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Abstract. The purpose of this paper is to show that the reduced Lefschetz module of the G-poset Bcen
p (G)

consisting of all centric p-radical subgroups of a finite group G is an X -projective virtual�p[G]-module where X is
a family of p-subgroups of the normalizers of non-centric p-radical subgroups of G. As corollary, we have a lower
bound of the p-power of the reduced Euler characteristic χ̃(Bcen

p (G)).

1. Introduction

A non-trivial p-subgroup U of a finite group G is p-radical (resp. p-centric) if
Op(NG(U)) = U (resp. if any p-element in CG(U) lies in U ). Denote by Bp(G) (resp.
Bcen

p (G)) the set of all p-radicals of G (resp. the set of all elements in Bp(G) which are p-

centrics of G). Recall that the subgroup family Bp(G) is regarded as a G-poset with respect to
the inclusion-relation together with G-conjugate action, and is also viewed as a G-simplicial
complex defined by the inclusion-chains as simplices. Then Bp(G) is now a standard G-poset
(or G-complex) in “Subgroup Complexes of Finite Groups” (see e.g. [1, Chapter 6]). But
the importance of the subcomplex Bcen

p (G) also appeared in the study of p-local geometry

of a finite group, group cohomology, or even modular representation theory. In particular,
concerning group geometry, a lot of known important p-local geometries for sporadic simple
groups can be realized as the smaller Bcen

p (G) rather than the whole Bp(G) (see [9, 11]). Fur-

thermore it is known concerning group cohomology that Bcen
p (G) induces the alternating sum

decomposition of the cohomology H ∗(G)p (cf. [6, Theorem 9.1]) as well as Bp(G) does (cf.
[14, Theorem A]).

However one of the troubles to treat Bcen
p (G) is that this is not homotopy equivalent

to Bp(G) in general. For example, since the reduced Lefschetz module L̃G(Bp(G)), called
the generalized Steinberg module for G, is a projective virtual Zp[G]-module, its dimension
χ̃(Bp(G)) is divisible by the highest p-power |G|p of the order of G. But this is usually
no longer true for χ̃(Bcen

p (G)), and in fact there are a lot of works on the calculation of

χ̃(Bcen
p (G)) by hand for sporadic simple groups G. Among those works, S. D. Smith [10,
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p. 306] explained the reason, using [12, Theorem 2.1] of Thévenaz on the reduced Lefschetz

module, that why the value χ̃(∆)2 = 24 is less than |M12|2 = 26 where ∆ is the 2-local geom-
etry for the Mathieu simple group M12 of degree 12. This observation actually inspired us to
study the general phenomenon of the reduced Euler characteristic χ̃(Bcen

p (G)) and the reduced

Lefschetz module L̃G(Bcen
p (G)). In this paper, we will show in particular that L̃G(Bcen

p (G))

is an X -projective virtual Zp[G]-module where X is a family of p-subgroups of the normal-
izers of non-centric p-radical subgroups of G. As corollary, we have a lower bound of the
p-power of χ̃(Bcen

p (G)). Our method to study the reduced Lefschetz module is based on an

idea developed by Thévenaz [12].
In Section 2, we will recall some definitions and basic results on the representation ring,

the Burnside ring, and the Lefschetz invariant Λ̃G(P) and module L̃G(P) of a G-poset P .

In Section 3, we will examine some properties of Λ̃G(P) and L̃G(P); that will be applied in
Section 4 to the collection Bcen

p (G) of p-radical and p-centric subgroups of G.

ACKNOWLEDGMENT. The author is very grateful to the referee; who read the paper
very carefully and made many useful suggestions leading to improvements in it.

2. Preliminaries

In this section, we will recall some definitions and basic results on the representation
ring, the Burnside ring, and the (reduced) Lefschetz invariant and module. For the details,
refer to [1, Chapter 6] or [12].

