function of a compact minimal submanifold (see [S]). For this reason, J is also
called the second variation operator. Its spectrum, denoted by

spec(M, J ) = {λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · + ↑ ∞} ,
is discrete, as a consequence of the compactness of M .

The Riemannian invariants determined by spec(M, J ) have been calculated for several
types of isometric immersions of submanifolds into real or complex space forms (see [D], [H],
[Sh], [CP], [C]). Moreover, a similar study was made about spectral geometry determined by
the Jacobi operator associated to the energy of a harmonic map ([CgY], [KPa], [KKiPa],
[NiTV], [U], [Y]).

In this paper, we determine the first three terms of the asymptotic expansion for the par-
tition function associated to the spectrum of the Jacobi operator of an n-dimensional totally
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110 GIOVANNI CALVARUSO

real submanifold of the quaternionic projective spaceQPn and we use the corresponding Rie-
mannian spectral invariants to characterize n-dimensional totally real parallel submanifolds of
QPn.

The paper is organized in the following way. In Section 2, we shall recall some basic
results aboutQPn and n-dimensional totally real submanifolds ofQPn. In Section 3, we shall
compute the first three terms of the asymptotic expansion for the partition function associated
to spec(M, J ), M being an n-dimensional totally real submanifold of QPn. In Sections 4
and 5, we shall characterize totally real parallel submanifolds ofQPn, which are Einstein and
conformally flat, respectively. In Section 6 we shall investigate the spectral rigidity of totally
real parallel submanifolds of QPn for small dimensions n.

ACKNOWLEDGEMENTS. The author wishes to express his sincere gratitude towards
Prof. K. Tsukada for his helpful remarks and comments during the revision of the manuscript.

2. Totally real submanifolds of QPn

Let (M̄, g) be a 4n-dimensional quaternionic Riemannian manifold and V the three-
dimensional vector bundle of tensors of type (1, 1) with local basis of almost Hermitian struc-
tures I1, I2, I3, satisfying

a) I1I2 = −I2I1 = I3, I2I3 = −I3I2 = I1, I3I1 = −I1I3 = I2, I 2
1 = I 2

2 = I 2
3 = −1;

b) for any cross-section ξ of V , ∇̄Xξ is also a cross-section of V , where X is a vector

field on M and ∇̄ is the Riemannian connection of M̄ .
IfX is a unit vector on M̄ , the quaternionic sectiondetermined byX is the 4-planeQ(X)

spanned by X, I1X, I2X and I3X. If Q(X) and Q(Y) are orthogonal, the plane spanned by
X and Y is called a totally real plane. Any 2-plane in a quaternionic section is called a
quaternionic planeand its sectional curvature is called quaternionic sectional curvature. A
quaternionic space formis a quaternionic manifold of constant quaternionic sectional cur-
vature. In particular, by QPn we denote the 4n-dimensional quaternionic projective space,
equipped with the Riemannian metric ḡ of constant quaternionic sectional curvature c > 0.

Its curvature tensor R̄, taken with the sign convention

R̄(X, Y ) = ∇̄[X,Y ] − [∇̄X, ∇̄Y ] ,
satisfies

R̄(X, Y,Z,W) = c

4
{ḡ(X,Z)ḡ(Y,W) − ḡ(Y,Z)ḡ(X,W)

+ ḡ(I1X,Z)ḡ(I1Y,W) − ḡ(I1Y,Z)ḡ(I1X,W)+ 2ḡ(I1X,Y )ḡ(I1Z,W)

+ ḡ(I2X,Z)ḡ(I2Y,W) − ḡ(I2Y,Z)ḡ(I2X,W)+ 2ḡ(I2X,Y )ḡ(I2Z,W)

+ ḡ(I3X,Z)ḡ(I3Y,W) − ḡ(I3Y,Z)ḡ(I3X,W)+ 2ḡ(I3X,Y )ḡ(I3Z,W)} .
Note that our convention for the sign of the curvature tensor is opposed to the one used by
Simons in [S]. We refer to [I] for more details about quaternionic manifolds.
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SPECTRAL GEOMETRY OF THE JACOBI OPERATOR 111

Next, let (M, g) be an n-dimensional Riemannian manifold, isometrically immersed into
(QPn, ḡ). By definition, M is a totally real submanifoldof QPn if each tangent 2-plane of
M is mapped by the isometric immersion into a totally real plane ofQPn. We shall denote by
∇ and R the Levi Civita connection and the curvature tensor of M , respectively. The normal
connection is given by

∇⊥ : TM × TM⊥ −→ TM⊥

(X, ξ) �−→ ∇⊥
Xξ ,

where ∇⊥
Xξ denotes the normal component of ∇̄Xξ . The second fundamental form σ and the

