Токуо J. Матн. Vol. 31, No. 2, 2008

Isometric Immersions with Geodesic Normal Sections in Semi-Riemannian Geometry

Kouhei MIURA

Tokyo University of Science

(Communicated by M. Guest)

Abstract. We study an isometric immersion $f: M \to \overline{M}$ with geodesic normal sections, where \overline{M} is a semi-Riemannian space form. In Riemannian geometry, it is known that f is helical, in particular, all geodesics of M have the same proper order in \overline{M} . However this does not hold in general, when \overline{M} is indefinite semi-Riemannian. We give sufficient conditions for an isometric immersion with geodesic normal sections to be helical.

1. Introduction

Let *M* be an *n*-dimensional submanifold in a Euclidean space \mathbb{R}^{n+q} . For any point $p \in M$ and unit tangent vector *x* in the unit tangent sphere U_pM at *p*, let E(p, x) be the affine (q + 1)-dimensional subspace of \mathbb{R}^{n+q} through *p* spanned by *x* and the normal space $T_p^{\perp}M$. The intersection of *M* and E(p, x) gives rise to a unit speed curve β_x with $\beta_x(0) = p$ and $\beta'_x(0) = x$ defined on an open interval containing 0. This curve β_x is called the *normal section* at (p, x). In Chen and Verheyen [3], *M* is said to have geodesic normal sections if, for any $p \in M$ and $x \in U_pM$, the normal section β_x at (p, x) is geodesic in a neighborhood of 0. Another important concept used in this paper, called helical immersions, originated from Besse [1]. Let $f : M \to \overline{M}$ be an isometric immersion between Riemannian manifolds. If, for each unit speed geodesic γ of *M*, the curve $f \circ \gamma$ in \overline{M} is a helix of order *d* with curvatures $\lambda_1, \ldots, \lambda_{d-1}$ which are independent of γ , then *f* is called a helical geodesic immersion of order *d*. Chen and Verheyen [3] proved that a helical submanifold in a Euclidean space has geodesic normal sections using a result for helical geodesic immersions in Sakamoto [10]. Verheyen proved its converse in [11]. Their results were proved in the case where the ambient space is a Riemannian space form by Hong and Houh [5].

Also in semi-Riemannian geometry, the notions of submanifolds with geodesic normal sections and helical geodesic immersions can be introduced. Kim [6] classified semi-Riemannian surfaces in \mathbf{R}^5 with vanishing mean curvature and geodesic normal sections. His

2000 Mathematics Subject Classification: 53C50 (Primary), 53C40 (Secondary)

Received April 19, 2007; revised February 8, 2008

Key words and phrases: geodesic normal sections; indefinite semi-Riemannian submanifold

classification shows that there exist surfaces with geodesic normal sections which are not helical. The present author [7] studied helical geodesic immersions between semi-Riemannian manifolds and showed that a helical immersed submanifold in a semi-Riemannian space form has geodesic normal sections.

In this paper, we study semi-Riemannian isometric immersions with geodesic normal sections Let $f: M \to \overline{M}$ be a semi-Riemannian isometric immersion into a semi-Riemannian space form. In contrast to the Riemannian case, there exist space-like, time-like and null geodesics and normal sections on M. Thus we say that f has *space-like* (resp. *time-like*) *geodesic normal sections* if any space-like (resp. time-like) unit speed normal section β_x is locally geodesic. We show that f has space-like geodesic normal sections if and only if f has time-like geodesic normal sections. Furthermore, we prove that if f has space-like geodesic normal sections, then there exist some $d \in \mathbf{N}$, positive constants $\lambda_1, \ldots, \lambda_{d-1} \in \mathbf{R}$ such that, for any space-like unit speed geodesic γ of M, $f \circ \gamma$ has Frenet curvatures $\lambda_1, \ldots, \lambda_{d-1}$ in \overline{M} . In semi-Riemannian geometry, note that $f \circ \gamma$ is not necessarily of proper order d. As a corollary of this result, we can give some sufficient conditions for an isometric immersion with geodesic normal sections to be helical.

In Section 2 we prepare basic notations and equations that we use later. The definitions of isometric immersions with geodesic normal sections and helical geodesic immersions in semi-Riemannian geometry are also given. Section 3 is devoted to the study of such isometric immersions.