2.1. The representation ring and the Burnside ring. Let G be a finite group, p a
prime divisor of the order of G, and Zp the p-adic integers. First we recall the representation
ring A(G) of Zp[G]-modules. This is the Q-vector space generated by isomorphism classes
[M] of finitely generated Zp[G]-modules M , with relations

[M] + [N] := [M ⊕ N] and [M] · [N] := [M ⊗�p
N] ,

where ⊕ the direct sum and ⊗�p
the tensor product. Thus classes of indecomposable finitely

generated Zp[G]-modules form a Q-basis of A(G). Given a family X of subgroups of G

closed under taking G-conjugation and forming subgroups, we denote by A(G,X ) an ideal of
the ring A(G) spanned by summands of sums of relatively H -projective Zp[G]-modules for
some H ∈ X . Recall that the definition of a relatively H -projective Zp[G]-module is that it

is a direct summand of IndG
H W induced from a Zp[H ]-module W . An element in A(G,X ) is

called an X -projective virtual Zp[G]-module. In particular, if X = {{1}} the trivial subgroup
of G then an element in A(G,X ) is called a projective virtual Zp[G]-module.

On the other hand, the Burnside ring B(G) of G is also the Q-vector space generated by
equivalence classes [X] of finite G-sets X, with relations

[X] + [Y ] := [X � Y ] and [X] · [Y ] := [X × Y ] ,
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where � the disjoint union and × the Cartesian product. Thus classes of transitive finite G-
sets (that is, those of cosets G/H for all subgroups H of G) form a Q-basis of B(G). Recall
that for each subgroup H of G, there is a primitive idempotent eG,H of B(G) characterized
by

�{x ∈ eG,H | gx = x (∀g ∈ K)} =
{

1 if K is conjugate to H

0 otherwise

for a subgroup K of G (cf. [12, p.124]). Then {eG,H | H ≤ G} gives the set of all primitive
idempotents in B(G). The following is a well-known formula of eG,H (cf. [5, Theorem 3.1]
or [16, Theorem 3.1]):

LEMMA 1 (Gluck [5], Yoshida [16]). For a subgroup H of G, we have

eG,H = 1

|NG(H)|
∑
K≤H

|K|µ(K,H)[G/K]

in B(G) where µ is the Möbius function on the lattice of all subgroups of G.

Next we consider a natural homomorphism

r : B(G) → A(G)

defined by r([G/H ]) := [IndG
H Zp]; the permutation representation on a basis G/H =

{gH | g ∈ G}. Let H(G) := {H ≤ G | H/Op(H) is cyclic}. A subgroup in H(G) is
called cyclic mod-p of G. The significance of H(G) can be found in [3, Section 4] as follows:

LEMMA 2 (Conlon [3]). For a subgroup H of G, r(eG,H ) = 0 if and only if H 	∈
H(G).

REMARK 1. For a subgroup H of G, r(eG,H ) is a linear combination of r([G/K]) =
[IndG

K Zp] = [IndG
H(IndH

K Zp)] for K ≤ H by Lemma 1. Thus r(eG,H ) is the sum of relatively
H -projective Zp[G]-modules in A(G) (see the definition of the relative projectivity above).

2.2. The Lefschetz invariant and module. Let P be a G-poset; that is, a finite poset
with an order preserving G-action. The order G-complex of P is a simplicial complex whose
q-simplices are chains x0 < x1 < · · · < xq (xi ∈ P), and on which G acts naturally.
Throughout this paper, we do not distinguish between a G-poset P and its order G-complex
denoted by the same notation P . Note that an order G-complex P is admissible; namely if
g ∈ G fixes a simplex x0 < · · · < xq in P then all vertices xi (i = 0, · · · , q) are fixed by g .
Now let Pq be the set of all q-simplices in P . Then Pq is a finite G-set, and define elements
in B(G) as follows:

ΛG(P) :=
dim(P)∑
q=0

(−1)qPq , Λ̃G(P) := ΛG(P) − 1 ,
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where the dimension dim(P) is the maximal length of chains in P , and 1 ∈ B(G) is the trivial

