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1. Introduction

In elliptic cryptography, it is needed for a given finite field F , to construct an elliptic
curve whose group of F -rational points is cyclic of a large order. An approach to construct
such elliptic curves is, for a given elliptic curve E defined over an algebraic number field K ,
to determine a set SE,K of prime ideals p of K such that group Ē(Fp) of rational points of

the reduction Ē of E modulo p is cyclic. R. Gupta and M. R. Murty [3] obtained a result for
this problem in probabilistic point of view. However, in general, the problem to determine
the set SE,K is not easy. In the case E has complex multiplication and an ordinary good

reduction at p, it is noted the group structure of Ē(Fp) is determined by the trace of Frobenius
endomorphism (cf. [9]). In this case, the trace can be computed easily from the quadratic
norm representation of a prime number (cf. [4], [5], [6], [7]). Therefore, in this case, we can
give a family of prime ideals contained in SE,K . For example see [2].

The purpose of this article is, without the properties of complex multiplication, to con-
struct a family of elliptic curves E defined over Q such that for prime numbers of the form

p = 2α3β5γ qδ + 1(q :an odd prime) Ē(Fp) are cyclic. The key for considering this problem
is the next theorem.

THEOREM 1 (cf. [3]). For an elliptic curve E/Q and a positive integer n, let E[n] be
the set of n-division points and Kn(E) be the field generated over Q by all points of E[n]. Let

p be a prime number such that E has good reduction at p and Ē(Fp) the group of rational
points on the reduction of E modulo p. Then we have

(a) Ē(Fp) is cyclic if and only if p does not split completely in Kl(E) for any prime l.
(b) The cyclotomic field Q(ζn) is contained in Kn(E) for any n.

COROLLARY 2. If a prime p of the form p = 2αq
β1
1 · · · qβm

m + 1 (q1, · · · , qm :odd

primes) does not split completely in K2(E),Kq1(E), · · · ,Kqm(E), then Ē(Fp) is cyclic.
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PROOF. For an odd prime q �= qi(i = 1, · · ·m), we have p �≡ 1 (mod q). Thus p

does not split completely in the cyclotomic field Q(ζq). By Theorem 1(b) p does not split
completely in Kq(E), either. Therefore by (a), we have our assertions. �

EXAMPLE 3. (i) If a prime of the form p = 22n + 1(Fermat prime) does not split

completely in K2(E), then it is clear that Ē(Fp) is cyclic.

(ii) For a prime of the form p = 2sq + 1(q : an odd prime such that 2s+2 < q), if p

does not split completely in K2(E), then we can show easily that q2 � ||Ē(Fp)| and therefore

Ē(Fp) is cyclic. We see there exist no integers k �= 0 such that |kq2 − p − 1| ≤ 2
√

p as
follows. If this inequality holds, then

2sq + 2 − √
2sq + 1

q2 ≤ k ≤ 2sq + 2 + √
2sq + 1

q2 .

However, since

2sq + 2 + √
2sq + 1

q2
<

2s

2s+2
+ 2

2s+2
+ 2

√
2sq + 1

q2
<

1

2
+ 1

2s+1
< 1

and ∣∣∣∣2sq + 2 − √
2sq + 1

q2

∣∣∣∣ ≤
∣∣∣∣2sq + 2

q2

∣∣∣∣ +
∣∣∣∣2

√
2sq + 1

q2

∣∣∣∣ <
2s

q
+ 2

q2
+ 2

√
2s + 1

q2
< 1 ,

k is not a non-zero integer. Thus q2 � ||Ē(Fp)| by Hasse’s inequality ||Ē(Fp)|−p−1| ≤ 2
√

p.

2. Primes of the form p = 2α3β + 1

Let p be a prime number of the form p = 2α3β +1. In this section, we construct a family

of elliptic curves E over Q such that Ē(Fp) are cyclic groups. By Corollary 2, if p does not

split completely in K2(E) and K3(E), then Ē(Fp) is cyclic. First, we note there exist many

prime numbers of the form 2α3β + 1, for example,

α = 1 β = · · · , 132, 180, 320, 696, 782, 822, 897, · · ·
α = 2 β = · · · , 201, 249, 805, · · ·
α = 3 β = · · · , 130, 143, 331, 332, 980, · · ·
α = 4 β = · · · , 195, 296, 297, 533, 545, 644, 884, 932, · · ·

· · ·
α = 1000 β = · · · , 544, 807, · · ·

· · · .