2. Preliminaries

Let $f : M \to \overline{M}$ be an isometric immersion of a connected *n*-dimensional semi-Riemannian manifold M into an (n + q)-dimensional semi-Riemannian manifold \overline{M} of constant sectional curvature. For all local formulas and computations we may regard f as an embedding and thus we shall often identify $p \in M$ with $f(p) \in \overline{M}$ and the tangent space T_pM the subspace $f_*(T_pM)$ of $T_p\overline{M}$. We denote the normal space of f at p by $T_p^{\perp}M$. Let $\overline{\nabla}$ (resp. ∇) be the Levi-Civita connection of \overline{M} (resp. M), B the second fundamental form, A the shape tensor, and ∇^{\perp} the normal connection. Clearly A is related to B as $\langle A_{\xi}X, Y \rangle = \langle B(X, Y), \xi \rangle$, where \langle , \rangle is the semi-Riemannian metric of \overline{M} , and X and Y are vector fields tangent to M, and ξ is a vector field normal to M.

The *k*-th ($k \ge 1$) covariant derivative $D^k B$ of *B* with respect to ∇ and ∇^{\perp} is defined by

$$(D^{k}B)(X_{1},...,X_{k+2}) := \nabla_{X_{1}}^{\perp}((D^{k-1}B)(X_{2},...,X_{k+2}))$$
$$-\sum_{i=2}^{k+2}(D^{k-1}B)(X_{2},...,\nabla_{X_{1}}X_{i},...,X_{k+2}).$$

where $D^0 B = B$. Then the Ricci identity for $(D^{k-2}B)(X_1, \ldots, X_k)$ is

 $(D^k B)(X, Y, X_1, ..., X_k) - (D^k B)(Y, X, X_1, ..., X_k)$

ISOMETRIC IMMERSIONS WITH GEODESIC NORMAL SECTIONS

$$= R^{\perp}(X,Y)(D^{k-2}B)(X_1,\ldots,X_k) - \sum_{i=1}^k (D^{k-2}B)(X_1,\ldots,R(X,Y)X_i,\ldots,X_k),$$

where *R* (resp. R^{\perp}) is the curvature tensor of ∇ (resp. ∇^{\perp}). We denote $(D^k B)(X, \ldots, X)$ by $(D^k B)(X^{k+2})$ for short.

The equations of Gauss, Codazzi and Ricci are given by

 $\begin{aligned} R(X, Y)Z &= \bar{c} \left(\langle Y, Z \rangle X - \langle X, Z \rangle Y \right) + A_{B(Y,Z)}X - A_{B(X,Z)}Y, \\ (DB)(X, Y, Z) &= (DB)(Y, X, Z), \\ R^{\perp}(X, Y)\xi &= B(X, A_{\xi}Y) - B(A_{\xi}X, Y), \end{aligned}$

respectively, where \bar{c} is the constant sectional curvature of \bar{M} .

Let *L* be a submanifold of \overline{M} . Hereafter, we say that *L* is *totally geodesic* in \overline{M} , if $\overline{\nabla}_X Y$ is tangent to *L* for any tangent vector fields *X* and *Y* of *L*. We note that the induced tensor field on *L* from the semi-Riemannian metric on \overline{M} is not necessarily non-degenerate. Since \overline{M} has constant sectional curvature, if, for any $p \in \overline{M}$ and subspace *V* of $T_p\overline{M}$, there exists a totally geodesic submanifold *L* containing *p* such that $T_pL = V$.

For any $p \in M$ and $v \in T_pM$ ($v \neq 0$), let E(p, v) be the vector subspace of $T_p\overline{M}$ spanned by v and $T_p^{\perp}M$. E(p, v) determines a (q + 1)-dimensional totally geodesic submanifold $\widehat{E}(p, v)$ of \overline{M} such that $p \in \widehat{E}(p, v)$ and $T_p\widehat{E}(p, v) = E(p, v)$. The intersection of Mand $\widehat{E}(p, v)$ gives rise to a regular curve β_v such that $\beta_v(0) = p$ and $\beta'_v(0) = v$ in a neighborhood of p in \overline{M} , which is called a *normal section* of f at (p, v). An isometric immersion fhas geodesic normal sections if β_v is pregeodesic on M in a neighborhood at 0 for any $p \in M$ and $v \in T_pM$ ($v \neq 0$) (or, equivalently, each geodesic of M is locally a normal section of f). For example, semi-Riemannian spheres and their Veronese immersions ([2, Examples 1.1 and 1.2]) have geodesic normal sections.

EXAMPLE 2.1. (cf. [2], [6]) For real-valued smooth functions $f_1, \ldots, f_l \in C^{\infty}(\mathbb{R}^n)$,

$$\mathbf{R}_t^n \ni p \mapsto (f_1(p), \dots, f_l(p), p, f_1(p), \dots, f_l(p)) \in \mathbf{R}_{t+l}^{n+2l} = \mathbf{R}_l^l \times \mathbf{R}_t^n \times \mathbf{R}_l^l$$

is an isometric immersion with geodesic normal sections, where \mathbf{R}_t^n is the *n*-dimensional semi-Euclidean space with index *t*.

