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Abstract. We calculate some invariants determined by the spectrum of the Jacobi operator J of n-dimensional
totally real submanifolds of the quaternionic projective space Q P"* and we use such invariants to characterize paral el
submanifolds of Q P".

1. Introduction

The Jacobi operator J is a second order elliptic operator associated to an isometric im-
mersion of acompact Riemannian manifold M into a Riemannian manifold M. J is defined
on the space of smooth sections of the normal bundle 7'M+ by the formula

J=D+R—-A,

where D is the rough Laplacian of the normal connection V- on 7M1, R and A are linear
transformations of T M~ defined by means of a partial Ricci tensor of M and of the second
fundamental form A, respectively. J appears in the formula which gives the second variation
for the area function of a compact minimal submanifold (see [S]). For this reason, J is aso
called the second variation operatotts spectrum, denoted by

spec(M, J) ={A1 < A2 < <M <o+ 100},

is discrete, as a consequence of the compactness of M.

The Riemannian invariants determined by spec(M, J) have been calculated for several
types of isometric immersions of submanifoldsinto real or complex spaceforms(see[D], [H],
[Sh], [CP], [C]). Moreover, asimilar study was made about spectral geometry determined by
the Jacobi operator associated to the energy of a harmonic map ([CgY], [KPa], [KKiP4],
[NiTV], [UL,[YD).

In this paper, we determine the first three terms of the asymptotic expansion for the par-
tition function associated to the spectrum of the Jacobi operator of an n-dimensional totally
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real submanifold of the quaternionic projective space Q P" and we use the corresponding Rie-
mannian spectral invariantsto characterize n-dimensional totally real parallel submanifolds of
QP".

The paper is organized in the following way. In Section 2, we shall recall some basic
resultsabout Q P" and n-dimensional totally real submanifoldsof Q P". In Section 3, weshall
compute the first three terms of the asymptotic expansion for the partition function associated
to spec(M, J), M being an n-dimensional totally real submanifold of Q P". In Sections 4
and 5, we shall characterize totally real parallel submanifoldsof Q P", which are Einstein and
conformally flat, respectively. In Section 6 we shall investigate the spectral rigidity of totally
real parallel submanifolds of Q P" for small dimensions .

ACKNOWLEDGEMENTS. The author wishes to express his sincere gratitude towards
Prof. K. Tsukadafor his helpful remarks and comments during the revision of the manuscript.

2. Totally real submanifoldsof Q P"

Let (M, g) be a 4n-dimensional quaternionic Riemannian manifold and V the three-
dimensional vector bundle of tensors of type (1, 1) with local basis of almost Hermitian struc-
tures I, I, I3, satisfying

Q hb=-hbh=1I hlz=-kh=0Nh ki=-hlz=Dh, [?=1{=12=—1;

b) for any cross-section £ of V, V£ isalso across-section of V, where X is a vector
field on M and V is the Riemannian connection of M.

If X isaunit vector on M, the quaternionic sectiodetermined by X isthe 4-plane Q(X)
spanned by X, 1 X, [oX and I3X. If Q(X) and Q(Y) are orthogonal, the plane spanned by
X and Y is cdled a totally real plane Any 2-plane in a quaternionic section is called a
guaternionic planeand its sectional curvature is called quaternionic sectional curvatureA
guaternionic space forms a quaternionic manifold of constant quaternionic sectional cur-
vature. In particular, by Q P" we denote the 4n-dimensional quaternionic projective space,
equipped with the Riemannian metric g of constant quaternionic sectional curvature ¢ > 0.
Its curvature tensor R, taken with the sign convention

R(X.Y) = Vix.y; — [Vx, Vy]1,
satisfies
R(X.Y. Z.W) = 2(3(X. 2)5(Y. W) = §(¥. 2)§(X. W)
+ 91X, Z2)g(I1Y, W) — g(I1Y, Z)g(I1 X, W) + 2g(I1X, Y)g(InZ, W)
+ 912X, Z)g(I2Y, W) — g(I2Y, Z)g(I2X, W) + 2g(I2X, Y)g(I2Z, W)
+ 93X, Z)g(I3Y, W) — g(I3Y, Z)g(I3X, W) + 2g(I3X, Y)g(I3Z, W)} .

