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Abstract. Let X be a compact Hausdorff space and C(X) the Banach algebra of all complex-valued continuous
functions on X. We consider the following property of C(X): for each f ∈ C(X) there exist a g ∈ C(X) and positive
integers p and q such that p does not divide q and f q = gp . When X is locally connected, we give a necessary
and sufficient condition for C(X) to have this property. We also give a characterization of a first-countable compact
Hausdorff space X for which C(X) has the property above. As a corollary, we prove that if X is locally connected,
or first-countable, then C(X) has the property above if and only if C(X) is algebraically closed.

1. Introduction and the statement of results

Let X be a compact Hausdorff space and C(X) the Banach algebra of all complex-valued
continuous functions on X with respect to the pointwise operations and the supremum norm

‖ · ‖∞. Suppose that X is locally connected and A is a uniform algebra on X. Čirka [2]

proved that if to each f ∈ A there corresponds a g ∈ A such that f = g2, then A = C(X).
On the other hand, there is no continuous function on the unit circle S1 in the complex plane

C, whose square is the identity function on S1. Hatori and Miura [8, Theorem 2.2] gave
a characterization in order for C(X) to be square root closed, that is, to each f ∈ C(X)

there corresponds a g ∈ C(X) such that f = g2. To be more explicit, C(X) is square root

closed if and only if the covering dimension of X is less than or equal to 1 and the first Čech
cohomology group with integer coefficient is trivial.

Let P(x, z) be a monic polynomial over C(X): for a positive integer n and

a0, a1, . . . , an−1 ∈ C(X), P(x, z) = zn + an−1(x)zn−1 + · · · + a1(x)z + a0(x) for x ∈ X.
We say that C(X) is algebraically closed if for each monic polynomial P(x, z) over C(X)

there exists an f ∈ C(X) such that P(x, f (x)) = 0 for every x ∈ X. By definition, C(X)

is square root closed if C(X) is algebraically closed. Deckard and Pearcy [4, 5] proved that
C(X) is algebraically closed if X is a Stonian space, or a totally disconnected compact Haus-
dorff space, or a linearly ordered and order-complete topological space. They also remarked
that if X is the closure of the graph of the function y = sin 1/x, 0 < x ≤ 1, then there exists
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a continuous function f of X into C such that f �= g2 for any g ∈ C(X). Countryman, Jr. [3]
gave some necessary and sufficient conditions for a first-countable compact Hausdorff space
X in order that C(X) is algebraically closed. For example, C(X) is algebraically closed if and
only if C(X) is square root closed. Moreover, for every first-countable space, these are also
equivalent to the condition that X is hereditarily unicoherent and almost locally connected.
Miura and Niijima [13] gave some necessary and sufficient condition for a locally connected
compact Hausdorff space X in order for C(X) be algebraically closed.

It seems that Gorin and Karahanjan [7] strengthened the above result of Čirka as follows:
If A is a uniform algebra on a locally connected compact Hausdorff space X with the property
that for each f ∈ A there exist a g ∈ A and a p ∈ N, p ≥ 2 such that f = gp , then A = C(X).
Furthermore, Karahanjan (cf. [9, Theorem 1]) weakened the hypothesis in the following way
and proved that A = C(X) whenever X is locally connected:

(∗) For every f ∈ A there exist a g ∈ A and p, q ∈ N such that q/p /∈ N and f q = gp.

Note that if we replace “q/p /∈ N" with “q/p ∈ N" in (∗), then the condition (∗) obviously
holds for every A.

In this paper, we give a necessary and sufficient condition for a locally connected com-
pact Hausdorff space X in order that C(X) satisfies the condition (∗). As a corollary, we also
prove that if X is locally connected, or first-countable, then the condition (∗) holds for C(X)

if and only if C(X) is algebraically closed; In this case, (∗) for C(X) is equivalent to the
square root closedness of C(X).

We say that a topological space T is almost locally connected if T contains no mutually
disjoint connected closed subsets Cn (n ∈ N), which are open in the closure of ∪n∈NCn

in T , with the following property: There exist xn, yn ∈ Cn such that {xn}n∈N and {yn}n∈N

converge to distinct points. For example, the closure of the graph of the function y = sin 1/x,
0 < x ≤ 1 is not almost locally connected.

