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Exponential Decay and Spectral Structure
for Wave Equation with Some Dissipations
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Abstract. Exponential decaying states for the wave equations are considered and some examples are given.
Moreover, the spectral structure of the operator with coulomb type dissipation is investigated.

1. Introduction

We consider the exponential decay of the solution for wave equations with dissipation.
We give the examples of the equations and their solutions, and investigate the structure of
the spectrum of the operator corresponding to the equations. As to the exponential decay
of the solution, we have two results: one is for the equation of the form with the Coulomb-
type dissipation (Theorem 1), another is for the equation of the form with only the boundary
condition (Theorem 7), which is considered as a singular dissipation ([2]). We consider the
following equations:

wtt − ∆w + b(x)wt = 0 in (0,+∞) × RN ,(1.1)

w(0, x) = w0(x) , wt (0, x) = w1(x) in RN ,(1.2)

where N ≥ 1 and b(·) ∈ C1(RN \ {0}) is a positive function, and{
wtt(t, x) − ∆w(t, x) = 0 , (t, x) ∈ R+ × R3 ,

i
√

σw(t, 0) − wr(t, 0) = 0 , t ∈ R+ ,
(1.3)

with initial data

w(0, x) = w0(x) , wt (0, x) = w1(x) , x ∈ R3 ,

where σ ∈ C.
In the following we denote Hm = Hm(RN), Ḣm = Ḣm(RN) (m ≥ 0) and L2 = H 0. If

we assume {w0, w1} ∈ Ḣ 1 × L2 then the energy identity holds:

‖w(t)‖2
E +

∫ t

0
‖b(·)1/2wt(τ )‖2

L2dτ = ‖w(0)‖2
E
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where

‖w(t)‖2
E = 1

2
(‖wt(t)‖2

L2 + ‖∇w(t)‖2
L2 )

is the total energy at time t (≥ 0).

THEOREM 1. If b(x) = b0(x) is the following function:

b0(x) =
{

(3 − N)|x|−1 (N = 1, 2) ,

(N − 1)|x|−1 (N ≥ 3) ,
(1.4)

then the explicit radial solution of (1.1)–(1.2) with
{

w0(x) ≡ |x|f (|x|) , (N = 1)

f (|x|) , (N ≥ 2)
,w1(x) = ∂|x|{w0(|x|)} ,

where f (|x|) = eβ|x|g(|x|), β < 0 and g ∈ S ′, is given by

w(t, x) =
{ |x|f (|x| + t) , (N = 1)

f (|x| + t) . (N ≥ 2)

Therefore if f ∈ H 1 then the total energy decays exponentially as t tends to infinity.

REMARK 2. (In the case of N = 3 the following decomposition has been already
shown by Kadowaki [1]). What the equation (1.1) has the progressive wave solution as in
Theorem 1 in the case N ≥ 2 and b(x) satisfies (1.4) follows from the following decomposi-
tion of (1.1). If N = 2, then{

(∂t + ∂r + r−1)(∂t − ∂r )w(t, r) = 0 ,

r−1(∂t + ∂r )r(∂t − ∂r )w(t, r) = 0 ,

and if N ≥ 3, then

(∂t + ∂r + (N − 1)r−1)(∂t − ∂r)w(t, r) = 0 .

On the other hand in the case N = 1, we have

r−1(∂t + ∂r )r(∂t − ∂r + r−1)w(t, r) = 0 .

REMARK 3. The solution obtained in Theorem 1 is an example of disappearing solu-
tion studied by A. Majda [6].

THEOREM 4. Let b(x) = b0(x) in (1.4) and

Hb = i

(
0 1
∆ −b

)

with domain

D(Hb) = {v = (v1, v2) ∈ E | Hbv ∈ E} ,
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where E = Ḣ 1(RN) × L2(RN) is energy space. Assume N ≥ 3 and (1.4). Then we have

σp(Hb) = C− , σr (Hb) = ∅ ,

σc(Hb) = R , ρ(Hb) = C+ ,

where σp(A), σr(A), σc(A) and ρ(A) denote point spectrum, residue spectrum, continuous
spectrum and resolvent set of operator A, respectively.