In this paper, we say that a curve in \overline{M} is of proper order e if the image is contained in some e-dimensional totally geodesic submanifold of \overline{M} and is not contained in any (e - 1)-dimensional ones. We recall the notion of Frenet curves in semi-Riemannian geometry. Let $c: I \to \overline{M}$ a unit speed curve on \overline{M} , that is, $|\langle c', c' \rangle| \equiv 1$. We put for $k \in \mathbb{N}$ and $s \in I$,

$$(G_k c)(s) := \det(\langle c^{(i)}(s), c^{(j)}(s) \rangle)_{1 \le i, j \le k}.$$

In contrast to the Riemannian case, we note that the equations $G_k c \neq 0$ $(1 \leq k \leq d)$, $G_{d+1}c \equiv 0$ on *I* do not necessarily mean that $c^{(d+1)}$ is linearly dependent on $c', c'', \ldots, c^{(d)}$.

We assume that $G_k c \neq 0$ on I for any $1 \leq k \leq d$. So we have $d \leq e$ in general, where e is the proper order of c. Then, we can apply the Gram-Schmidt orthonormalization process to $c'(s), c''(s), \ldots, c^{(d)}(s)$ at each point c(s). Consequently we have the Frenet d-frame field c_1, c_2, \ldots, c_d of c, which satisfies

(1)
$$c'_{i} = -\varepsilon_{i-1}\varepsilon_{i}\lambda_{i-1}c_{i-1} + \lambda_{i}c_{i+1} \quad \text{for } 1 \le i \le d-1,$$

where $\varepsilon_0 = \lambda_0 = 0$, $c_0 = 0$, $\varepsilon_i = \langle c_i, c_i \rangle \in \{-1, +1\}$ $(1 \le i \le d)$ and λ_i $(1 \le i \le d - 1)$ are functions on *I* satisfying the following formulas:

(2)
$$\varepsilon_i = \frac{\operatorname{sgn} G_i c}{\operatorname{sgn} G_{i-1} c}, \quad \lambda_i = \frac{|G_{i-1}c|^{1/2} |G_{i+1}c|^{1/2}}{|G_i c|}$$

where $G_0c = 1$. (See [4] for a computational algorithm, the *d*-Frenet frame, and the curvatures of a Euclidean curve.) Conversely if a curve $c : I \to \overline{M}$ satisfies Equation (1), then $G_kc \neq 0$ on *I* holds for any $1 \le k \le d$. For such a curve *c*, we say that *c* has the Frenet curvatures $\lambda_1, \ldots, \lambda_{d-1}$ and signatures $\varepsilon_1, \ldots, \varepsilon_d$. Furthermore, when $c^{(d+1)}$ is linearly dependent on $c', c'', \ldots, c^{(d)}$ (hence the proper order is equal to *d*), the curve *c* satisfies the Frenet formula: Equation (1) and

$$c'_d = -\varepsilon_{d-1}\varepsilon_d\lambda_{d-1}c_{d-1}.$$

Then we call the curve *c* a *Frenet curve of order d*, *curvatures* $\lambda_1, \ldots, \lambda_{d-1}$ and signatures $\varepsilon_1, \ldots, \varepsilon_d$. If all curvatures are constant, the curve *c* is called a *helix of order d*.

An isometric immersion f is called a *helical space-like geodesic immersion of order d*, for any unit speed space-like geodesic γ of M, the curve $f \circ \gamma$ in \overline{M} is a helix of order d, curvatures $\lambda_1, \ldots, \lambda_{d-1}$ and signatures $\varepsilon_1 = +1, \varepsilon_2, \ldots, \varepsilon_d$, which are independent of the choice of γ . We define a helical *time-like* geodesic immersion in a similar way.

In [7], we obtained that f is a helical space-like geodesic immersion of order d if and only if f is a helical time-like geodesic immersion of order d. Hence we may call these *helical geodesic immersions*. We also showed that, in semi-Riemannian geometry, a helical geodesic immersion has geodesic normal sections.

In Riemannian geometry, an isometric immersion $f : M \to \overline{M}$ with geodesic normal sections is helical ([5], [11]), in particular, every geodesic of M has the same proper order in \overline{M} . Also in the case where \overline{M} is indefinite, semi-Riemannian spheres and their Veronese immersions have this properties for *non-null* geodesics. However, for an isometric immersion in Example 2.1, the proper order in \mathbf{R}_{t+l}^{n+2l} of a non-null geodesic γ of \mathbf{R}_t^n depends on the initial velocity $\gamma'(0)$ in general.