Note that our convention for the sign of the curvature tensor is opposed to the one used by
Simonsin [S]. We refer to [I] for more details about quaternionic manifolds.
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Next, let (M, g) bean n-dimensional Riemannian manifold, isometrically immersed into
(QP", g). By definition, M is atotally real submanifoldf Q P" if each tangent 2-plane of
M is mapped by theisometricimmersion into atotally real plane of Q P". We shall denote by
V and R the Levi Civita connection and the curvature tensor of M, respectively. The normal
connection is given by

Vi TM x TMY — TM*:
(X, £) —> Vy&,

where V)%E denotes the normal component of Vy&. The second fundamental form o and the
Weingarten operator A are respectively defined by

o(X,Y)=VxY —VxY, A:X =—Vxé+ Vi

foral X,Y e TM and& € T M. Moreover, (o (X, Y), &) = g(As X, Y).
Let R+ dencte the curvature tensor associated to the normal connection VL. The curva-
turetensors R, R and R satisfy the Gauss and the Ricci equations:
R(X,Y,Z,W)=g(R(X,Y)Z, W) = R(X, Y,Z, W)

RY(X,Y,&,n) = §(R(X,Y)E,n) = R(X, Y, &, 1) — g([Ag, Aj1X, Y),

where[Ag, Ayl = A 0 Ay — Ay o Ag foral X, Y, Z, W e TM and &,y e TM*.

Let {e1, -, en, e = lel, -, enm = len, ena = ey, -, enpm = ey,
ery1) = Izel, - -+, emy = I3¢,} be alocal orthonormal frame on Q P" such that, restricted
to M, the vector fieldsey, .., ¢, aretangent to M. With respect to such framefield, we have

0O0-EO0 O 0 0-EO0 00 0 —F
L= E 00O L= 00 OFE s = 00-E O

0 00-E]|"° E 0 0 O0])”° OE 0O 0 |°

0 0EO 0O-E 0 O EO O O

where E isthe (n x n)-identity matrix. We shall use the following convention for the range
of indices:

A,B,C,D=1,---,n 1), [1(n), 2(D),---, I2(n), I3(1), - - -, I3(n);

i,j,k,h=1,--- n;

o, =011, -, 1(n), [2(1),---, I2(n), I3(), - - -, [3(n);

o, v =1, I, Is.

Putting Ay = Ae,, Awe; = hfje; and Rﬁaﬂ = Rt(ei, e, eq, €p), the Gauss and Ricci
equations become

C
(2.2) Rijin = 7 @Gikdjn — 8jxdin) + D iy — 1Sk
o
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and
(2.2) Riop = ((Il)ioc(ll)jﬂ — (1) ja(I)ip + (12)ia(12) jg — (12) ja (I12)ip

+ (I13)ia(I3) jg — (U3) ja (3)ip) — 9([Aa, Aglei, ;) .
Note that, for al i, j, k and ¢, we have
@) ) (k)
WD = n = ne .
The mean curvature vector is defined by

= trace(o) = Za(e,, ej) = ZtrA (Hep(i) = ZtrA ey -

M issaid to be minimalif H = 0, totally geodesi(tf o = 0, parallel (or with parallel second
fundamental formif Vo = 0, where

(Vyo) (¥, Z) = Vf(‘(a(Y, Z))—o0(VxY,Z)—o(Y,VxZ).

For the Ricci tensor ¢ of M, from (2 1) we easily obtain

(2.3) oik = ZRl,k, = —(n—Ddi + Z{(trAa)h }— Zh%hi‘z

and for the scalar curvature T of M, we have

(24) r=3 0 =n( =17 +I1HI? o],
where ||o||? = Y trAZ and || H||? = Y (trA,)2.
We also refer to [ChH] for more details. We now prove the following

LEMMA 2.1. LetM be ann-dimensional totally real submanifold @f P". Then

2
(2.5) ||R||2=cr—n(n—1)%—Ztr[Aa,Aﬁ]z.
a,B
If in addition M is minimaJ then
2 ¢ 202 2