G-set. The element ΛG(P) (resp. Λ̃G(P)) is called the Lefschetz (resp. reduced Lefschetz)

invariant of P . Recall that using a basis {eG,H | H ≤ G} of B(G), ΛG(P) and Λ̃G(P) can be
expressed as follows (cf. [12, Proposition 1.2]):

ΛG(P) =
∑

H∈Sgp(G)/G

χ(PH)eG,H , Λ̃G(P) =
∑

H∈Sgp(G)/G

χ̃(PH)eG,H ,(1)

where Sgp(G) the set of all subgroups of G, Sgp(G)/G the G-conjugacy classes of Sgp(G),
PH = {x ∈ P | hx = x (∀h ∈ H)} the set of fixed points by H , and χ(PH ) (resp.

χ̃(PH)) the Euler (resp. reduced Euler) characteristic of PH . Therefore ΛG(P) depends

only on the family {χ(PH) | H ∈ Sgp(G)/G} of the Euler characteristics, and Λ̃G(P) as
well. Finally the Lefschetz (resp. reduced Lefschetz) module of P over Zp is defined as an

element LG(P) := r(ΛG(P)) (resp. L̃G(P) := r(Λ̃G(P))) in A(G).

3. Some properties of Λ̃G(P) and L̃G(P)

In this section, we will study the reduced Lefschetz invariant and module of a certain
G-subposet of a G-poset applying a result of Thévenaz [12]. Let X be a finite H -set for a
subgroup H of G. Then a finite G-set G ×H X is defined as the quotient (G × X)/∼ with

respect to (gh, x) ∼ (g, hx) for h ∈ H , and set IndG
H [X] := [G×H X] in B(G). In particular,

we have that IndG
H [H/S] = [G/S] for S ≤ H ≤ G. The following result [12, Corollary 3.4]

of Thévenaz will be used in our investigation.

LEMMA 3 (Thévenaz [12]). Let P and Q be G-posets, and f : Q → P an order-
preserving G-map. Then we have

Λ̃G(P) = Λ̃G(Q) +
∑

x∈P/G

IndG
Gx

(Λ̃Gx (f
−1(P≤x)) · Λ̃Gx (P>x))

in B(G), where Gx the stabilizer of x in G, and P/G is the G-conjugacy classes of P . Note

that P≤x = {y ∈ P | y ≤ x}, P>x = {y ∈ P | y > x}, and f −1(P≤x) are Gx -posets.

From now on, we will consider the following situation on G-posets P and Q.

HYPOTHESIS (H). Q is a G-subposet of P such that Q≤x = ∅ for each x in (P \ Q).

REMARK 2. Recall that a subset R of a poset P is called “closed” if x ≤ y for x ∈
P and y ∈ R implies x ∈ R; which is mentioned by Quillen [7, p. 103]. (Note that this
condition is also called “order ideal” in the more combinatorial literature.) He demonstrated
in [7, Corollary 1.8] that a closed subset in the product P × Q provides some technique of
showing the homotopy equivalence between posets P and Q. This technique of Quillen is
further developed by Smith-Yoshiara in [11, p. 332]. Here we mention that the result [12,
Corollary 3.4] above is also based on the idea of “closed sets in products”. Indeed, Thévenaz
considers in [12, Theorem 3.3] (from which the Corollary is obtained) a poset P+RQ defined
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by a certain closed subset R of P ×Q, though there R is called an “ideal relation” in P ×Q.
Furthermore the referee indicated to the author that Hypothesis (H) should be also related to
“closed sets”. Indeed, the condition (H) is rephrased that (P \ Q) is a closed subset of P .

PROPOSITION 1. Let P and Q be G-posets satisfying Hypothesis (H). Then we have

1. Λ̃G(P) = Λ̃G(Q) −
∑

x∈(P\Q)/G

( ∑
S∈Sgp(Gx)/Gx

α(x, S)eG,S

)
,

where α(x, S) := χ̃((P>x)S)|NG(S) : NGx (S)| an integer.