3. Isometric immersions with geodesic normal sections

Let $f: M \to \overline{M}$ be an isometric immersion of a connected semi-Riemannian manifold M into a semi-Riemannian manifold \overline{M} of constant sectional curvature and dim $M \ge 2$. We

denote by U^+M (resp. U^-M) the space-like (resp. time-like) unit tangent bundle of M. Whenever $x \in U_p M := U_p^+M \cup U_p^-M$ ($p \in M$), we give the normal section β_x of f at (p, x) the arc-length parameter with $\beta_x(0) = p$ and $\beta'_x(0) = x$. Then we temporarily say that f has *space-like* or (+1)- (resp. *time-like* or (-1)-) geodesic normal sections if β_x is geodesic in M for any $p \in M$ and $x \in U_p^+M$ (resp. U_p^-M). For $p \in M$ and $v \in T_pM$, we let γ_v stand for a geodesic of M such that $\gamma_v(0) = p$ and $\gamma'_v(0) = v$. We put $\sigma_v = f \circ \gamma_v$ and $V = \sigma'_v$. The uniqueness theorem for geodesics implies the following lemma ([3, Lemma 1]).

LEMMA 3.1. If f has ε -geodesic normal sections ($\varepsilon \in \{-1, +1\}$), then, for any $x \in U^{\varepsilon}M$, after a suitable reparametrization, σ_x locally remains a normal section of f at $(\gamma_x(s), \gamma'_x(s))$ for all $s \in \operatorname{dom} \gamma_x$. In particular, the component of $\sigma_x^{(k)}(s)$ tangent to M is proportional to $\sigma'_x(s)$ for any $s \in \operatorname{dom} \gamma_x$ and $k \in \mathbb{N}$.

From now on, for convenience, we write $(D^{-1}B)(v)$ instead of $v \in TM$. The following arguments are analogous to those of Verheyen [11].

LEMMA 3.2. If f has ε -geodesic normal sections ($\varepsilon \in \{-1, +1\}$), then the following property (F_k) holds for any $x \in U^{\varepsilon}M$ and $k \in \mathbb{N}$: (F_1) $\sigma'_x = X$, (F_2) $\sigma''_x = B(X^2)$, and for $k \ge 3$, (F_k) there exist smooth functions $C_{k,l}$ ($1 \le l \le k$) on dom γ_x such that $C_{k,k} = 1$, $C_{k,k-1} = 0$ and

(3)
$$\sigma_x^{(k)} = \sum_{l=1}^k C_{k,l} \left(D^{l-2} B \right) (X^l),$$

and $A_{(D^{k-3}B)(x^{k-1})}x = \varepsilon \langle (D^{k-3}B)(x^{k-1}), B(x^2) \rangle x$ holds.

PROOF. We have $\sigma'_x = X$, $\sigma''_x = B(X^2)$ and $\sigma^{(3)}_x = -A_{B(X^2)}X + (DB)(X^3)$. According to Lemma 3.1, we get $A_{B(x^2)}x = \varepsilon \langle B(x^2), B(x^2) \rangle x$ for any $x \in U^{\varepsilon}M$. Hence $(F_1), (F_2)$ and (F_3) hold, where $C_{3,3} = 1$, $C_{3,2} = 0$ and $C_{3,1} = -\varepsilon \langle B(X^2), B(X^2) \rangle$. By induction on k, we shall show that the property (F_k) holds for any $k \ge 3$. We already have (F_3) . We verify that (F_{k+1}) holds when (F_l) is true for any $3 \le l \le k$. From the induction hypothesis, it follows that

$$\sigma_x^{(k+1)} = \left((XC_{k,1}) - \sum_{l=2}^{k-1} C_{k,l} \varepsilon \langle (D^{l-2}B)(X^l), B(X^2) \rangle \right) X - A_{(D^{k-2}B)(X^k)} X$$
$$+ \sum_{l=2}^k \left((XC_{k,l} + C_{k,l-1}) \right) (D^{l-2}B)(X^l) + (D^{k-1}B)(X^{k+1}) .$$

According to Lemma 3.1 again, we have for any $x \in U^{\varepsilon}M$,

$$A_{(D^{k-2}B)(x^k)}x = \varepsilon \langle (D^{k-2}B)(x^k), B(x^2) \rangle x$$

Therefore we put

(4)
$$\begin{cases} C_{k+1,k+1} := 1, \quad C_{k+1,l} := (XC_{k,l}) + C_{k,l-1} \text{ for } 2 \le l \le k, \\ C_{k+1,1} := (XC_{k,1}) - \sum_{l=2}^{k} C_{k,l} \varepsilon \langle (D^{l-2}B)(X^{l}), B(X^{2}) \rangle. \end{cases}$$

Since we obtain (F_{k+1}) , the proof is complete.