(2.6) lloll? = 20 = 177 —n(n = 1) 1—6+§(trAaA,g) ,

1 2 /12 2 2 ¢
(2.7) EAIIGII = [IVia|l® = [IR|I” — lleoll +(n+1)£—1f-

ProoF. (2.5) followsfrom (2.1), taking into account (2.4), once we note that

Z( > (hhSy, — hShs, ) Ztr[Ao,,Aﬁ

a  Nijkh
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and

D oGS — (hi)?) = [ H|? = llo]]?.

a,i,j

Next, suppose that M isminima. ThentrA, = Ofor all « and (2.3) reducesto

(2.8) - —(n Déir = Zh W= Z rApi)Ap() -

i,k,p

In [ChH], the following formulawas proved for any m-dimensional totally real subman-
ifold of Q P":

1
(2.9) SAllolZ =1IV/ol2+ 3 ) trlAw, Agl? = ) (rAqAp)®
(X?:B (X?:B

C c
+ nZ||a||2 +2 > Az,
i,¢
Next, put So.p = >, g tr(AgAp). Since Sq,g is asymmetric matrix, it can be diagonalized

for asuitable choice of {e,}. Hence, we may assumethat tr(A,Ag) = O for o # B (seeaso
[CH, p. 198]). In particular, we then have

> trAyh Ag) = ZtrA Ap. Y (rAynApw)? = (A, Ap)?.

ik,p ik,p a.p

Hence, (2.6) follows from (2.8). Moreover, since in our case m = n and (2.4)—(2.6) hold,
from (2.9) we get (2.7). |

3. Spectral invariants of the Jacobi operator

Let M be an n-dimensiona Riemannian manifold immersed in a Riemannian manifold
M of dimensioni = n + r. The normal bundle 7 M-+ isarea r-dimensiona vector bundle
on M, with inner product induced by the metric g of M. Let D denote the so-called rough
Laplacianassociated to the normal connection V+ of 7 M+, that is,

DE = -V, V& + Vé,_,[.e,f :
where ¢ isasection of 7M~L. Next, let A be the Simons operatodefined in [S] by
GAE, ) =tr(Ag 0 Ay),

for &, n € TM~+. Moreover, we consider the operator R defined by

RE) == (R(ei, &)e)*

i=1
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where (R(e;, £)e;)* denotes the normal component of R(e;, £)e; .
The Jacobi operator(or second variation operatdy acting on cross-sections of 7M*,
isthe second order elliptic differential operator J defined by (see[S] or [D])

J: TM*+ — TM*
E+— (D— A+ R)E.

When M is compact, we can define an inner product for cross-sectionson 7 M+, by

(€. n) =/ 3, mdv
M

and J is self-adjoint with respect to this product. Moreover, J is strongly elliptic and it has
an infinite sequence of eigenvalues, with finite multiplicities, denoted by

spec(M, J) ={A1 <Az <. <A <---+ 100},
The partition function Z (1) = Y 2, exp(—A;1) hasthe asymptotic expansion
Z(t) ~ @Grt) " ag(J) + ar(J)t + az(J)t2 + -} .

By Gilkey’'sresults[G] (seeaso [D] and [H]), it followsthat the coefficients ag, a1 and a, are
given by the following

THEOREM 3.1 ([G]). We have

ap = rvol(M),

alzi/ tdv—}—/trEdv,
6 Jm M

r 1
= — [ {2|IR||? = 2||0]|? + 5t%}d —/ —30||R*|[?
az 360/M{ [IR]| [lol]= + 577} v+360 M{ [|R~|]

+tr(607 E + 180E2)}dv ,
whereE = A — R.

We now consider the case of an n-dimensional totally real submanifold of Q P"(c¢) and
we compute explicitly the coefficients ag, a1 and az in terms of invariants depending on the
curvature of M and itsisometric immersionin Q P".

ProPOSITION 3.2. LetM be ann-dimensional totally real submanifold ¢f P”. Then

(3.1 IIRE[12 = [|R||? + n(n — D)c?,

~ 2 3
(3.2 trE = ||o||” + Zn(n + D,

- 3 c

2 2.2 2 2
(3.3 trE- = —16n(n 4+ D+ (n +1)§||a|| + E tr(AqAp)”.

a’ﬂ
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If in addition M is minimal then
- 1
(3.4) trE? = ||ol|?> + (n + Dello||® + én(nz +4n + 1)c?.