2. L̃G(P) = L̃G(Q) −
∑

x∈(P\Q)/G

( ∑
S∈H(Gx)/Gx

α(x, S)r(eG,S)

)
.

PROOF. 1. Let φ : Q ↪→ P be the inclusion G-map. Then for each x ∈ P , we have

that φ−1(P≤x) = Q≤x . If x ∈ Q then φ−1(P≤x) has the unique maximal element x, and

hence is Gx-contractible. On the other hand, if x ∈ (P \ Q) then φ−1(P≤x) is empty by
Hypothesis (H). Thus we have that

φ−1(P≤x) =
{

Gx-contractible if x ∈ Q
∅ if x ∈ (P \ Q) ,

and this follows that

Λ̃Gx (φ
−1(P≤x)) =

{
0 if x ∈ Q
−1 if x ∈ (P \ Q) .

Note that the above numbers 0 and −1 are the multiples of 0 and −1 by the trivial Gx-set;
which is the sum of all primitive idempotents in B(Gx). Hence by Lemma 3, we get that

Λ̃G(P) = Λ̃G(Q) −
∑

x∈(P\Q)/G

IndG
Gx

(Λ̃Gx (P>x)) .(2)

On the other hand, since

Λ̃Gx (P>x) =
∑

S∈Sgp(Gx)/Gx

χ̃((P>x)S)eGx,S

by (1) in Section 2.2, we have that

IndG
Gx

(Λ̃Gx (P>x)) =
∑

S∈Sgp(Gx)/Gx

χ̃((P>x)
S) IndG

Gx
eGx,S .(3)

Recall that

IndG
Gx

eGx,S = IndG
Gx

[
1

|NGx (S)|
∑
K≤S

|K|µ(K, S)[Gx/K]
]
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= 1

|NGx (S)|
∑
K≤S

|K|µ(K, S) IndG
Gx

[Gx/K]

= |NG(S) : NGx (S)|
|NG(S)|

∑
K≤S

|K|µ(K, S)[G/K]

= |NG(S) : NGx (S)|eG,S (cf. [16, Lemma 3.5(1)]) .

Note that IndG
Gx

[Gx/K] = [G/K] as mentioned in the first paragraph of this section. Thus

(3) above can be expressed as

IndG
Gx

(Λ̃Gx (P>x)) =
∑

S∈Sgp(Gx)/Gx

χ̃ ((P>x)
S)|NG(S) : NGx (S)|eG,S .(4)

Therefore combining (2) with (4), the first assertion is proved.
2. Applying the homomorphism r : B(G) → A(G) defined in Section 2.1, we have

that

L̃G(P) = L̃G(Q) −
∑

x∈(P\Q)/G

( ∑
S∈Sgp(Gx)/Gx

α(x, S)r(eG,S)

)
.

But r(eG,S) = 0 if S 	∈ H(G) ∩ Sgp(Gx) = H(Gx) by Lemma 2. The proof is complete. �

PROPOSITION 2. Let P and Q be G-posets satisfying Hypothesis (H). If L̃G(P) is a

projective virtual Zp[G]-module then L̃G(Q) is an X -projective virtual Zp[G]-module where

X = {X ≤ Op(S) | S ∈ H(Gx), x ∈ (P\Q), χ̃((P>x)
S) 	= 0}.

PROOF. By Proposition 1(2), we have that

L̃G(P) = L̃G(Q) −
∑

x∈(P\Q)/G

( ∑
S∈H(Gx)/Gx

α(x, S)r(eG,S)

)
.

Recall that by definition, α(x, S) 	= 0 if and only if χ̃((P>x)
S) 	= 0. Now r(eG,S) is the sum

of relatively S-projective Zp[G]-modules in A(G) as mentioned in Remark 1 of Section 2.
But since S is cyclic mod-p, we have that p � |S : Op(S)| by definition. Thus r(eG,S) is the
sum of relatively Op(S)-projective Zp[G]-modules in A(G).