Weingarten operator A are respectively defined by

σ(X, Y ) = ∇̄XY − ∇XY , AξX = −∇̄Xξ + ∇⊥
Xξ

for all X,Y ∈ TM and ξ ∈ TM⊥. Moreover, ḡ(σ (X, Y ), ξ) = g(AξX, Y ).
Let R⊥ denote the curvature tensor associated to the normal connection ∇⊥. The curva-

ture tensors R, R̄ and R⊥ satisfy the Gauss and the Ricci equations:

R(X, Y,Z,W) = g(R(X, Y )Z,W) = R̄(X, Y,Z,W)

+ ḡ(σ (X,Z), σ (Y,W)) − ḡ(σ (Y,Z), σ (X,W)) ,

R⊥(X, Y, ξ, η) = ḡ(R⊥(X, Y )ξ, η) = R̄(X, Y, ξ, η) − g([Aξ ,Aη]X,Y ) ,
where [Aξ ,Aη] = Aξ ◦ Aη − Aη ◦ Aξ for all X,Y,Z,W ∈ TM and ξ, η ∈ TM⊥.

Let {e1, · · · , en, eI1(1) = I1e1, · · · , eI1(n) = I1en, eI2(1) = I2e1, · · · , eI2(n) = I2en,

eI3(1) = I3e1, · · · , eI3(n) = I3en} be a local orthonormal frame on QPn such that, restricted
to M , the vector fields e1, .., en are tangent to M . With respect to such frame field, we have

I1 =




0 −E 0 0
E 0 0 0
0 0 0 −E
0 0 E 0


 , I2 =




0 0 −E 0
0 0 0 E

E 0 0 0
0 −E 0 0


 , I3 =




0 0 0 −E
0 0 −E 0
0 E 0 0
E 0 0 0


 ,

where E is the (n × n)-identity matrix. We shall use the following convention for the range
of indices:

A,B,C,D = 1, · · · , n, I1(1), · · · , I1(n), I2(1), · · · , I2(n), I3(1), · · · , I3(n);
i, j, k, h = 1, · · · , n;
α, β = I1(1), · · · , I1(n), I2(1), · · · , I2(n), I3(1), · · · , I3(n);
ϕ,ψ = I1, I2, I3.
Putting Aα = Aeα , Aαei = hαij ej and R⊥

ijαβ = R⊥(ei, ej , eα, eβ), the Gauss and Ricci

equations become

Rijkh = c

4
(δikδjh − δjkδih)+

∑
α

(hαikh
α
jl − hαjkh

α
il)(2.1)
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112 GIOVANNI CALVARUSO

and

R⊥
ijαβ = c

4
((I1)iα(I1)jβ − (I1)jα(I1)iβ + (I2)iα(I2)jβ − (I2)jα(I2)iβ(2.2)

+ (I3)iα(I3)jβ − (I3)jα(I3)iβ )− g([Aα,Aβ ]ei, ej ) .
Note that, for all i, j, k and ϕ, we have

h
ϕ(i)
jk = h

ϕ(j)
ik = h

ϕ(k)
ij .

The mean curvature vector is defined by

H = trace(σ ) =
∑
i

σ (ei, ei) =
∑
i,ϕ

trAϕ(i)eϕ(i) =
∑
α

trAαeα .

M is said to be minimalif H = 0, totally geodesicif σ = 0, parallel (or with parallel second
fundamental form) if ∇′σ = 0, where

(∇′
Xσ)(Y,Z) = ∇⊥

X(σ(Y,Z)) − σ(∇XY,Z)− σ(Y,∇XZ) .
For the Ricci tensor 
 of M , from (2.1) we easily obtain


ik =
∑
j

Rijkj = c

4
(n− 1)δik +

∑
α

{(trAα)hαik} −
∑
α

hαilh
α
kl(2.3)

and for the scalar curvature τ ofM , we have

τ =
∑
i


ii = n(n− 1)
c

4
+ ||H ||2 − ||σ ||2 ,(2.4)

where ||σ ||2 = ∑
trA2

α and ||H ||2 = ∑
(trAα)2.

We also refer to [ChH] for more details. We now prove the following

LEMMA 2.1. LetM be ann-dimensional totally real submanifold ofQPn. Then

||R||2 = cτ − n(n− 1)
c2

8
−

∑
α,β

tr[Aα,Aβ ]2 .(2.5)

If in addition M is minimal, then

||
||2 = 2(n− 1)
c

4
τ − n(n− 1)2

c2

16
+

∑
α,β

(trAαAβ)
2 ,(2.6)

1

2
∆||σ ||2 = ||∇′σ ||2 − ||R||2 − ||
||2 + (n+ 1)

c

4
τ .(2.7)

PROOF. (2.5) follows from (2.1), taking into account (2.4), once we note that

∑
α

( ∑
i,j,k,h

(hαikh
α
jh − hαjkh

α
ih)

)2

= −
∑
α,β

tr[Aα,Aβ ]2
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SPECTRAL GEOMETRY OF THE JACOBI OPERATOR 113

and ∑
α,i,j

(hαiih
α
jj − (hαij )

2) = ||H ||2 − ||σ ||2 .