LEMMA 3.3. Let ε be (-1) or (+1). The following conditions are equivalent:

- (i) f has ε -geodesic normal sections,
- (ii) f has geodesic normal sections,
- (iii) For any $x \in U^{\varepsilon}M$ and $k \ge 2$,

$$A_{(D^{k-2}B)(x^k)}x = \varepsilon \langle (D^{k-2}B)(x^k), B(x^2) \rangle x$$

(iv) For any $v \in TM$ and $k \ge 2$,

$$\langle v, v \rangle A_{(D^{k-2}B)(v^k)} v = \langle (D^{k-2}B)(v^k), B(v^2) \rangle v.$$

PROOF. On account of Lemma 3.2, (i) implies (iii). It is obvious that (iii) and (iv) are equivalent. Suppose that (iv) holds. Then we have $A_{(D^{k-2}B)(v^k)}v \wedge v = 0$ for any non-null vector v. Moreover because of the continuity of the map $TM \ni v \mapsto A_{(D^{k-2}B)(v^k)}v \wedge v \in$ $\bigwedge^2 TM$, $A_{(D^{k-2}B)(v^k)}v \wedge v$ is identically vanishing on TM for any $k \in \mathbb{N}$. So, for $p \in M, v \in$ $T_pM(v \neq 0)$, we can see that $\operatorname{Sp}\{\sigma_v^{(k)}(s) \mid k \in \mathbb{N}\} \subset E(\gamma_v(s), \gamma_v'(s)) \ (s \in \operatorname{dom} \gamma_v)$ is locally parallel along σ_v with respect to $\overline{\nabla}$, where Sp denotes the linear span. Therefore the image of σ_v is locally contained in $\widehat{E}(p, v)$, which is a totally geodesic submanifold in \overline{M} such that $T_p\widehat{E}(p, v) = E(p, v)$. Thus f has geodesic normal sections. It is trivial that (ii) implies (i).

Since we see that f has space-like geodesic normal sections if and only if f has timelike geodesic normal sections, hereafter, we assume that f has space-like geodesic normal sections, hence ind $M < \dim M$. Then, by virtue of Lemma 3.3, we can see that f has *null* geodesic normal sections, that is, each normal section β_v of f is locally pregeodesic for any null vector $v \in \Lambda = \bigcup_{p \in M} \Lambda_p$, where Λ_p is the nullcone of $T_p M$.

For $v \in TM$, $k, l \in \mathbb{N}$, we put $v_{k,l}(v) := \langle (D^{k-2}B)(v^k), (D^{l-2}B)(v^l) \rangle$ and $(G_k B)(v) := \det(v_{i,j}(v))_{1 \le i,j \le k}$, and $(G_0 B)(v) := 1$. From Equation (3) and $C_{k,k} = 1$ of Lemma 3.2 and Lemma 3.3, we have $\bigwedge_{i=1}^k \sigma_x^{(i)} = \bigwedge_{i=1}^k (D^{i-2}B)(X^i)$ for $x \in UM$. So we have for any $x \in UM$,

(5)
$$G_k \sigma_x = (G_k B)(X).$$

LEMMA 3.4. The following property (E_i) holds for $i \ge 2$: For any $h, j \in \mathbb{N}_0$ $(j \ge 2, 0 \le h \le i - 1), p \in M, x \in U_p^+M, y \in U_pM$ $(\langle x, y \rangle = 0),$

$$\langle (D^{i-2}B)(x^h, y, x^{i-h-1}), (D^{j-2}B)(x^j) \rangle = 0.$$

484

PROOF. The property (E_2) follows from Lemma 3.2. Suppose that (E_m) holds for any $2 \le m \le i$. We prove that (E_{i+1}) is satisfied $(i \ge 2)$. For $1 \le h \le i$, we have from (E_i) ,

$$\langle (D^{i-1}B)(x^{h}, y, x^{i-h}), (D^{j-2}B)(x^{j}) \rangle$$

= $x \cdot \langle (D^{i-2}B)(X^{h-1}, Y, X^{i-h}), (D^{j-2}B)(X^{j}) \rangle$
- $\langle (D^{i-2}B)(x^{h-1}, y, x^{i-h}), (D^{j-1}B)(x^{j+1}) \rangle = 0,$