PROOF. From (2.2) we get

(35) IRM1Z= )" (Ri54)?=Ri+ R2+ R,
i’j’a’ﬂ

with
CZ
Ri= 1= {Uie () jp = () ja(1)ip + (2)ia(12) jp = (12) je(I2)ip

+ (13)ig(13) jp — (I3) jo (I3)ig }?

2
C
6 Z{(Il)ill(k)(ll)jll(h) — (1) jnwUDinm + U2)inw (2) jnm

— (12) j L U2)inpm + U3)inw (I3) j13m) — (13)j13(k)(13)i13(h)}2

2
c 9
16 2_(@0uxdjn — 88 j0))* = gnln — e,

Ro =) (9([Aa, Aplei, e))? = [I[Aq, Apll|> = = Y _trlAq, Apl?,
o.p a.p

where we used the fact that [A., Ag] is skew-symmetric, and

c

R3 = 5 Z{(ll)ill(k)(ll)jll(h) — (1) oo UDinm

+ (12)i (k) (12) j 1y — (U2) j 10 (U2)i 1 ()

+ (3)irs0)U3) j 13t — U3) 1300 U3)i i3y Y9 ([A gy s Apny leis €)

C
=—= Z{g([Aw(i), Agpleirej) — g([Ap)s Apiylei, ej)}

2
=—c ) 9(lApi), Ag(jlei, ef)
= —c ) {9(Ap(peis Apire)) — 9(Apreis Ap(je))}
= llo]|® = [|H]|*.

Then (3.1) follows from (3.5), taking into account (2.3) and (2.4).
Next, using the Ricci equation (2.2), we easily obtain

RE) = —(n+ 1)%5
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and hence,
~ 3
(3.6) trR = —Zn(n + De,
(3.7) trR? = in(n +1)%¢?
. 16 9
L. 1 _
(3.8) trRoA = —Z(n + DctrA.
Next, by the definition of A, we get
(3.9) trA =" §(Aeq, ea) = Y _ G(Aaei, Ager) = ||A|* = ||o||?
and
(3.10) trA% = " G(Aeq, Aea) = Y (§(Aa, Ap))® =Y (tr(AgAp))®.
a a.p o, p
Therefore, sincetrE = trA — trR and trE? = tr(A2 — 2R o A 4+ R?), from (3.6)—3.10) we
get (3.2) and (3.3).

Finally, if M is minimal, then we obtain (3.4) from (3.3), taking into account (2.6). O
Combining Theorem 3.1 and Proposition 3.2, we get

THEOREM 3.3. On ann-dimensional totally real submanifoltd of Q P"(c), the first
coefficients of the asymptotic expansiontaf partition functiom of the Jacobi operator are
given by

(3.1 ap = 3nvol(M),
n 2 3

(3.12) ar=—= [ tdv+ llo||°dv + =n(n + 1)c vol(M)
2Ju M 4
n—2

= /tdv—}—/ [|1H||?dv + n(n + 1)c vol(M) ,
2 Ju M
n 1
3.13 =— [ {21RI|?> = 2ll0l|?> + 57%}d —/ —10||R||?
(313 az 120/M{ [IR]| [lo]|© + 514} v+120 M{ [IR]|
2 2 3
—10n(n — D)+ 20t (||o| |- + Zn(n + Do)

c 3 -
+60[(n + 1>§||o||2 + 1"+ 1)2c2 + trA?))dv .
If in addition A is minimal then

(3.14) ap = 3nvol(M),



——

SPECTRAL GEOMETRY OF THE JACOBI OPERATOR 117
-2
(3.15) ay = " / tdv+n(n + 1Dcvol(M),
M
1
(3.16) ap = —— / {2(n — 5)||R||> = 2(n — 30)||o]||? + 5(n — 4)t%}dv
120 Ju,

+k1(n)c / tdv + ka(n)c?vol (M),
M

wherek1 andk; are constants depending an

4. Totally real parallel Einstein submanifolds of Q P"

K. Tsukada [T9] classified parallel submanifolds of Q P"(c). In particular, he proved
that if Mg isatotally real parallel submanifold of Q P"(c), then Mg is either

(R-R) atotally real submanifold containedin atotally real totally geodesic submanifold
of QP"(c), or

(R-C) atotaly real submanifold contained in atotally complex totally geodesic sub-

manifold of Q P"(c)
(see[Ts, Theorem 3.10Q]). In generd, atotally real submanifold Mg of Q P"(¢) hasdimension
m < n. If Mpisparalel and dimMg = n, then My is not of type (R-R), unless My itself isa
totally rea totally geodesic submanifold of Q P"(c¢), whichis also of type (R-C). Therefore,
My is an n-dimensional totally real parallel submanifold Mg of the quaternionic projective
space Q P"(¢) if and only if it isan n-dimensional totally real parallel submanifold My of the
complex projective space C P"(c).