Next, suppose that M is minimal. Then trAα = 0 for all α and (2.3) reduces to


ik − c

4
(n− 1)δik = −

∑
α,l

hαilh
α
kl = −

∑
i,k,ϕ

trAϕ(i)Aϕ(k) .(2.8)

In [ChH], the following formula was proved for any m-dimensional totally real subman-
ifold of QPn:

1

2
∆||σ ||2 = ||∇′σ ||2 +

∑∑
α,β

tr[Aα,Aβ ]2 −
∑
α,β

(trAαAβ)2(2.9)

+ n
c

4
||σ ||2 + c

4

∑
i,ϕ

(trA2
ϕ(i)) .

Next, put Sα,β = ∑
α,β tr(AαAβ). Since Sα,β is a symmetric matrix, it can be diagonalized

for a suitable choice of {eα}. Hence, we may assume that tr(AαAβ) = 0 for α �= β (see also
[CH, p. 198]). In particular, we then have

∑
i,k,ϕ

trAϕ(i)Aϕ(k) =
∑
α,β

trAαAβ ,
∑
i,k,ϕ

(trAϕ(i)Aϕ(k))
2 =

∑
α,β

(trAαAβ)2 .

Hence, (2.6) follows from (2.8). Moreover, since in our case m = n and (2.4)–(2.6) hold,
from (2.9) we get (2.7). �

3. Spectral invariants of the Jacobi operator

Let M be an n-dimensional Riemannian manifold immersed in a Riemannian manifold
M̄ of dimension n̄ = n + r . The normal bundle TM⊥ is a real r-dimensional vector bundle
on M , with inner product induced by the metric ḡ of M̄. Let D denote the so-called rough

Laplacianassociated to the normal connection ∇⊥ of TM⊥, that is,

Dξ = −∇⊥
ei

∇⊥
ei
ξ + ∇⊥∇ei ei ξ ,

where ξ is a section of TM⊥. Next, let Ã be the Simons operatordefined in [S] by

ḡ(Ãξ, η) = tr(Aξ ◦Aη) ,
for ξ, η ∈ TM⊥. Moreover, we consider the operator R̃ defined by

R̃(ξ) = −
n∑
i=1

(R̄(ei, ξ)ei)
⊥ ,
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114 GIOVANNI CALVARUSO

where (R̄(ei, ξ)ei)⊥ denotes the normal component of R̄(ei, ξ)ei .
The Jacobi operator(or second variation operator), acting on cross-sections of TM⊥,

is the second order elliptic differential operator J defined by (see [S] or [D])

J : TM⊥ −→ TM⊥

ξ �−→ (D − Ã+ R̃)ξ .

When M is compact, we can define an inner product for cross-sections on TM⊥, by

〈ξ, η〉 =
∫
M

ḡ(ξ, η)dv

and J is self-adjoint with respect to this product. Moreover, J is strongly elliptic and it has
an infinite sequence of eigenvalues, with finite multiplicities, denoted by

spec(M, J ) = {λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · + ↑ ∞} .
The partition function Z(t) = ∑∞

i=1 exp(−λi t) has the asymptotic expansion

Z(t) ∼ (4πt)−n/2{a0(J )+ a1(J )t + a2(J )t
2 + · · · } .

By Gilkey’s results [G] (see also [D] and [H]), it follows that the coefficients a0, a1 and a2 are
given by the following

THEOREM 3.1 ([G]). We have

a0 = rvol(M) ,

a1 = r

6

∫
M

τdv +
∫
M

trẼdv ,

a2 = r

360

∫
M

{2||R||2 − 2||
||2 + 5τ 2}dv + 1

360

∫
M

{−30||R⊥||2

+ tr(60τ Ẽ + 180Ẽ2)}dv ,
whereẼ = Ã− R̃.

We now consider the case of an n-dimensional totally real submanifold of QPn(c) and
we compute explicitly the coefficients a0, a1 and a2 in terms of invariants depending on the
curvature of M and its isometric immersion in QPn.