where X and Y are extensions along $\sigma_x = f \circ \gamma_x$ of x and y respectively satisfying $\overline{\nabla}_x X = \overline{\nabla}_x Y = 0$ and $\langle X, Y \rangle = 0$. Hence we only need to prove (E_{i+1}) for h = 0. Using the Codazzi equation, we see that (E_3) for h = 0 holds. So we shall prove the case $i \ge 3$. Applying Ricci identity for $(D^{i-3}B)(x^{i-1})$, we have

$$\begin{split} \langle (D^{i-1}B)(x, y, x^{i-1}), (D^{j-2}B)(x^j) \rangle &- \langle (D^{i-1}B)(y, x^i), (D^{j-2}B)(x^j) \rangle \\ &= \langle [A_{(D^{i-3}B)(x^{i-1})}, A_{(D^{j-2}B)(x^j)}]x, y \rangle \\ &+ \sum_{h=0}^{i-4} \langle (D^{i-3}B)(x^h, R(x, y)x, x), (D^{j-2}B)(x^j) \rangle. \end{split}$$

By $\langle x, R(x, y)x \rangle = 0$ and the induction hypothesis, we obtain (E_{i+1}) for h = 0. Consequently (E_i) is true for any $i \ge 2$.

LEMMA 3.5. If k + l is even, then $v_{k,l}$ is constant on U_p^+M for each $p \in M$. If k + l is odd, then $|v_{k,l}|$ is constant on U_p^+M for each $p \in M$. In this case, if U_p^+M is connected, then $v_{k,l} = 0$ on U_p^+M .

PROOF. It is clear when k = 1 or l = 1. So we only need to verify this lemma for $k, l \ge 2$. Let $c_{\varepsilon}(\theta)$ (resp. $s_{\varepsilon}(\theta)$) be $\cos \theta$ or $\cosh \theta$ (resp. $\sin \theta$ or $\sinh \theta$) according to whether ε is equal to (+1) or (-1). For any $x \in U_p^+M$ ($p \in M$) and $y \in U_pM$ such that $\langle x, y \rangle = 0$, $\langle y, y \rangle = \varepsilon \in \{-1, +1\}$, we put $z_{\varepsilon}(\theta) = c_{\varepsilon}(\theta)x + s_{\varepsilon}(\theta)y$, hence $z_{\varepsilon}(\theta) \in U_p^+M$ for any $\theta \in \mathbf{R}$. Using Lemma 3.4, we have $\frac{d}{d\theta}\Big|_{\theta=0}v_{k,l}(z_{\varepsilon}(\theta)) = 0$. Thus $v_{k,l}$ is constant on a component of U_p^+M . On the other hand, for any $x \in U_p^+M$, $v_{k,l}(-x) = (-1)^{k+l}v_{k,l}(x)$. If U_p^+M is non-connected (hence it has two components), then the vector (-x) is in the component which does not contain $x \in U_p^+M$. Therefore this lemma is proved.

LEMMA 3.6. Each $v_{k,l}$ is constant on U^+M for any $k, l \in \mathbb{N}$. In particular, if k + l is odd, then $v_{k,l}$ vanishes.

PROOF. Since it is clear when k = 1 or l = 1, we assume that $k, l \ge 2$. Because dim $M \ge 2$, for any $p \in M$, $y \in U_p M$, there exists $x \in U_p^+ M$ such that $\langle x, y \rangle = 0$. Using Lemma 3.4, we have

$$y \cdot v_{k,l}(X') = \langle (D^{k-2}B)(y, x^k), (D^{l-2}B)(x^l) \rangle + \langle (D^{k-2}B)(x^k), (D^{l-2}B)(y, x^l) \rangle = 0,$$

where X' is an extension of x along σ_x such that $\overline{\nabla}_y X' = 0$. Since the equation above holds for any $p \in M$, $y \in U_p M$, using Lemma 3.5, we can obtain this lemma in the cases where k + l is even. When k + l is odd and $U_p^+ M$ is connected, this lemma is clear by Lemma 3.5. In the case where k + l is odd and $U_p^+ M$ is non-connected,

$$\nu_{k,l}(x) = x \cdot \nu_{k-1,l}(X) - \nu_{k-1,l+1}(x) = -\nu_{k-1,l+1}(x) = \cdots$$
$$= ((-1)^{(k-l-1)/2}/2) x \cdot \nu_{(k+l-1)/2,(k+l-1)/2}(X) = 0,$$

where $x \in U_p^+ M$ ($p \in M$). Thus we have finished the proof of this lemma.