Totally real parallel submanifolds of C P"(c) have been classified by H. Naitoh [N]. We
now synthesize some basic ideas of [N], referring to this paper for more details.

Let M be a simply connected Riemannian manifold, admitting a totally real parallel
isometric immersion into C P"(c¢). In other words, M isthe universal covering of a complete
totally real submanifold Mg embedded into C P"(¢). If M asno Euclidean factor, then M is
irreducible and of compact type [N, Section 4]. Note that, asit is well-known, an irreducible
symmetric Riemannian manifoldis Einstein. Moreexplicitly, M must be one of thefollowing:

(4.1) SOn+1)/S0(m) n>2), SUK), (k=3),
SU(k)/SOk), (k=3), SU(2k)/Spk), (k=3), Ee/Fa,

themetricon M isdetermined uniquely by the constant ¢ (the holomorphic sectional curvature
of CP") and for each of these spaces there exists exactly one quotient which is a complete
totally real submanifold My embedded into C P"(c). Note that, since M is the universal
covering of Mg, the Riemannian manifolds M and My have the same Riemannian curvature
invariants. Some of these invariants were computed explicitly for M in [C].

The embedded totally real paralel submanifolds Mg of C P"(c) corresponding to the
spaces listed in (4.1) could be deduced from Section 5 of [N], where the immersions were
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explicitly described. On the other hand, n-dimensional totally real submanifolds of C P"(¢)
correspond exactly, in the framework of symplectic geometry, to the so-called Lagrangian
submanifolds In order to study their Hamiltonian stability, compact minimal Lagrangian
submanifolds of C P"(c), with parallel second fundamental form, were explicitly computed
by A. Amarzayaand Y. Ohnita [AQ]. Besides RP" (3), the totally geodesic one, and the flat
torus 7" (which corrresponds to the Euclidean case), they are the followings:

SUK)/Zk, SUK)/SOWK)Zr, SUQ2k)/Sp(k)Zx, Ee/FaZs.

If M admits a Euclidean factor and we supposethat M isEinstein, it is easy to show that
the scalar curvature of M vanishes and so, M itself is Euclidean (we can refer to [C] for more
details). In particular, if the corresponding embedded submanifold My is compact, then Mg
isthe n-dimensional flat torus, 7".

Therefore, combining the results of [AO] and [C], we obtain the following table, which
describes al n-dimensional compact totally real parallel Einstein submanifolds embedded
into C P"(c¢) (and hence, of Q P"(c)).

It is easy to check that for two of such manifolds, having the same dimension, it never
occurs that the pairs of Riemannian curvature invariants (, ||R||%) coincide. Therefore, we
have the following

THEOREM 4.1. Each compactk-dimensional totally real parallel Einstein submani-
fold Mo of Q P"(c) is uniquely determined by the pair of Riemannian curvature invariants

@ [IRI?).

Taking into account formulas (3.14)—(3.16) and Theorem 4.1, we can now prove the
following

TABLE |
M dim 4 IIRII?
RP" (%) n "("4—1) c n(n8—1) 62
szl szl 2
SU(k)/ Zy, K2-1 &D w212 2

201 3 _ 2
SUM/SOMZ | 3k — Dk +2) | EEPEHD | DRk 2

21— 3(k—1)2
SU@K)/Sp(k)Zy | (k— D2k + 1) | KEDE@ED | EGLy D 2

Eg/FaZ3 26 %C —3%2562

" n 0 0
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THEOREM 4.2. Each compachk-dimensional totally real parallel Einstein submani-
fold Mo of Q P"(c) is uniquely determined by igpec(J).