THEOREM 4. For given integers c and u, let Ec,u/Q be an elliptic curve defined as
follows:

Ec,u/Q : y2 = x3 − (c2 − 3)ux2 + (2c + 3)u2x .
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For a prime number of the form p = 2α3β + 1, if c �≡ −1,−3/2, 3 (mod p) and(−u

p

)
=

(
(c + 1)(c − 3)

p

)
= −1 ,

then Ec,u(Fp) is cyclic.

PROOF. Put A = −(c2 − 3)u, B = (2c + 3)u2 and f (x) = x2 + Ax + B. Then
Ec,u[2] = {O, (0, 0), (η1, 0), (η2, 0)} where η1, η2 are the roots of f (x) = 0. Since the
discriminant of f (x) is

D2 = A2 − 4B = (c + 1)3(c − 3)u2 ,

we have Q(
√

(c + 1)(c − 3)) ⊂ K2(Ec,u). Therefore, if
(

(c + 1)(c − 3)

p

)
= −1 ,

then p does not split completely in K2(Ec,u). Next we consider the decomposition of p in
K3(Ec,u). In this case, the 3-division polynomial φ3(x) of Ec,u factors over Q[x] as follows:

φ3(x) = 3x4 + 4Ax3 + 6Bx2 − B2 = (x + u)(3x3 + r2x
2 + r1x + r0) .

Thus we see P3 = (−u,±√
f (−u)) are 3-division points of Ec,u. Since f (−u) = −(c +

1)2u3, we have Q(
√−u) ⊂ K3(Ec,u). Therefore, the assumption shows that p does not split

completely in K3(Ec,u). �

REMARK. The discriminant of Ec,u is δEc,u = (c+1)3(2c+3)2(c−3), and j -invariant

j (Ec,u) = 256c3(c3−6c−6)3

δEc,u
.

COROLLARY 5. Let w be an integer such that(
w

p

)
= −1

and

(7w + 9)(w + 1)(9w + 7) �≡ 0 (mod p) .

Then for

c = −(5w + 3)

w − 1
or

3w + 5

w − 1
,

( (c+1)(c−3)
p

) = −1, and therefore Ec,u(Fp) is cyclic.

PROOF. Put

c = −(5w + 3)

w − 1
.
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Since

c + 1 = −4(w + 1)

w − 1
and c − 3 = −8w

w − 1
,

(
(c + 1)(c − 3)

p

)
=

(
32w(w + 1)

p

)
. (1)

By assumptions,

δEc,u = 512(7w + 9)2(w + 1)3w

(w − 1)6 �≡ 0 (mod p) .

On the other hands, for

c′ = 3w + 5

w − 1
,

it satisfies that (
(c′ + 1)(c′ − 3)

p

)
=

(
32(w + 1)

p

)
, (2)

and we have

δEc′,u = 512(9w + 2)2(w + 1)3

(w − 1)6 �≡ 0 (mod p) .

By (1) and (2),
(

(c + 1)(c − 3)

p

)(
(c′ + 1)(c′ − 3)

p

)
=

(
w

p

)
= −1 .

Therefore by Theorem 4, we have our assertions. �

In the next example, by using Corollary 5, we shall give families of elliptic curves Ec,u

in Theorem 4 such that Ec,u(Fp) are cyclic. Hereafter, the notion CN denotes the cyclic group
of order N .

EXAMPLE 6. In the following tables, let

c1(w) = −(5w + 3)

w − 1
and c2(w) = 3w + 5

w − 1
.

1) p = 2733 + 1 = 3457. ( 5
p
) = (−5

p
) = −1. Put u = 5.

w 5 7 10 14 15 17 19 20 21 23

c c1(w) c1(w) c1(w) c2(w) c1(w) c1(w) c2(w) c2(w) c1(w) c1(w)

Ec,5(Fp) C3388 C3412 C3406 C3448 C3460 C3544 C3454 C3448 C3514 C3400

2) p = 2435 + 1 = 3889. ( 11
p

) = (−11
p

) = −1. Put u = 11.
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w 11 13 19 26 29 33 38 39 41 43

c c1(w) c1(w) c1(w) c1(w) c1(w) c1(w) c2(w) c1(w) c1(w) c2(w)

Ec,11(Fp) C3850 C3940 C3994 C3844 C3874 C3880 C3838 C3856 C3928 C3928

3. Primes of the form p = 2α5β + 1 and 2α5βqγ + 1

In this section we consider the case that a prime p is given by the form 2α5β + 1 or
2α5βqα + 1.