Now standard and routine arguments show that X is closed under G-conjugation and
subgroups. Indeed, first we recall that

⋃
x∈(P\Q)H(Gx) and (P\Q) are invariant by G-

conjugation. If S ∈ H(Gx) and x ∈ (P\Q) then for g ∈ G, we have that D :=
(P>g−1x)g

−1Sg = {g−1z | z ∈ (P>x)
S}; which is isomorphic to (P>x)

S as poset. This im-

plies that χ̃(D) = χ̃((P>x)S), and thus if χ̃((P>x)S) 	= 0 then so is χ̃ (D). (Note also that

g−1Gxg = Gg−1x .) This means that X is closed under G-conjugation. Since it is clear that

X is closed under forming subgroups, the proof is complete. �
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REMARK 3. For x ∈ (P\Q) and S ∈ H(Gx), consider a poset P̂ := (P≥x)
S =

(P>x)
S ∪ {x} having the unique minimal element x. The reduced Euler characteristic of

P̂ \{x} appeared in Proposition 2 can be expressed as follows (cf. [16, Lemma 2.4]):

χ̃((P>x)S) = χ̃(P̂ \{x}) = −
∑
y∈P̂

µ(x, y)

where µ is the Möbius function on the poset P̂ .

COROLLARY 1. Keep the assumption of Proposition 2. Let pn = |G|p the p-part of
the order of G, and

pd1 = max{|X| | X ∈ X }
= max{|Op(S)| | S ∈ H(Gx), x ∈ (P\Q), χ̃ ((P>x)

S) 	= 0} .

Then χ̃(Q) is divisible by pn−d1 .

PROOF. Recall that χ̃(Q) = dim(L̃G(Q)) by their definitions, and that L̃G(Q) is an X -
projective virtual Zp[G]-module by Proposition 3. Then the assertion clearly holds from the
fact that if pa divides the index |G : H | of a subgroup H of G then pa divides the dimension
of any H -projective Zp[G]-module. �

However, it is hard in general to determine the subgroup family X or even H(Gx). Thus
we hope to know, from group theoretical properties of Gx for x in (P\Q), a positive integer
d near d1. To do this, for each x in (P\Q), let

{〈zx,1〉, · · · , 〈zx,lx 〉, 〈zx,lx+1〉, · · · , 〈zx,mx 〉}
be a complete set of Gx -conjugate classes of all subgroups of order p in Gx such that
(P>x)

〈zx,i 〉 (i = 1, · · · , lx) is contractible, and (P>x)〈zx,j 〉 (j = lx + 1, · · · ,mx) is not.

LEMMA 4. For x ∈ (P\Q) and S ∈ H(Gx) with Op(S) 	= 1, we have the following.
1. If S contains a subgroup Gx-conjugate to 〈zx,i〉 for i = 1, · · · , lx , then

χ̃((P>x)S) = 0.
2. If Op(S) ∈ X (see Proposition 2 for X ) then any subgroup of order p in Op(S) is

Gx -conjugate to 〈zx,j 〉 for some j = lx + 1, · · · ,mx .

This was shown in the proof of Theorems A and A′ in [14, p. 148], but we will give a
sketch of the proof following [14].

PROOF. 1. Up to conjugacy, we may assume that 〈zx,i〉 ≤ Op(S) ≤ S, and then there

exists a normal chain 〈zx,i〉 = K1 � K2 � · · · � Kl−1 � Kl = Op(S). Now since (P>x)
K1 is

contractible by our choice of 〈zx,i〉, it is Zp-acyclic (i.e. H̃∗((P>x)
K1, Zp) = 0). Applying

P. A. Smith’s theorem [2, Theorem 10.5(b) in VII] on fixed-points subcomplex, (P>x)
K2 =

((P>x)
K1)K2 is also Zp-acyclic. (Note that Ki+1 acts on (P>x)Ki for i = 1, · · · , l − 1.)