PROOF. Wetreat thecasesn # 2,5,n = 2andn = 5 separately.

a) Ifn # 2,5, by Theorem 4.1, it is enough to prove that spec(./) determines the pair
of Riemannian invariants (z, ||R||) of M. Infact, suppose that spec(Mo, J) = spec(M},, J),
where Mo, M, are n-dimensional compact totally real paralel Einstein submanifolds of
QP"(c). Then, sincen # 2, (3.14) and (3.15) imply that 7o = ;. Mo, M, being Einstein
manifolds having the same dimension, it follows that ||ool|? = [lop||?. Thus, sincen # 5,
taking into account that || Ro||? and || R)||? are constant, from (3.16) we get || Rol|? = || Rp||?.

b) If n = 2, from Table | we see that Mo = RP?(§) or Mo = T?. Suppose
that spec(RP2(§),J) = spec(T2,J). Then, in particular, ap(RP?(§)) = ao(T?) and
a2(RP2(%)) = a2(T?), from whichiit follows easily that ¢ vanishes, which cannot occur.

¢) Ifn =5 then Mo = RP>(), T™ or SU(3)/S0(3)Z3. Suppose that spec(Mo, J)
=spec(My, J). Then, in particular, ao(Mo) = ao(M{) and a1(Mo) = a1(Mp), from which
it follows easily that 7o = 7, which cannot occur, because, as it follows from Table I, for
RPS(%), T° and SU(3)/S 0(3) Z3, we respectively have t = 5¢, 0and $2¢, withc #0 O

We now characterize totally real parallel Einstein submanifolds Mg of Q P"(c), in the
class of all totally real minimal submanifolds, by proving the following

THEOREM 4.3. LetM be ann-dimensional compact totally real minimal submanifold
of QP"(c). If spec(M, J) = spec(Mop, J),5 < n < 17,thenM is isometric toMp.

PROOF. Since spec(M, J)=spec(My, J), we have dimM=dimMo=n and, from Theo-
rem 3.3, we get

(4.2 vol(M, g) = vol(Mp, go) ,

(4.3 / tdv = / T0dv , / l|lo|[2dv = / l|ool|%dv,
M My M Mo

(4.9) / {2(n — 5)||R||* + 2(30 — n)||o|[* + 5(n — H?}dv
M

= /M {2(n — 5)[|Rol|* + 2(30 — n)|0ol|? + 5(n — ) tg}dv .
0

Since 1 is constant and vol (M) = vol(My), we have

(4.5) / rzdv—/ ‘ngl):/ ‘EZdU—Z‘L’o/ rodv—f—/ tgdv
M Mo M Mo Mo

:/ (r—ro)zdv >0
M
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where the equality holdsif and only if = = 0.
Next, let E = ¢ — =g denote the Einstein curvature tensaof (M, g). Since |E||? =

llol|? — ’72 and Eg = 0 because My is an Einstein space, (4.4) becomes

(4.6) 2(n—5)</ ||R||2dv—/ ||Ro||2dv> —2(n—30)/ [|E||°dv
M Mo M

5n2 — 22n + 60
+i(/ rzdv—/ rgdv) =0.
2n M Mo

Moreover, from (2.7) we also get
1 1 c
5A||o||2 = |[V'a|l? = [IRII> = ||EII* + ;r2+ (n+ 17t

Integrating over M, we obtain

(4.7) /||V/o||2dv=/ ||R||2dv+/ |E|[?dv
M M M

1
—}——/ rzdv—(n+1)£/ Tdv.
nJy 4 )m

An analogous formula holds for Mg, with Viog = Eg = 0. Using (4.7) to calculate
fus lIR|I?dv, (4.6) becomes

(4.8) (n—5)/ ||V/0||2dv=oz(n)/ ||E||2dv+,3(n)</ rzdv—/ rgdv),
M M M Mo

where

a(n) =2n—35,
5n2 — 24n + 70

Bn) = ——

If5<n <17 thenn — 5> 0, whilea(n), B(n) < 0. Therefore, weget Vo =0, E =0
and T = to. Thus, M isan Einstein (compact) totally real parallel submanifold of Q P"(c),
with the same spec(J) of Mg. So, Theorem 4.2 impliesthat M isisometric to Mp. O

5. Totally real parallel conformally flat submanifolds of Q P"

In this section, by Mg we shall denote an n-dimensional compact totally real parallel
minimal submanifold of C P"(c¢), which is conformally flat. In other words, My is one of the
manifolds listed in the following TableIl:
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TABLE Il

Mo T

RP"(%) n(n;l)c

" 0

2
sl gn—1 (n72)4(;77 .