PROPOSITION 3.2. LetM be ann-dimensional totally real submanifold ofQPn. Then

||R⊥||2 = ||R||2 + n(n− 1)c2 ,(3.1)

trẼ = ||σ ||2 + 3

4
n(n+ 1)c ,(3.2)

trẼ2 = 3

16
n(n+ 1)2c2 + (n+ 1)

c

2
||σ ||2 +

∑
α,β

tr(AαAβ)2 .(3.3)
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SPECTRAL GEOMETRY OF THE JACOBI OPERATOR 115

If in additionM is minimal, then

trẼ2 = ||
||2 + (n+ 1)c||σ ||2 + 1

8
n(n2 + 4n+ 1)c2 .(3.4)

PROOF. From (2.2) we get

||R⊥||2 =
∑
i,j,α,β

(R⊥
ijαβ)

2 = R1 + R2 + R3 ,(3.5)

with

R1 = c2

16

∑
{(I1)iα(I1)jβ − (I1)jα(I1)iβ + (I2)iα(I2)jβ − (I2)jα(I2)iβ

+ (I3)iα(I3)jβ − (I3)jα(I3)iβ }2

= c2

16

∑
{(I1)iI1(k)(I1)jI1(h) − (I1)jI1(k)(I1)iI1(h) + (I2)iI2(k)(I2)jI2(h)

− (I2)jI2(k)(I2)iI2(h) + (I3)iI3(k)(I3)jI3(h) − (I3)jI3(k)(I3)iI3(h)}2

= c2

16

∑
((3δikδjh − δihδjk))

2 = 9

8
n(n− 1)c2,

R2 =
∑

(g([Aα,Aβ ]ei, ej ))2 =
∑
α,β

||[Aα,Aβ ]||2 = −
∑
α.β

tr[Aα,Aβ ]2 ,

where we used the fact that [Aα,Aβ ] is skew-symmetric, and

R3 = − c
2

∑
{(I1)iI1(k)(I1)jI1(h) − (I1)jI1(k)(I1)iI1(h)

+ (I2)iI2(k)(I2)jI2(h) − (I2)jI2(k)(I2)iI2(h)

+ (I3)iI3(k)(I3)jI3(h) − (I3)jI3(k)(I3)iI3(h)}g([Aϕ(k), Aϕ(h)]ei, ej )
= − c

2

∑
{g([Aϕ(i), Aϕ(j)]ei, ej )− g([Aϕ(j), Aϕ(i)]ei, ej )}

= −c
∑

g([Aϕ(i), Aϕ(j)]ei, ej )
= −c

∑
{g(Aϕ(j)ei, Aϕ(i)ej )− g(Aϕ(i)ei, Aϕ(j)ej )}

= ||σ ||2 − ||H ||2 .

Then (3.1) follows from (3.5), taking into account (2.3) and (2.4).
Next, using the Ricci equation (2.2), we easily obtain

R̃(ξ) = −(n+ 1)
c

4
ξ
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and hence,

trR̃ = −3

4
n(n+ 1)c ,(3.6)

trR̃2 = 3

16
n(n+ 1)2c2 ,(3.7)

trR̃ ◦ Ã = −1

4
(n+ 1)c trÃ .(3.8)

Next, by the definition of Ã, we get

trÃ =
∑
α

ḡ(Ãeα, eα) =
∑
i,α

ḡ(Aαei, Aαei) = ||A||2 = ||σ ||2(3.9)

and

trÃ2 =
∑
α

ḡ(Ãeα, Ãeα) =
∑
α,β

(ḡ(Aα,Aβ))2 =
∑
α,β

(tr(AαAβ))2 .(3.10)

Therefore, since trẼ = trÃ − trR̃ and trẼ2 = tr(Ã2 − 2R̃ ◦ Ã + R̃2), from (3.6)–(3.10) we
get (3.2) and (3.3).

Finally, if M is minimal, then we obtain (3.4) from (3.3), taking into account (2.6). �

Combining Theorem 3.1 and Proposition 3.2, we get

THEOREM 3.3. On ann-dimensional totally real submanifoldM ofQPn(c), the first
coefficients of the asymptotic expansion of the partition function of the Jacobi operator are
given by

a0 = 3n vol(M) ,(3.11)

a1 = n

2

∫
M

τdv +
∫
M

||σ ||2dv + 3

4
n(n+ 1)c vol(M)(3.12)

= n− 2

2

∫
M

τdv +
∫
M

||H ||2dv + n(n+ 1)c vol(M) ,

a2 = n

120

∫
M

{2||R||2 − 2||
||2 + 5τ 2}dv + 1

120

∫
M

{−10||R||2(3.13)

−10n(n− 1)c2 + 20τ (||σ ||2 + 3

4
n(n+ 1)c)

+60[(n+ 1)
c

2
||σ ||2 + 3

16
n(n+ 1)2c2 + trÃ2]}dv .

If in additionM is minimal, then

a0 = 3n vol(M) ,(3.14)

� �



SPECTRAL GEOMETRY OF THE JACOBI OPERATOR 117

a1 = n− 2

2

∫
M

τdv + n(n+ 1)c vol(M) ,(3.15)

a2 = 1

120

∫
M

{2(n− 5)||R||2 − 2(n− 30)||
||2 + 5(n− 4)τ 2}dv(3.16)

+k1(n)c

∫
M

τdv + k2(n)c
2vol(M) ,

wherek1 andk2 are constants depending onn.