Repeating this process, we have that (P>x)
Op(S) is Zp-acyclic, and hence Q-acyclic. On the
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other hand, since S/Op(S) is a cyclic group 〈gOp(S)〉 for some g ∈ S, we have that (P>x)S =
((P>x)

Op(S))g . Thus by the “Lefschetz trace formula”, χ̃((P>x)S) = χ̃(((P>x)
Op(S))g ) =

T r(g, L̃S((P>x)Op(S))) = 0. The last equality is due to the Q-acyclicity of (P>x)
Op(S).

2. Straightforward from the first assertion and the definition of X . The proof is com-
plete. �

For each x in (P\Q), let Rx be a p-subgroup of Gx of maximal order such that any
subgroup of order p in Rx is Gx-conjugate to 〈zx,j 〉 for some j = lx + 1, · · · ,mx . Then by
Lemma 4(2), we have that |Op(S)| ≤ |Rx | for any S ∈ H(Gx) with Op(S) ∈ X . Therefore

COROLLARY 2. Keep the assumption of Proposition 2. Let pn = |G|p and pd =
max{|Rx | | x ∈ (P\Q)} where Rx is defined as above. Then χ̃(Q) is divisible by pn−d .

4. The centric p-radical subgroups

In this section, we will apply the result in Section 3 to the G-poset consisting of all
(centric) p-radical subgroups. Let P be a G-poset of p-subgroups of G, that is, a poset of p-
subgroups closed under G-conjugation. A p-subgroup U of G is p-centric if any p-element
in CG(U) lies in U . Denote by Pcen the set of all p-centrics in P , which is invariant by
G-conjugation.

LEMMA 5. For each U in (P \ Pcen), we have (Pcen)≤U = ∅.

PROOF. Since U is not p-centric, there exists a p-element x in CG(U) \ U . Suppose
now that there exists R in (Pcen)≤U , i.e. R ≤ U . Then x centralizes R, but not in R itself
from our choice of x. But this contradicts that R is p-centric. Therefore (Pcen)≤U = ∅. �

This lemma tells us that P and Pcen satisfy Hypothesis (H); namely we can say that
the non-centric collection (P \ Pcen) is a “closed subset” of P as discussed in Remark 2 of
Section 3. Now we have the following by Proposition 2:

PROPOSITION 3. Let P be a G-poset of p-subgroups of G. Suppose that L̃G(P) is a

projective virtual Zp[G]-module. Then L̃G(Pcen) is an X -projective virtual Zp[G]-module
where

X = {X ≤ Op(S) | S ∈ H(GU), U ∈ (P\Pcen), χ̃((P>U)S) 	= 0} .

A non-trivial p-subgroup U of G is p-radical if Op(NG(U)) = U , and denote by Bp(G)

the set of all p-radicals of G. The property “p-radical” is invariant by G-conjugation, and thus
Bp(G) is a G-poset of p-subgroups. Denote by Bcen

p (G) the set of all p-centrics in Bp(G).

REMARK 4. 1. It is worth mentioning that Op(G) is the unique minimal p-radical
subgroup of G by definition, so if Op(G) is added in Bp(G) then the poset Bp(G) is always
contractible. Thus it may be suitable to exclude Op(G) from Bp(G); that is, the poset Bp(G)

may be defined as the set of all p-subgroups U having the property that Op(NG(U)) = U
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but except for Op(G). But this definition is the same as the earlier one when we are in the
situation like “G is simple” for example.

2. It is also worth while to mention that Dwyer showed in [4, Section 4] that the col-
lection Bcen

p (G) gives a “sharp subgroup decomposition” of the homology of the classify-

ing space BG of a finite group G. Indeed, he considered the collection of all non-trivial p-
subgroups of G from which all non-centric members are eliminated, and further subcollection
obtained from that by eliminating all non-radical members. (Note that a p-radical subgroup
of G is called in [4] “p-stubborn”.) Thus the resulting collection is nothing else but Bcen

p (G)

in our notation. Furthermore Grodal [6, Theorem 9.1] obtained the “normalizer-sharpness”
for Bcen

p (G) as well.