3.1. p = 2α5β + 1. The following (α, β)’s are examples such that p = 2α5β + 1 are
primes:

α = 1 β = · · · , 105, 159, 297, · · ·
α = 4 β = · · · , 116, 166, 394, · · ·
α = 5 β = · · · , 159, 483, 891, 897, · · ·
α = 6 β = · · · , 194, 854, · · ·

· · ·
α = 100 β = 36, 324, 418, 428, 436, 596, 804, · · ·

· · · · · · .

Let E/Q be an elliptic curve and j the j -invariant of E. Then we know K5(E) contains the
splitting field over Q of the polynomial

g(X, j) = X5 + 5X4 + 40X3 − j (3)

(cf. §3 of [1]). Therefore if g(X, j) is not decomposed into linear factors modulo p, p does
not split completely in K5(E). Furthermore if p does not split completely in K2(E), we see
Ē(Fp) is cyclic. Hereafter, we consider the case that g(X, j) factors in Q[X] as follows:

g(X, j) = (X2 + aX + b)(X3 + rX2 + sX + t) . (4)

Comparing the coefficients (3) with (4), we obtain the quadratic equation of s:

s2 + (a2 − 40)s − a(a2 − 5a + 40)(a − 5) = 0 . (5)

Take

s = 1

2
{−(a2 − 40) − √

5(a − 4)
√

a2 + 20} .

Then we have

b = 1

2
{3a2 − 10(a − 4) + √

5(a − 4)
√

a2 + 20} , (6)

t = 1

2
{a2(4a − 25) + 50(a − 4) + √

5(2a − 5)(a − 4)
√

a2 + 20} (7)



386 NAOYA NAKAZAWA

and

j = −bt . (8)

The discriminant of X2 + aX + b is

D5(E) = a2 − 4b = −5(a2 − 4a + 16) − 2
√

5(a − 4)
√

a2 + 20 .

If (
D5(E)

p

)
= −1 ,

then p does not split completely in K5(E). Further if there exists a positive rational number

u such that
√

a2 + 20 = √
5u, then

D5(E) = −5(u − 2)(5u + 2a + 2) . (9)

Thus by a simple calculation, we have the next theorem.

THEOREM 7. For a rational number λ such that 5λ2 − 1 > 0, let Eλ be an elliptic
curve defined by

Eλ : y2 = x3 + 3375T (λ)x − 6750T (λ) ,

where T (λ) = R(λ)
S(λ)

and

R(λ) = (λ − 1)(10λ2 + 5λ + 1)3 ,

S(λ) = (15λ2 + 10λ + 2)(5λ2 − 5λ − 1)2(15λ2 + 10λ + 7)2 .

Then we have
(a) The j -invariant j (Eλ) and discriminant δEλ of Eλ are

j (Eλ) = 8000(λ − 1)(10λ2 + 5λ + 1)3

(5λ2 − 1)5
, δEλ = −15625R(λ)2(5λ2 − 1)5

64S(λ)3
.

(b) For a prime number p such that

(−(15λ2 + 10λ + 2)

p

)
= −1 and

(
5λ2 − 1

p

)
= 1 ,

p splits completely neither in K2(Eλ) nor in K5(Eλ). Furthermore, if p is of the form p =
2α5β + 1, then Eλ(Fp) is cyclic.

PROOF. In the above argument, put

a = 20λ

5λ2 − 1
.
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Then

u = 2(5λ2 + 1)

5λ2 − 1
> 0 .

By (6)∼(8), we know the j -invariant j (Eλ) of Eλ is

j (Eλ) = 8000(λ − 1)(10λ2 + 5λ + 1)3

(5λ2 − 1)5 .

By (9), we have

D5(Eλ) = −5 · 42(15λ2 + 10λ + 2)

(5λ2 − 1)2
.

Since ( 5
p
) = 1,

(
D5(Eλ)

p

)
=

(−(15λ2 + 10λ + 2)

p

)
.

The discriminant of x3 + 3375T (λ)x − 6750T (λ) = 0 is

D2(Eλ) = −2231256R(λ)2(5λ2 − 1)5

S(λ)3
.

Therefore (
D2(Eλ)

p

)
=

(−(15λ2 + 10λ + 2)(5λ2 − 1)

p

)
.