4. Totally real parallel Einstein submanifolds of QPn

K. Tsukada [Ts] classified parallel submanifolds of QPn(c). In particular, he proved
that if M0 is a totally real parallel submanifold of QPn(c), then M0 is either

(R-R) a totally real submanifold contained in a totally real totally geodesic submanifold
of QPn(c), or

(R-C) a totally real submanifold contained in a totally complex totally geodesic sub-
manifold of QPn(c)
(see [Ts, Theorem 3.10]). In general, a totally real submanifoldM0 ofQPn(c) has dimension
m ≤ n. If M0 is parallel and dimM0 = n, then M0 is not of type (R-R), unless M0 itself is a
totally real totally geodesic submanifold of QPn(c), which is also of type (R-C). Therefore,
M0 is an n-dimensional totally real parallel submanifold M0 of the quaternionic projective
spaceQPn(c) if and only if it is an n-dimensional totally real parallel submanifoldM0 of the
complex projective space CPn(c).

Totally real parallel submanifolds of CPn(c) have been classified by H. Naitoh [N]. We
now synthesize some basic ideas of [N], referring to this paper for more details.

Let M be a simply connected Riemannian manifold, admitting a totally real parallel
isometric immersion into CPn(c). In other words, M is the universal covering of a complete
totally real submanifold M0 embedded into CPn(c). If M as no Euclidean factor, then M is
irreducible and of compact type [N, Section 4]. Note that, as it is well-known, an irreducible
symmetric Riemannian manifold is Einstein. More explicitly,M must be one of the following:

SO(n+ 1)/SO(n) (n ≥ 2) , SU(k) , (k ≥ 3) ,(4.1)

SU(k)/SO(k) , (k ≥ 3) , SU(2k)/Sp(k) , (k ≥ 3) , E6/F4 ,

the metric onM is determined uniquely by the constant c (the holomorphic sectional curvature
of CPn) and for each of these spaces there exists exactly one quotient which is a complete
totally real submanifold M0 embedded into CPn(c). Note that, since M is the universal
covering of M0, the Riemannian manifolds M and M0 have the same Riemannian curvature
invariants. Some of these invariants were computed explicitly forM in [C].

The embedded totally real parallel submanifolds M0 of CPn(c) corresponding to the
spaces listed in (4.1) could be deduced from Section 5 of [N], where the immersions were
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118 GIOVANNI CALVARUSO

explicitly described. On the other hand, n-dimensional totally real submanifolds of CPn(c)
correspond exactly, in the framework of symplectic geometry, to the so-called Lagrangian
submanifolds. In order to study their Hamiltonian stability, compact minimal Lagrangian
submanifolds of CPn(c), with parallel second fundamental form, were explicitly computed
by A. Amarzaya and Y. Ohnita [AO]. Besides RPn( c4 ), the totally geodesic one, and the flat
torus T n (which corrresponds to the Euclidean case), they are the followings:

SU(k)/Zk , SU(k)/SO(k)Zk , SU(2k)/Sp(k)Z2k , E6/F4Z3 .

IfM admits a Euclidean factor and we suppose thatM is Einstein, it is easy to show that
the scalar curvature ofM vanishes and so, M itself is Euclidean (we can refer to [C] for more
details). In particular, if the corresponding embedded submanifold M0 is compact, then M0

is the n-dimensional flat torus, T n.
Therefore, combining the results of [AO] and [C], we obtain the following table, which

describes all n-dimensional compact totally real parallel Einstein submanifolds embedded
into CPn(c) (and hence, of QPn(c)).

It is easy to check that for two of such manifolds, having the same dimension, it never

occurs that the pairs of Riemannian curvature invariants (τ, ||R||2) coincide. Therefore, we
have the following

THEOREM 4.1. Each compactn-dimensional totally real parallel Einstein submani-
fold M0 of QPn(c) is uniquely determined by the pair of Riemannian curvature invariants

(τ, ||R||2).
Taking into account formulas (3.14)–(3.16) and Theorem 4.1, we can now prove the

following

TABLE I

M dim τ ||R||2

RPn( c4 ) n
n(n−1)

4 c
n(n−1)

8 c2

SU(k)/Zk k2 − 1 (k2−1)
4 c

(k2−1)2
16 c2

SU(k)/SO(k)Zk
1
2 (k − 1)(k + 2) k2(k−1)(k+2)

32 c
k3(k−1)(k+2)2

512 c2

SU(2k)/Sp(k)Z2k (k − 1)(2k + 1) k2(k−1)(2k+1)
4 c

k3(k−1)2(2k+1)
16 c2

E6/F4Z3 26 637
4 c 3185

32 c2

T n n 0 0
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THEOREM 4.2. Each compactn-dimensional totally real parallel Einstein submani-
foldM0 ofQPn(c) is uniquely determined by itsspec(J ).