(see[E], [N], [CP]). Aswe noted in the previous Section 4, these are exactly the n-dimensional
conformally flat totally real minimal parallel submanifolds of the quaternionic projective
space Q P"(c). We now prove the following

THEOREM 5.1. LetM be ann-dimensional compact totally real minimal submanifold
of QP"(c). If spec(M, J) = spec(Mp, J) and18 < n < 33, thenM is isometric toMp.

PROOF. The proof is similar to the one of Theorem 4.3. In particular, formulas (4.2)—
(4.5) dtill hold. Here, we use the conformal curvature tenso€ of (M, g) to rewrite (4.4).
Since the curvature invariant || R||2 is given by

2 2

4
1 RIZ = 2 2_____ =
(5) IR = 1ICIP + 5 llell® — o —p =57

from (4.4) we obtain

n2—36n+80
(52) <n—5>/ ||C||2dv—7(f ||Q||2dv—/ ||Qo||2dv>
M n—2 M Mo

5n3—35n2+66n—20</ 5 )
+ rdv—/ tdv):O.
2(n — 1)(n — 2) M Mo °

Moreover, from (2.7) and (5.1), we also have

1 n+2 c
ZAllo|? = [IVol]? = ICI12 — ——]lol? + 24+ (n+D-1,
2 n—2 4

(n—=D(n-2)
from which, by integrating over M, we get

n+2
/||V’a||2dv=/ ||C||2dv+—/ llolZdv
M M n—2Ju

2 2 c
Th-Du-2 /M’ d”_(”“)Z/M’d”

and for Mo, since V'og = 0 and Co = 0, we have

Lt TS 2 2dv + (n + 1) d
—_— ool[dv = ———— t5dv + (n - T0dv .
n—2 ) n—11n—2) Jy, ° 4 Sy,
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Therefore,

n—+2
(5.3 2(/ ||g||2dv—f IIQoIIZdU)=/ ||V’a||2dv—/ I|Cl12dv
n— M Mo M M

2 2, 2
+7(n—1)(n—2)</Mr dv /Motodv).

Using (5.3), (5.2) becomes

(5.4) / ||v’a||2dv=a(n)/ ||C||2dv+b(n)(/ rzdv—/ rgdv>,
M M M My

where

2n2 — 391 + 70 ben) 5n* — 2513 — 6n2 + 184n — 200
—_— n)—= .
n2 —36n+80"° (n —1)(n — 2)(n? — 36n + 80)

It is easy to check that if 18 < n < 33,thena(n) < 0 and b(n) < 0. Therefore, we get
Vo =0,C = 0andt = 70, that is, M is a compact conformally flat totally real minimal
submanifold of Q P"(c¢) with parallel second fundamental form. Therefore, M isisometric to
one of the manifoldslisted in Table 1. Since T = g, we can conclude that M isisometric to
Mo. O

a(n) =

Remark that the flat torus 7" is, at the same time, a conformally flat and an Einstein
manifold. Therefore, combining Theorems 4.3 and 5.1, we get the following

COROLLARY 5.2. In the class of all compact totally real minimal submanifolds of
QP"(c), the flat torusT” is characterized by itspec(J) when5 < n < 33.

Moreover, note that, using formulas (2.4), (3.14) and (3.15), it is easy to show that in the
class of all compact totally real minimal submanifolds@#” (¢), the real projective space
RP"(3) is characterized by its spef) for all n > 3.

6. Spectral rigidity of totally real submanifolds of small dimension

In this section, we characterize by means of spec(J) some specia n-dimensional totally
real submanifoldsof Q P" whenrn issmall.
Caseof n = 2.

PROPOSITION 6.1. Let M, M’ be two compact totally real surfaces FP?(c). If
spec(M, J) = spec(M’, J), thenM is minimal if and only ifM’ is minimal.

PROOF. Sincea; (M) = a;(M’), using (3.11) and (3.12), we get easily

qunZdv:/ H|Pdv |
M M’

from which the conclusion follows at once. O
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Caseof n = 3.