The assumption in (b) implies(
D5(Eλ)

p

)
=

(
D2(Eλ)

p

)
= −1 .

Hence the prime p splits completely neither in K2(Eλ) nor in K5(Eλ). �

In the above theorem, if we take λ such that 15λ2 + 10λ + 2 = 3w2 for some w ∈ Q,
then (

D5(Eλ)

p

)
=

(−3

p

)
= −1 .

Therefore we obtain the next theorem.

THEOREM 8. Let ε = 9 + 4
√

5 and εn = cn + √
5dn(n ∈ Z). Put

λ = −1 − dn

3
.

For a prime number p = 2α5β + 1, if (
5d2

n+10dn−4
p

) = 1, then Eλ(Fp) is cyclic.
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PROOF. Consider the quadratic equation of λ:

15λ2 + 10λ + 2 − 3w2 = 0 . (10)

Its discriminant is D′ = 20(9w2−1). Therefore if there exists w ∈ Q such that 9w2−1 = 5L2

for L ∈ Q, the equation (10) has Q-rational roots. Set ε = 9+4
√

5, which is a unit of Q(
√

5),

and εn = cn + √
5dn(cn, dn ∈ Z). Then c2

n − 5d2
n = 1. Therefore if we put w = ±cn/3 and

L = ±dn, then one of the roots of (10) is

λ = −1 − dn

3
.

Thus (−(15λ2 + 10λ + 2)

p

)
=

(−3c2
n

p

)
=

(−3

p

)
= −1 ,

and since (
5λ2 − 1

p

)
=

(
5d2

n + 10dn − 4

p

)
,

by Theorem 7, we have our assertions. �

We shall give some examples of cyclic groups obtained from the elliptic curves in Theo-
rem 8.

EXAMPLE 9. Put λ = −1−dn

3 .

1) p = 275 + 1 = 641.

n 2 3 5 6 7 8 15 16 28 79

λ mod p 403 210 637 397 318 418 303 164 566 101

Eλ(Fp) C692 C642 C602 C612 C672 C652 C632 C682 C662 C622

2) p = 2553 + 1 = 4001.

n 1 5 9 11 12 13 17 22 24 76

λ mod p 1332 2695 3590 2353 93 196 1458 1329 1147 443

Eλ(Fp) C4032 C4002 C3972 C3962 C4052 C4062 C4042 C4102 C4122 C4012

EXAMPLE 10. 1) p = 230558 + 1. Put λ = −1−d2
3 . Then

Eλ : y2 = x3 + Ax + B ,

A = 6593835193563839442112337701815846247497905895342

B = 24065232597491461740775324596368307505004188209317

and

Eλ(Fp) 	 C37252902984619140625000006249485571812164870373232 .
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2) p = 2100536 + 1. Put λ = −1−d4
3 . Then

Eλ : y2 = x3 + Ax + B ,

A = 6452482780111551966830874190826611545976242828986367767

B = 5541778513486447682338251618346776908047514342027264467

and

Eλ(Fp) 	 C18446744073709551616000000003334801223258812729409907692.

3.2. p = 2α5βqγ + 1

3.2.1. p = 2α5βqγ + 1(q ≥ 7 :an odd prime). Next we consider primes p of the

form p = 2α5βqγ + 1(q ≥ 7 :an odd prime). If q2 does not divide |Eλ(Fp)|, then clearly

Eλ(Fp) is cyclic. Thus we have the following theorem.

THEOREM 11. For primes p of the form 2α5βqγ + 1(q ≥ 7 :an odd prime), let us
consider the rational number

λ = −1 − dn

3

and the elliptic curve Eλ given in Theorems 7 and 8. Let Ev
λ be the twist of Eλ defined by

Ev
λ : y2 = x3 + 3375v2T (λ)x − 6750v3T (λ), v ∈ Z .

If

(
v

p

)
= −1 and

(
5d2

n + 10dn − 4

p

)
= 1 ,

then either Eλ(Fp) or Ev
λ(Fp) is cyclic.

PROOF. Since q �≡ 0 (mod 3), p = 2α5βqγ + 1 ≡ 2 (mod 3). Thus similarly in
Theorem 8,

(−(15λ2 + 10λ + 2)

p

)
=

(−3

p

)
= −1 .