PROPOSITION 4. 1. L̃G(Bcen
p (G)) is an X -projective virtual Zp[G]-module where

X = {X ≤ Op(S) | S ∈ H(GU), U ∈ (Bp(G)\Bcen
p (G)), χ̃((Bp(G)>U)S) 	= 0} .

2. Let pn = |G|p and

pd1 = max{|Op(S)| | S ∈ H(GU), U ∈ (Bp(G)\Bcen
p (G)), χ̃ ((Bp(G)>U)S) 	= 0} .

Then χ̃(Bcen
p (G)) is divisible by pn−d1 .

PROOF. 1. Since the G-poset Sp(G) consisting of all non-trivial p-subgroups of G

is G-homotopy equivalent to Bp(G) (cf. [1, Theorem 6.6.6]), we have that L̃G(Bp(G)) =
L̃G(Sp(G)) in A(G). But it is well-known that the generalized Steinberg module L̃G(Sp(G))

for G is virtual projective (cf. [1, Theorem 6.7.2]). Thus the assertion follows from Proposi-
tion 3.

2. The same proof as in that of Corollary 1. �

As in Corollary 2, we will consider the p-part of χ̃(Bcen
p (G)) using the information of

p-subgroups of GU for each U in (Bp(G)\Bcen
p (G)). Let

{〈zU,1〉, · · · , 〈zU,lU 〉, 〈zU,lU +1〉, · · · , 〈zU,mU 〉} ,

for such U , be a complete set of GU -conjugate classes of all subgroups of order p in GU

such that (Bp(G)>U)〈zU,i 〉 (i = 1, · · · , lU ) is contractible, and (Bp(G)>U)〈zU,j 〉 (j = lU +
1, · · · ,mU) is not. Furthermore let RU be a p-subgroup of GU of maximal order such that
any subgroup of order p in RU is GU -conjugate to 〈zU,j 〉 for some j = lU + 1, · · · ,mU .
Then we have the following as in Corollary 2:

COROLLARY 3. Let pn = |G|p and pd = max{|RU | | U ∈ (Bp(G)\Bcen
p (G))} where

RU is defined as above. Then χ̃(Bcen
p (G)) is divisible by pn−d .

We have discussed in this section taking the particular posets Bp(G) and Bcen
p (G), and

examined the values of their reduced Euler characteristics. Here we will show the readers,
who are not familiar with p-radical subgroups, that what they look like by exhibiting 2-radical
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TABLE 1. B2(Co1) ([8, Table 1]).

R NG(R)/R R NG(R)/R

V1 ∼= 22 (3 × G2(4))2 UO
∼= 21+8+ O+

8 (2)

V2 ∼= V12 G2(2) UOT
∼= UO26 L4(2)

V3 ∼= 22 (S3 × U3(3))2 UOS
∼= UO21+8 S3 × S3 × S3

UT
∼= 22+12 S3 × L4(2) UOC ∼= UO26 L4(2)

UT S
∼= UT 24 S3 × S3 × S3 UO� ∼= UO26 L4(2)

UT C ∼= UT 23 S3 × L3(2) UOT S
∼= UO2624 S3 × S3

UT � ∼= UT 23 S3 × L3(2) UOTC ∼= UO2623 L3(2)

UT SC ∼= UT 242 S3 × S3 UOT � ∼= UO2623 L3(2)

UT S� ∼= UT 242 S3 × S3 UOSC ∼= UO21+82 S3 × S3

UT C� ∼= UT 2322 S3 × S3 UOS� ∼= UO21+82 S3 × S3

UT SC� ∼= UT 242.2 S3 UOC� ∼= UO2623 L3(2)

US
∼= 24+12 3S6 × S3 UOT SC ∼= UO26242 S3

USC ∼= US2 3S6 UOT S� ∼= UO26242 S3

UC ∼= 211 M24 UOTC� ∼= UO262322 S3

UOSC� ∼= UO21+82.2 S3

UOT SC� ∼= [221] 1

subgroups of the largest Conway simple group Co1 of order 221 · 39 · 54 · 72 · 11 · 13 · 23 as
example. B2(Co1) has been determined by the author in [8]. There are 30 conjugacy classes
of 2-radical subgroups of Co1 of which 27 are 2-centric, namely all those except for V1, V2,
V3 described in Table 1. (Note that the classification of 2-radical subgroups of the 26 sporadic
simple groups has been completed, and a list of their references can be found in [15, Table
3].)