Since f has null geodesic normal sections, we can see that $\sigma_v^{(k)}$ is a linear combination of $V, B(V^2), \ldots, (D^{k-2}B)(V^k)$, where $v \in \Lambda$. Using Lemma 3.6, in the case where k + l is even, there exists $d_{k,l} \in \mathbf{R}$ such that $v_{k,l}(v) = d_{k,l}\langle v, v \rangle^{(k+l)/2}$ for any $v \in TM$. Consequently $v_{k,l}(v) = 0$ for any $k, l \in \mathbf{N}$ and null vector $v \in \Lambda$. So, it is obvious that the scalar product at $\sigma_v(s) \in \overline{M}$ is vanishing on Sp $\{\sigma_v^{(k)}(s) | k \in \mathbf{N}\}$ which is a subspace of $E(\gamma_v(s), \gamma'_v(s))$. Therefore we conclude

COROLLARY 3.7. If f has space-like geodesic normal sections, then f has null geodesic normal sections. In particular, for any null vector $v \in \Lambda$, each normal section β_v is locally contained in a totally geodesic submanifold of \overline{M} whose induced metric is identically vanishing.

Lemma 3.6 implies that $G_k B$ is constant on U^+M for any $k \in \mathbb{N}$. Thus there uniquely exists $d \in \mathbb{N}$ such that $G_k B \neq 0$, $1 \leq k \leq d$, and $G_{d+1}B \equiv 0$. Then we call this natural number d the geodesic non-degeneracy order of f.

THEOREM 3.8. Assume that $f: M \to \overline{M}$ is an isometric immersion with space-like geodesic normal sections and its geodesic non-degeneracy order is equal to d. Then, for any space-like (resp. time-like) unit speed geodesics γ of M, the curve $f \circ \gamma$ has constant Frenet curvatures $\lambda_1, \ldots, \lambda_{d-1}$, signatures $\varepsilon_1, \ldots, \varepsilon_d$ (resp. $(-1)^1 \varepsilon_1, \ldots, (-1)^d \varepsilon_d$) in \overline{M} , where for $x \in U^+M$,

$$\varepsilon_k = \frac{\operatorname{sgn} (G_k B)(x)}{\operatorname{sgn} (G_{k-1} B)(x)}, \quad \lambda_k = \frac{|(G_{k-1} B)(x)|^{1/2} |(G_{k+1} B)(x)|^{1/2}}{|(G_k B)(x)|}.$$

PROOF. Using the formula (2) and Equation (5), we obtain this theorem for spacelike geodesics of M. Since $G_k B$ is constant, say b_k , on U^+M , we obtain $(G_k B)(v) = b_k \langle v, v \rangle^{k(k+1)/2}$ for any $v \in TM$. Thus we have sgn $(G_k B)(x)/\text{sgn}(G_{k-1}B)(x) = (-1)^k \varepsilon_k$ for $x \in U^-M$. Hence we can prove the statement for time-like geodesics in a similar way. \Box

From the definition of geodesic non-degeneracy order *d*, we can see that even if $f \circ \gamma$ is of proper order > d, it never has the *d*-th Frenet curvature. For convenience, we consider the following property:

486

 (P_e) All geodesics of M are of proper order $\leq e$ in \overline{M} and there exists a geodesic which is of proper order e in \overline{M} .

From the definition of Frenet curves, we obtain the following corollary.

COROLLARY 3.9. Under the same assumption as in Theorem 3.8, we see that if (P_d) holds, then f is a helical geodesic immersion of order d.

We showed in [7] that helical geodesic immersions have geodesic normal sections in semi-Riemannian geometry. For a helical geodesic immersion of order d, it is obvious that the helical order is equal to the geodesic non-degeneracy order, and (P_d) holds. Consequently the next corollary follows.

COROLLARY 3.10. f is a helical geodesic immersion of order d if and only if f has geodesic normal sections with geodesic non-degeneracy order d and the property (P_d) holds.

REMARK 3.11. In [8] we constructed helical geodesic immersions of arbitrary order d between semi-Riemannian spheres. Using these immersions, we can obtain an isometric immersion with geodesic normal sections between semi-Riemannian spheres such that its geodesic non-degeneracy order is equal to d and the property (P_e) holds, where d and e are any natural numbers with $d \leq e$.

Put $N := \sharp\{i \mid \varepsilon_i = -1, 1 \le i \le d\}$ and $\overline{N} := \sharp\{i \mid (-1)^i \varepsilon_i = -1, 1 \le i \le d\}$. If M is indefinite, then it is clear that $N, \overline{N} - 1 \le \operatorname{ind} \overline{M} - \operatorname{ind} M$ and $d - N - 1, d - \overline{N} \le \operatorname{codim} M - (\operatorname{ind} \overline{M} - \operatorname{ind} M)$.