If
(

5d2
n + 10dn − 4

p

)
= 1 ,

then p splits completely neither in K5(Eλ) nor K2(Eλ). Further, if p splits completely in

Kq(Eλ), then we have q2||Eλ(Fp)|.
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On the other hands, since

|Eλ(Fp)| + |Ev
λ(Fp)| = 2p + 2 �≡ 0 (mod q)

and |Eλ(Fp)| ≡ 0 (mod q), we see |Ev
λ(Fp)| �≡ 0 (mod q).

Now since j (Ev
λ) = j (Eλ), D5(E

v
λ) = D5(Eλ). Thus p does not split completely in

K5(E
v
λ). Since the discriminant D2(E

v
λ) of x3 + 3375v2T (λ)x − 6750v3T (λ) = 0 satisfies

D2(Eλ) = v6D2(E
v
λ), p does not split completely in K2(E

v), either.

Hence Ev
λ(Fp) is cyclic. �

3.2.2. p = 2α3β5γ + 1(α = 1, 2). Let p be a prime number of the form p =
2α3β5γ + 1. Since p ≡ 1 (mod 3), for a parameter λ and the elliptic curve Eλ defined
in Theorems 7 and 11, p may split completely in K5(Eλ). However, for these p, if p ≡ 5, 7

(mod 8), thus α = 1, 2, we can give another type of λ such that Eλ(Fp) is cyclic.

THEOREM 12. Let p be a prime number of the form 2α3β5γ + 1(α = 1, 2, β, γ > 0).
Further if α = 1, then we assume that p ≡ 7 (mod 8). Put

ε = √
6 − √

5

and

ε2k−1 = m2k−1
√

6 + n2k−1
√

5 (k = 1, 2, 3, · · · ,m2k−1, n2k−1 ∈ Z) .

Let

λ = −1 − n2k−1

3

and Eλ, Ev
λ be elliptic curves defined in Theorems 7 and 11. If

(
5n2

2k−1 + 10n2k−1 − 4

p

)
= 1 ,

then either Eλ(Fp) or Ev
λ(Fp) is cyclic.

PROOF. Consider the quadratic equation

15λ2 + 10λ + 2 − 2w2 = 0 . (11)

Its discriminant is D′ = 20(6w2 − 1).　We shall give integers L and w such that 6w2 − 1 =
5L2. Let ε = √

6 − √
5. Then ε2k−1 = m2k−1

√
6 + n2k−1

√
5 (m2k−1, n2k−1 ∈ Z). This

shows that 6m2
2k−1 − 5n2

2k−1 = 1. Therefore (w,L) = (±m2k−1,±n2k−1) are solutions of

6w2 − 1 = 5L2. Put

λ = −1 − n2k−1

3
.
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Then 15λ2 + 10λ + 2 = 2m2
2k−1. Thus

(−(15λ2 + 10λ + 2)

p

)
=

(−2

p

)
= −1 and

(
5λ2 − 1

p

)
=

(
5n2

2k−1 + 10n2k−1 − 4

p

)
.

Therefore by the first part of (b) of Theorem 11 and the similar argument in its theorem, we
have our assertions. �

3.2.3. Examples. The following two examples are groups of rational points of elliptic
curves given in Theorems 11 and 12 respectively.

EXAMPLE 13. Put λ = −1−dn

3 and p = 24527 + 1 = 2801.

n 4 6 7 8 15 18 23 25 26

λ mod p 2542 763 1159 1431 2760 66 2469 997 1783

Eλ(Fp) C2712 C2812 C2892 C58 × (C7)2 C2722 C2862 C2842 C2822 C2742

Ev
λ(Fp) C2892 C2792 C2712 C2762 C2882 C2742 C2762 C2782 C2862

EXAMPLE 14. Put λ = −1−n2k−1
3 .

1) p = 2 · 3 · 53 + 1 = 751.

k 4 5 8 10 11 17 21 25

λ mod p 168 441 721 692 545 484 376 110

Eλ(Fp) C78 × (C3)2 C792 C762 C772 C742 C712 C752 C802

Ev
λ(Fp) C802 C712 C742 C732 C762 C88 × (C3)2 C752 C702

2) p = 223452 + 1 = 8101.

k 1 2 3 7 12 14 18 22 26

λ mod p 5400 0 5408 4484 6637 7311 6318 3628 1985

Eλ(Fp) C8172 C8102 C8002 C8052 C8042 C8122 C888 × (C3)2 C8032 C7982

Ev
λ(Fp) C8032 C8102 C8202 C8152 C8162 C8082 C8212 C8172 C8222
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