In general case, we find the following result on spectral structure for Hb:

THEOREM 5. Assume N ≥ 3 and |b(x)| ≤ b1|x|−1 in RN for some b1 ∈ (0, N − 2).
Then the following inclusion relation holds:

σp(Hb) ⊂
{
κ = α + iβ ∈ C | β2 ≤ b2

1

(N − 2)2 − b2
1

α2
}

REMARK 6. Under the assumption with the smallness of the dissipation, the solution

for (1.1)–(1.2) behave like free solutions, i.e., if there exists a L1-function a(r) (r = |x|) such
that

|b(x)| ≤ a(r) in RN

with

0 <

{∑
j≥1

2j−1a(2j−2)

}
b2 < 1 ,

b2 =
{

1 + √
5 (N ≥ 3) ,

{(1 + √
5)2 + 1}1/2 (N = 2) ,

where 2−1 ≡ 0, then the Møller wave operator and the scattering operator exist ([10]). See
also [8]. If we do not assume the smallness of the dissipation then the existence of scattering
states is shown, but not the completeness of the wave operator ([7], [10]).

Moreover if N ≥ 3 and

0 ≤ b(x) ≤ b3(1 + r)−1−δ in RN

for some δ ∈ (0, 1] with 0 < b2 < 2−√
2

2 δ, then the limiting absorption principle holds and
the spectral structure coinsides with the free operator H0 ([9]). See also [2], Appendix C.

Finally, we state a result on exponential decaying solution without dissipation in equation
(1.3).

THEOREM 7. Assume that

w0(x) = f (r) ≡ ei
√

σr , w1(x) = 0 ,

where σ ∈ C, Im σ < 0, Im
√

σ > 0. Then the solution of (1.3) is given by w(t, x) = f (r+t),
and the total energy decays exponentially as t goes to infinity.
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REMARK 8. This example can be regarded as the following equation, formally:

wtt (x, t) + (−∆ + σδ(x))w(x, t) = f (x, t) ,

where δ(x) is the delta-function on R3(cf. [2]).

The contents of the present paper will be outlined as follows.
In Section 2, we construct a solution for the stationary equation (2.1) below (Proposition

2.1). Theorem 1, 4, 5 and 7 will be shown in Section 3.

2. Construction of the stationary solution

We construct a solution for the stationary equation corresponding to (1.1) and (1.2).

PROPOSITION 2.1. If b(x) is the function given by (1.4), then the explicit solution of
the stationary problem of (1.1);

(−∆ − iκb(x) − κ2)u(x) = 0 ,(2.1)

is given by

u(x) =
{ |x|e−iκ|x| , (N = 1)

e−iκ|x| , (N ≥ 2)

where κ = α + iβ (α ∈ R, β < 0).

To find the solution for (2.1) we put (cf. [3], [5])

u(x) = ep(|x|)(2.2)

with

p(|x|) = −iκ |x| − (N − 1)

2
log |x| + 1

2

∫ |x|

1
b(s)ds .(2.3)

If b is the solution of

2b|x|(|x|) + b(|x|)2 − (N − 1)(N − 3)

|x|2 = 0 ,(2.4)

then (2.2) satisfies (2.1).

LEMMA 2.2. If b(x) satisfies (1.4), then (2.4) holds.

PROOF. Put h(r) = rb(r) with r = |x|. Then the function h solves the equation:

2rhr(r) + (h(r) − N + 1)(h(r) + N − 3) = 0 .(2.5)

This is easily solved to obtain the desired result. �

PROOF OF PROPOSITION 2.1. Noting Lemma 2.2, (1.4), (2.2) and (2.3), we easily
obtain the desired results. �



EXPONENTIAL DECAY AND SPECTRAL STRUCTURE 467

3. Proof of Theorems

PROOF OF THEOREM 1. Without loss of generarity, we may assume N ≥ 2. By Propo-
sition 2.1, we find that the function u(r; α) defined by

u(r; α) = e−i(α+iβ)r

is the solution of (2.1). Thus the solution w(r; α) of (1.1) with

w0(r) = u(r; α) , w1(r; α) = ur(r; α)

is given by wα(t, r) = u(r + t; α). Since

g(r) = (2π)−N/2
∫

R
ǧ(α)e−iαrdα ,

where we extend g to the following g̃ :

g̃ (s) =
{

g(s) (s ≥ 0) ,

0 (s < 0) ,

we obtain

(2π)−N/2
∫

R

ˇ̃g (α)wα(t, r)dα = eβ(r+t )g̃ (r + t) = f (r + t)

is the solution of (1.1)–(1.2). �

To show Theorem 4, we prepare the following

LEMMA 3.1. Under the same assumption as in Theorem 4, the operator Hb is maximal
dissipative and

R(Hb − i) = E ,

therefore the operator Hb generates the contraction semi-group in energy space E.