As presented above, each subgroup in Bcen
2 (Co1) is of the form UF where F is a subset

of {O,T , S, C,�}. It is shown in [9, Section 6.3] that we can remove, from Bcen
2 (Co1), all

elements UF with � ∈ F without changing Co1-homotopy type. In other words, Bcen
2 (Co1)

is Co1-homotopy equivalent to the subposet Bcen
2 (Co1)

∗ consisting of those UF ’s such that F

does not contain �. (Note that the original proof in [9, Section 6.3] shows that Bcen
2 (Co1) and

Bcen
2 (Co1)

∗ are only homotopy equivalent, but it is extended to Co1-homotopy equivalence
using their observations of Thévenaz-Webb [13].) The inclusion-relation among elements in
Bcen

2 (Co1)
∗ is described in Figure 1. Note that the index |Co1 : NCo1(UF )| is attached for

each UF where A = 36 · 53 · 7 · 11 · 13 · 23. Now it is shown in [9, Section 6.3] that each UF

is weakly closed in a Sylow 2-subgroup P := UOT SC� with respect to Co1; namely if (UF )g

for g ∈ Co1 is contained in P then (UF )g = UF . Thus it is easy to count n-simplices of the
complex Bcen

2 (Co1)
∗ as follows:
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FIGURE 1. Inclusions in Bcen
2 (Co1)∗.

0-simplices : [315 + 105 + 45 + 105 + 105 + 3 + 35 + 35 + 3 + 15 + 7
+ 1

32·5 + 1 + 7
3 + 1

11·23 ]A
1-simplices : [(315 · 14) + (105 · 6) + (45 · 6) + (105 · 6) + (105 · 6)

+(3 · 2) + (35 · 2) + (35 · 2) + (3 · 2) + (15 · 2) + (7 · 2)]A
2-simplices : [(315 · 36) + (105 · 6) + (45 · 6) + (105 · 6) + (105 · 6)]A
3-simplices : (315 · 24)A

From the above numbers of simplices, we have the Euler characteristic as follows:

χ(Bcen
2 (Co1)) = χ(Bcen

2 (Co1)
∗) =

3∑
q=0

(−1)q(� of q-simplices in Bcen
2 (Co1)

∗)

=
(

− 52 + 1

32 · 5
+ 7

3
+ 1

11 · 23

)
A

= −104, 144, 306, 175 .

Thus we have that

χ̃(Bcen
2 (Co1)) = χ(Bcen

2 (Co1)) − 1 = −104, 144, 306, 176 = 218 · (−397, 279) .

This shows in particular that B2(Co1) is not homotopy equivalent to Bcen
2 (Co1) since

χ̃(B2(Co1)) is divisible by the 2-part 221 = |Co1|2 of the order of the original group Co1 (cf.
[1, Theorem 6.7.2]), and since the reduced Euler characteristic is the homotopy invariant.

REMARK 5. Recall that the Ronan-Smith 2-local geometry for Co1 is realized as the
poset Bcen

2 (Co1)
∗ (cf. [9, Section 6.3]). Thus from the above observation, we can say that up
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to homotopy the smaller Bcen
2 (Co1), rather than the whole B2(Co1), gives a natural geometry

to Co1. The similar observation for other sporadic simple groups G can be found in [9, Section
6]; that is, some of the Ronan-Smith 2-local geometries for G can be obtained as the subgroup
complex Bcen

2 (G).
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