PROOF. We treat the cases n �= 2, 5, n = 2 and n = 5 separately.
a) If n �= 2, 5, by Theorem 4.1, it is enough to prove that spec(J ) determines the pair

of Riemannian invariants (τ, ||R||2) of M . In fact, suppose that spec(M0, J ) = spec(M ′
0, J ),

where M0, M ′
0 are n-dimensional compact totally real parallel Einstein submanifolds of

QPn(c). Then, since n �= 2, (3.14) and (3.15) imply that τ0 = τ ′
0. M0, M ′

0 being Einstein

manifolds having the same dimension, it follows that ||
0||2 = ||
′
0||2. Thus, since n �= 5,

taking into account that ||R0||2 and ||R′
0||2 are constant, from (3.16) we get ||R0||2 = ||R′

0||2.

b) If n = 2, from Table I we see that M0 = RP 2( c4 ) or M0 = T 2. Suppose

that spec(RP 2( c4 ), J ) = spec(T 2, J ). Then, in particular, a0(RP 2( c4 )) = a0(T
2) and

a2(RP 2( c4 )) = a2(T
2), from which it follows easily that c vanishes, which cannot occur.

c) If n = 5, then M0 = RP 5( c4 ), T
15 or SU(3)/SO(3)Z3. Suppose that spec(M0, J )

=spec(M ′
0, J ). Then, in particular, a0(M0) = a0(M

′
0) and a1(M0) = a1(M

′
0), from which

it follows easily that τ0 = τ ′
0, which cannot occur, because, as it follows from Table I, for

RP 5( c4 ), T
5 and SU(3)/SO(3)Z3, we respectively have τ = 5c, 0 and 45

16c, with c �= 0 �

We now characterize totally real parallel Einstein submanifolds M0 of QPn(c), in the
class of all totally real minimal submanifolds, by proving the following

THEOREM 4.3. LetM be ann-dimensional compact totally real minimal submanifold
ofQPn(c). If spec(M, J ) = spec(M0, J ), 5 < n ≤ 17, thenM is isometric toM0.

PROOF. Since spec(M, J )=spec(M0, J ), we have dimM=dimM0=n and, from Theo-
rem 3.3, we get

vol(M, g) = vol(M0, g0) ,(4.2)

∫
M

τdv =
∫
M0

τ0dv ,

∫
M

||σ ||2dv =
∫
M0

||σ0||2dv,(4.3)

∫
M

{2(n− 5)||R||2 + 2(30 − n)||
||2 + 5(n− 4)τ 2}dv(4.4)

=
∫
M0

{2(n− 5)||R0||2 + 2(30 − n)||
0||2 + 5(n− 4)τ 2
0 }dv .

Since τ0 is constant and vol(M) = vol(M0), we have∫
M

τ 2dv −
∫
M0

τ 2
0 dv =

∫
M

τ 2dv − 2τ0

∫
M0

τ0dv +
∫
M0

τ 2
0 dv(4.5)

=
∫
M

(τ − τ0)
2dv ≥ 0
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where the equality holds if and only if τ = τ0.

Next, let E = 
 − τ
n
g denote the Einstein curvature tensorof (M, g). Since ||E||2 =

||
||2 − τ 2

n
and E0 = 0 because M0 is an Einstein space, (4.4) becomes

2(n− 5)

(∫
M

||R||2dv −
∫
M0

||R0||2dv
)

− 2(n− 30)
∫
M

||E||2dv(4.6)

+5n2 − 22n+ 60

2n

( ∫
M

τ 2dv −
∫
M0

τ 2
0 dv

)
= 0 .

Moreover, from (2.7) we also get

1

2
∆||σ ||2 = ||∇′σ ||2 − ||R||2 − ||E||2 + 1

n
τ 2 + (n+ 1)

c

4
τ .

Integrating over M , we obtain
∫
M

||∇′σ ||2dv =
∫
M

||R||2dv +
∫
M

||E||2dv(4.7)

+ 1

n

∫
M

τ 2dv − (n+ 1)
c

4

∫
M

τdv .

An analogous formula holds for M0, with ∇′σ0 = E0 = 0. Using (4.7) to calculate∫
M ||R||2dv, (4.6) becomes

(n− 5)
∫
M

||∇′σ ||2dv = α(n)

∫
M

||E||2dv + β(n)

( ∫
M

τ 2dv −
∫
M0

τ 2
0 dv

)
,(4.8)

where

α(n) = 2n− 35 ,

β(n) = −5n2 − 24n+ 70

2n
.