PROOF. Since b is non-negative, we easily obtain

Im(Hbv, v)E = −‖√b(·)v2‖2 ≤ 0 ,(3.1)

where (·, ·)E denote the inner product in E. Hence Hb is dissipative. We prove that

R(Hb − i) = E ,

where R(A) denotes the range of operator A. We prove that for any h = {h0, h1} ∈ E there
exists a v = {v0, v1} ∈ D(Hb) such that

(Hb − i)v = h .

By the above system (equations) we have

(−∆ + b + 1)v1 = i(∆h0 + h1) , v0 = v1 + ih0 .
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We consider the operator (−∆+b+1) in the L2-theory. Taking account that b is −∆-bounded

with the ∆-bound smaller than 1(infinitesimal small), we know thatD(−∆+b+1) = H 2(RN)

(cf. [4, chapter 6]). By rewriting the former equation we have

v1 = i[(−∆ + b + 1)−1∇] · ∇h0 + i(−∆ + b + 1)−1h1 .

Hence we see that the first term is of H 1 and that the second term is of H 2. Therefore
v ∈ D(Hb). �

PROOF OF THEOREM 4. By Proposition 2.1, C− ⊂ σp(Hb) holds. If κ ∈ C+, then we
obtain by (3.1)

(Im κ)‖v‖E ≤ ‖(Hb − κ)v‖E .

From this, it follows that σp(Hb) ∩ C+ = ∅. Assume κ ∈ R. Multiplying u on (2.1) and
integrating by parts, we have

‖√b(·)u‖2 = 0

and from this, it holds σp(Hb) ∩ R = ∅. These arguments show σp(Hb) = C−. Since
H ∗

b = H−b, we have σp(H ∗
b ) = C+. Therefore we have σr(Hb) = ∅ if we note the relation

κ ∈ σr(Hb) ⇔ κ ∈ σp(H ∗
b ) & κ �∈ σp(Hb) .

On resolvent set, we have C+ ⊂ ρ(Hb) ⊂ R ∩ C+ by Lemma 3.1. Since the resolvent set is
open in C, we obtain ρ(Hb) = C+. Thus σc(Hb) = R holds. �

PROOF OF THEOREM 5. Assume that u �= 0. Multiplying u on (2.1), integrating by
parts on RN and taking the real part, we have

‖∇u‖2 + β

∫
RN

b(x)|u(x)|2dx + β2‖u‖2 = α2‖u‖2 .

Using Hardy inequality
∥∥∥∥ u

| · |
∥∥∥∥ ≤ 2

N − 2
‖∇u‖2 ,

we obtain∣∣∣∣β
∫

RN

b(x)|u(x)|2dx

∣∣∣∣ ≤ |β|b1

∫
RN

|u(x)|
r

· |u(x)|dx ≤ |β|b1
2

N − 2
‖∇u‖‖u‖ .

Putting

f (|β|) ≡ ‖u‖2|β|2 − 2b1

N − 2
‖∇u‖‖u‖|β| + ‖∇u‖2 ,

we find

f (|β|) ≤ α2‖u‖2 .(3.2)
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On the other hand, we have by the assumption on b,


f (|β|) = ‖u‖2
(

|β|2 − 2
b1

N − 2

‖∇u‖
‖u‖ |β|

)
+ ‖∇u‖2

= ‖u‖2
(

|β| − b1

N − 2

‖∇u‖
‖u‖

)2

+
{

1 −
(

b1

N − 2

)2}
‖∇u‖2

≥
{

1 −
(

b1

N − 2

)2}
‖∇u‖2 .

(3.3)

Therefore we find that from (3.2), (3.3)

{
1 −

(
b1

N − 2

)2}
‖∇u‖2 ≤ α2‖u‖2 .(3.4)

Multiplying u on (1.4), integrating by parts on RN and taking imaginary part, we have∫
RN

b(x)|u(x)|2dx + 2β‖u‖2 = 0 .

Using Hardy inequality again, we obtain

2|β‖|u‖2 ≤ 2b1

N − 2
‖∇u‖‖u‖ ⇔ ‖u‖ ≤ b1

N − 2

‖∇u‖
|β| .(3.5)

It follows from (3.4), (3.5) that
{

1 −
(

b1

N − 2

)2 }
‖∇u‖2 ≤ α2‖u‖2 ≤ α2

(
b1

N − 2

)2 ‖∇u‖2

|β|2

⇔
({

1 −
(

b1

N − 2

)2}
β2 −

(
b1

N − 2

)2

α2
)

‖∇u‖2 ≤ 0 .(3.6)

So, if

κ �∈
{

κ = α + iβ ∈ C | β2 ≤ b2
1

(N − 2)2 − b2
1

α2
}

then we find u = 0 by (3.6) and (3.5). �

PROOF OF THEOREM 7. Direct computation. �
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