Asitiswell-known, the conformal curvaturetensor C vanisheson any three-dimensional
Riemannian manifold. Moreover, note that formula (5.4) holdsfor al n # 2. Therefore, itis
easy to prove the following

THEOREM 6.2. Let M be a compact minimal totally real submanifold @P" (c). If
spec(M, J) = spec(Mo, J), wheren = 3and My is a compact parallel totally real submani-
fold, thenM is isometric toMp.

PROOF. We first remark that, according to Naitoh's classification, if My is a three-
dimensional compact totally real parallel submanifolds of C P3(c) (and hence, of QP3(c)),
then Mo is RP3(§), T3 or ST x S2(k), with k = ¢/3. Suppose now spec(M,J) =
spec(Mg, J). Sincen = 3, formula (5.4) becomes

14
/ ||V’a||2dv=b(3)</ rzdv—/ tédv) = ——(/ rzdv—/ ‘ngl)),
M M Mo 19 M Mo

from which it follows V'o = 7 — 19 = 0. Thus, since M is parallel and T = 7o, we can
conclude that M isisometric to Mp. O

Caseof n = 4.

THEOREM 6.3. Let M, My be compact minimal totally real submanifolds of
Q P"(c), with Mg parallel and either Einstein or conformally flat. #f= 4 andspec(M, J) =
spec(Mo, J), then

x(M) = x(Mo)
and the equality holds if and only M is isometric toMp.

PROOF. The Gauss-Bonnet formula for any 4-dimensional compact manifold M is
given by

1
6.1 M)=_— R|1? = 4)|0l)? + t2}dv.
(6.1 x (M) 327T2/M~{II I llol|* + t}dv
Suppose first that Mg is Einstein. Using ||o||? = || E||? + ©2/4, (6.1) becomes
1 1
6.2 M)=_— R|1? — 4||E||%}dv, M:—/ Rol|%dv .
(6.2) x (M) 327T2/M{II I [|E||7}dv,  x(Mo) o2 MOII oll“dv

On the other hand, since a;(M, J) = a;(T?, J), using formulas (3.14), (3.15), (3.16) (for
n = 4), we obtain

13
(6.3) /||R||2dv—/ ||Ro||2dv=26/ ||E||2dv+—(/ tzdv—/ rgdv>.
M Mo M 2 M Mo

Using (6.2) and (6.3), we then get

(6.4) (3272 {(x (M) — x(Mo)} = 22/ ||E||?dv + 1—3</ 2dv —/ zgdv>.
M 2\ Ju Mo
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Therefore, x (M) > x(Mo) since||E||> > 0and [,, v2dv — Jto tédv > 0.

In particular, if x(M) = x(Mp), then (6.4) yields E = 7 — 190 = 0. Moreover,
by (6.3) it follows [,, [|R||?dv = fM0||R0||2dv and hence, by (4.7), [, IV'o|/?dv =
fMO [|V/o0||2dv = 0. So, M is aso paralel and, as in the proof of Theorem 4.3, we can
conclude that M isisometric to M.

If Mo is conformally flat, the proof is similar. Using the conformal curvature tensor C,
we eventualy get

(65) (32ﬂ2){X(M)—X(Mo)}=E/ ||C||2dv+E(/ rzdv—/ r&dv)zo,
12 i 36\ Jy e

where the equality holds if and only if C = t — g = 0. Moreover, M is parale and the
conclusion then follows as in the proof of Theorem 5.1 O

In particular, from Theorem 6.3 we obtain at once the following

COROLLARY 6.4. Inthe class of ald-dimensional compact minimal totally real sub-
manifolds ofQ P*(c), of non-positive Euler numbgr4 and St x $3(k), with k = 5¢/16, are
completely determined by thegpec(J).

Caseof n =5.
Using the same methods of the proof of Theorem 4.3, we can easily prove the following
result for five-dimensional totally real submanifolds of Q P°(c).

ProOPOSITION 6.5. LetM be ann-dimensional compact totally real minimal subman-
ifold of QP"(c). If spec(M, J) = spec(Mo, J), with My parallel and Einstein and = 5,
thenM is also Einstein and = 1o.
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