If 5 < n ≤ 17, then n − 5 > 0, while α(n), β(n) < 0. Therefore, we get ∇′σ = 0, E = 0
and τ = τ0. Thus, M is an Einstein (compact) totally real parallel submanifold of QPn(c),
with the same spec(J ) of M0. So, Theorem 4.2 implies that M is isometric to M0. �

5. Totally real parallel conformally flat submanifolds of QPn

In this section, by M0 we shall denote an n-dimensional compact totally real parallel
minimal submanifold of CPn(c), which is conformally flat. In other words, M0 is one of the
manifolds listed in the following Table II:
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TABLE II

M0 τ

RPn( c4 )
n(n−1)

4 c

T n 0

S1 × Sn−1 (n−2)(n2−1)
4n c

(see [E], [N], [CP]). As we noted in the previous Section 4, these are exactly the n-dimensional
conformally flat totally real minimal parallel submanifolds of the quaternionic projective
space QPn(c). We now prove the following

THEOREM 5.1. LetM be ann-dimensional compact totally real minimal submanifold
ofQPn(c). If spec(M, J ) = spec(M0, J ) and18 ≤ n ≤ 33, thenM is isometric toM0.

PROOF. The proof is similar to the one of Theorem 4.3. In particular, formulas (4.2)–
(4.5) still hold. Here, we use the conformal curvature tensorC of (M, g) to rewrite (4.4).
Since the curvature invariant ||R||2 is given by

||R||2 = ||C||2 + 4

n− 2
||
||2 − 2

(n− 1)(n− 2)
τ 2 ,(5.1)

from (4.4) we obtain

(n− 5)
∫
M

||C||2dv − n2 − 36n+ 80

n− 2

( ∫
M

||
||2dv −
∫
M0

||
0||2dv
)

(5.2)

+5n3 − 35n2 + 66n− 20

2(n− 1)(n− 2)

( ∫
M

τ 2dv −
∫
M0

τ 2
0 dv

)
= 0 .

Moreover, from (2.7) and (5.1), we also have

1

2
∆||σ ||2 = ||∇′σ ||2 − ||C||2 − n+ 2

n− 2
||
||2 + 2

(n− 1)(n− 2)
τ 2 + (n+ 1)

c

4
τ ,

from which, by integrating overM , we get∫
M

||∇′σ ||2dv =
∫
M

||C||2dv + n+ 2

n− 2

∫
M

||
||2dv

− 2

(n− 1)(n− 2)

∫
M

τ 2dv − (n+ 1)
c

4

∫
M

τdv

and for M0, since ∇′σ0 = 0 and C0 = 0, we have

n+ 2

n− 2

∫
M0

||
0||2dv = 2

(n− 1)(n− 2)

∫
M0

τ 2
0 dv + (n+ 1)

c

4

∫
M0

τ0dv .
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Therefore,

n+ 2

n− 2

( ∫
M

||
||2dv −
∫
M0

||
0||2dv
)

=
∫
M

||∇′σ ||2dv −
∫
M

||C||2dv(5.3)

+ 2

(n− 1)(n− 2)

( ∫
M

τ 2dv −
∫
M0

τ 2
0 dv

)
.

Using (5.3), (5.2) becomes∫
M

||∇′σ ||2dv = a(n)

∫
M

||C||2dv + b(n)

( ∫
M

τ 2dv −
∫
M0

τ 2
0 dv

)
,(5.4)

where

a(n) = 2n2 − 39n+ 70

n2 − 36n+ 80
, b(n) = 5n4 − 25n3 − 6n2 + 184n− 200

(n− 1)(n− 2)(n2 − 36n+ 80)
.

It is easy to check that if 18 ≤ n ≤ 33, then a(n) < 0 and b(n) < 0. Therefore, we get
∇′σ = 0, C = 0 and τ = τ0, that is, M is a compact conformally flat totally real minimal
submanifold ofQPn(c) with parallel second fundamental form. Therefore,M is isometric to
one of the manifolds listed in Table II. Since τ = τ0, we can conclude that M is isometric to
M0. �

Remark that the flat torus T n is, at the same time, a conformally flat and an Einstein
manifold. Therefore, combining Theorems 4.3 and 5.1, we get the following

COROLLARY 5.2. In the class of all compact totally real minimal submanifolds of
QPn(c), the flat torusT n is characterized by itsspec(J ) when5 < n ≤ 33.

Moreover, note that, using formulas (2.4), (3.14) and (3.15), it is easy to show that in the
class of all compact totally real minimal submanifolds ofQPn(c), the real projective space
RPn( c4 ) is characterized by its spec(J ) for all n ≥ 3.

6. Spectral rigidity of totally real submanifolds of small dimension

In this section, we characterize by means of spec(J ) some special n-dimensional totally
real submanifolds of QPn when n is small.

Case of n = 2.