COROLLARY 3.12. Under the same assumption as in Theorem 3.8, we can see that if M is indefinite and either $N = \operatorname{ind} \overline{M} - \operatorname{ind} M$, $\overline{N} - 1 = \operatorname{ind} \overline{M} - \operatorname{ind} M$, $d - N - 1 = \operatorname{codim} M - (\operatorname{ind} \overline{M} - \operatorname{ind} M)$ or $d - \overline{N} = \operatorname{codim} M - (\operatorname{ind} \overline{M} - \operatorname{ind} M)$ holds, then f is a helical geodesic immersion of order d.

PROOF. From Lemma 3.6 and the definition (4) of $C_{k,l}$, by induction, we can prove that each $C_{k,l}$ in Equation (3) is constant and that if k + l is odd and $l \ge 2$, then $C_{k,l} = 0$. In the case where $N = \operatorname{ind} \overline{M} - \operatorname{ind} M$, the orthogonal complement of Sp $\{\sigma_x^{(k)}(0) \mid 1 \le k \le d\}$ in $E(\gamma_x(0), \gamma'_x(0))$ is positive definite for any $x \in U^+M$. Then the definition of the geodesic non-degeneracy order and Equations (3) and (5) imply that $(D^{d-1}B)(x^{d+1})$ is a linear combination of $(D^{l-2}B)(x^l), l \in \{2, 4, \ldots, d-1\}$ or $l \in \{3, 5, \ldots, d-1\}$ according as d + 1 is even or odd. Therefore we can obtain the following equation for $x \in U^+M$:

(6)
$$(D^{d-1}B)(x^{d+1}) = \sum_{l} c_l \langle x, x \rangle^{(d+1-l)/2} (D^{l-2}B)(x^l) ,$$

where $c_l \in \mathbf{R}$. It is obvious that Equation (6) holds for any $x = v \in TM$. Hence any geodesics of M are of proper order $\leq d$ in \overline{M} , that is, (P_d) holds. It follows from Corollary 3.9 that f is helical. Also using a similar argument to the other cases, we obtain this corollary.

COROLLARY 3.13. Under the same assumption as in Theorem 3.8, we can see that if M is space-like and either $N = \operatorname{ind} \overline{M} - \operatorname{ind} M$ or $d - N - 1 = \operatorname{codim} M - (\operatorname{ind} \overline{M} - \operatorname{ind} M)$ holds, then f is a helical geodesic immersion of order d.

When \overline{M} is space-like, that is, Riemannian, the equation $N = \operatorname{ind} \overline{M} - \operatorname{ind} M = 0$ holds. Thus the last corollary recovers results of Verheyen [11], and Hong and Houh [5].

References

- A. L. BESSE, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik, Bd. 93, Berlin, Heidelberg, New York, Springer, 1978.
- [2] C. BLOMSTROM, Planar geodesic immersions in pseudo-Euclidean space, Math. Ann. 274 (1986), 585–598.
- [3] B. Y. CHEN and P. VERHEYEN, Submanifolds with geodesic normal sections, Math. Ann. 269 (1984), 417– 429.
- [4] H. GLUCK, Higher curvatures of curves in Euclidean space, Amer. Math. Monthly 73 (1966), 699–704.
- [5] Y. HONG and C. S. HOUH, Helical immersions and normal sections, Kodai Math. J. 8 (1985), 171–192.
- [6] Y. H. KIM, Minimal surfaces of pseudo-Euclidean spaces with geodesic normal sections, Diff. Geom. Appl. 5 (1995), 321–329.
- [7] K. MIURA, Helical geodesic immersions of semi-Riemannian manifolds, Kodai Math. J. 30 (2007), 322-343.
- [8] K. MIURA, Construction of harmonic maps between semi-Riemannian spheres, Tsukuba J. Math. 31 (2007), 397–409.
- [9] B. O'NEILL, Semi-Riemannian Geometry with Application to Relativity, Academic Press, New York, 1983.
- [10] K. SAKAMOTO, Helical immersions into a unit sphere, Math. Ann. 261 (1982), 63-80.
- P. VERHEYEN, Submanifolds with geodesic normal sections are helical, Rend. Sem. Mat. Univ. Polit. Torino 43 (1985), 511–527.

Present Address: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, TOKYO UNIVERSITY OF SCIENCE, WAKAMIYA-CHO, SHINJUKU-KU, TOKYO, JAPAN 162–0827. *e-mail*: miura@ma.kagu.tus.ac.jp