PROPOSITION 6.1. Let M , M ′ be two compact totally real surfaces ofQP 2(c). If
spec(M, J ) = spec(M ′, J ), thenM is minimal if and only ifM ′ is minimal.

PROOF. Since ai(M) = ai(M
′), using (3.11) and (3.12), we get easily∫

M

||H ||2dv =
∫
M ′

||H ′||2dv ,

from which the conclusion follows at once. �
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Case of n = 3.
As it is well-known, the conformal curvature tensorC vanishes on any three-dimensional

Riemannian manifold. Moreover, note that formula (5.4) holds for all n �= 2. Therefore, it is
easy to prove the following

THEOREM 6.2. LetM be a compact minimal totally real submanifold ofQPn(c). If
spec(M, J ) = spec(M0, J ), wheren = 3 andM0 is a compact parallel totally real submani-
fold, thenM is isometric toM0.

PROOF. We first remark that, according to Naitoh’s classification, if M0 is a three-
dimensional compact totally real parallel submanifolds of CP 3(c) (and hence, of QP 3(c)),

then M0 is RP 3( c4 ), T
3 or S1 × S2(k), with k = c/3. Suppose now spec(M, J ) =

spec(M0, J ). Since n = 3, formula (5.4) becomes∫
M

||∇′σ ||2dv = b(3)

( ∫
M

τ 2dv −
∫
M0

τ 2
0 dv

)
= −14

19

(∫
M

τ 2dv −
∫
M0

τ 2
0 dv

)
,

from which it follows ∇′σ = τ − τ0 = 0. Thus, since M is parallel and τ = τ0, we can
conclude that M is isometric to M0. �

Case of n = 4.

THEOREM 6.3. Let M , M0 be compact minimal totally real submanifolds of
QPn(c), withM0 parallel and either Einstein or conformally flat. Ifn = 4 andspec(M, J ) =
spec(M0, J ), then

χ(M) ≥ χ(M0)

and the equality holds if and only ifM is isometric toM0.

PROOF. The Gauss-Bonnet formula for any 4-dimensional compact manifold M is
given by

χ(M) = 1

32π2

∫
M

{||R||2 − 4||
||2 + τ 2}dv .(6.1)

Suppose first that M0 is Einstein. Using ||
||2 = ||E||2 + τ 2/4, (6.1) becomes

χ(M) = 1

32π2

∫
M

{||R||2 − 4||E||2}dv , χ(M0) = 1

32π2

∫
M0

||R0||2dv .(6.2)

On the other hand, since ai(M, J ) = ai(T
2, J ), using formulas (3.14), (3.15), (3.16) (for

n = 4), we obtain∫
M

||R||2dv −
∫
M0

||R0||2dv = 26
∫
M

||E||2dv + 13

2

( ∫
M

τ 2dv −
∫
M0

τ 2
0 dv

)
.(6.3)

Using (6.2) and (6.3), we then get

(32π2){χ(M)− χ(M0)} = 22
∫
M

||E||2dv + 13

2

( ∫
M

τ 2dv −
∫
M0

τ 2
0 dv

)
.(6.4)
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Therefore, χ(M) ≥ χ(M0) since ||E||2 ≥ 0 and
∫
M
τ 2dv − ∫

M0
τ 2

0 dv ≥ 0.

In particular, if χ(M) = χ(M0), then (6.4) yields E = τ − τ0 = 0. Moreover,
by (6.3) it follows

∫
M

||R||2dv = ∫
M0

||R0||2dv and hence, by (4.7),
∫
M

||∇′σ ||2dv =∫
M0

||∇′σ0||2dv = 0. So, M is also parallel and, as in the proof of Theorem 4.3, we can

conclude that M is isometric to M0.
If M0 is conformally flat, the proof is similar. Using the conformal curvature tensor C,

we eventually get

(32π2){χ(M)− χ(M0)} = 11

12

∫
M

||C||2dv + 13

36

( ∫
M

τ 2dv −
∫
M0

τ 2
0 dv

)
≥ 0 ,(6.5)

where the equality holds if and only if C = τ − τ0 = 0. Moreover, M is parallel and the
conclusion then follows as in the proof of Theorem 5.1 �

In particular, from Theorem 6.3 we obtain at once the following

COROLLARY 6.4. In the class of all4-dimensional compact minimal totally real sub-
manifolds ofQP 4(c), of non-positive Euler number, T 4 andS1 × S3(k), with k = 5c/16, are
completely determined by theirspec(J ).

Case of n = 5.
Using the same methods of the proof of Theorem 4.3, we can easily prove the following

result for five-dimensional totally real submanifolds ofQP 5(c).

PROPOSITION 6.5. LetM be ann-dimensional compact totally real minimal subman-
ifold ofQPn(c). If spec(M, J ) = spec(M0, J ), with M0 parallel and Einstein andn = 5,
thenM is also Einstein andτ = τ0.
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