We say that a topological space T is hereditarily unicoherent if M ∩ N is connected for

every pair of closed connected subsets M and N of T . For example, the unit circle S1 is not
hereditarily unicoherent.

Let Y be a normal space and n a non-negative integer. The covering dimension dim Y of
Y is less than or equal to n if for every finite open covering A of Y there exists a refinement
B of A such that each y ∈ Y belongs to at most (n + 1) elements of B. It is well-known
that dim Y ≤ n if and only if for every closed subset F of Y and every Sn-valued continuous

function f on F , there exists an Sn-valued continuous function f̃ on Y such that f̃ |F = f ,
where Sn is the n-sphere (cf. [14]).

Let X be a compact Hausdorff space. Then Ȟ 1(X; Z) denotes the first Čech cohomology
group of X with integer coefficients. Let C(X)−1 be the multiplicative group of all invertible

elements of C(X) and exp C(X) = {ef : f ∈ C(X)}. It is well-known that Ȟ 1(X; Z) is

isomorphic to the quotient group C(X)−1/ exp C(X), by a theorem of Arens and Royden [6].

In particular, Ȟ 1(X; Z) is trivial if and only if C(X)−1 = exp C(X).
Now we are ready to state our main result. The main result of this paper is as follows:
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THEOREM 1.1. Let X be a locally connected compact Hausdorff space. Then the fol-
lowing conditions are equivalent.

(a) For each f ∈ C(X) there exist p, q ∈ N and g ∈ C(X) such that q/p /∈ N and
f q = gp .

(b) X is hereditarily unicoherent.

(c) dim X ≤ 1 and Ȟ 1(X; Z) is trivial.
(d) {gp : g ∈ C(X)} is uniformly dense in C(X) for every p ∈ N.
(e) For each f ∈ C(X) and p ∈ N there exists a g ∈ C(X) such that f = gp .

COROLLARY 1.2. Let X be a locally connected compact Hausdorff space. Then the
following conditions are equivalent.

(a) For each f ∈ C(X) there exist p, q ∈ N and g ∈ C(X) such that q/p /∈ N and
f q = gp .

(b) {gp : g ∈ C(X)} is uniformly dense in C(X) for every p ∈ N.
(c) For each f ∈ C(X) and p ∈ N there exists a g ∈ C(X) such that f = gp .
(d) C(X) is algebraically closed.
(e) C(X) is square-root closed.
(f) X is hereditarily unicoherent.

(g) dim X ≤ 1 and Ȟ 1(X; Z) is trivial.

COROLLARY 1.3. Let X be a first-countable compact Hausdorff space. Then each of
the following conditions implies the other.

(a) For each f ∈ C(X) there exist p, q ∈ N and g ∈ C(X) such that q/p /∈ N and
f q = gp .

(b) C(X) is algebraically closed.
(c) C(X) is square-root closed.
(d) X is hereditarily unicoherent and almost locally connected.

(e) X is almost locally connected, dim X ≤ 1 and Ȟ 1(X; Z) is trivial.

2. Lemmas

We require some lemmas before proving Theorem 1.1. To prove Lemmas 2.1 and 2.2,
we use ideas by Countryman, Jr. [3, Lemma 2.1, Lemma 2.3].

LEMMA 2.1. Let X be a compact Hausdorff space. If the condition (a) of Theorem
1.1 holds, then X is hereditarily unicoherent.

PROOF. Assume that the condition (a) holds. We will show that X is hereditarily uni-
coherent. Suppose not. Then, by definition, there exist non-empty closed connected subsets
M and N of X such that M ∩ N is disconnected. So, there are non-empty closed subsets A

and B such that M ∩ N = A ∪ B and A ∩ B = ∅. Let f be a continuous mapping of X into
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the closed unit interval [0, 1] such that f (x) = 0 on A and f (x) = 1 on B. Put

h(x) =
{

exp(iπf (x)) x ∈ M

exp(−iπf (x)) x ∈ N \ M .

Then we see that h is continuous on M ∪ N . Let h̃ ∈ C(X) be a mapping so that h̃|M∪N = h.
By the condition (a), there exist positive integers p, q and an element g̃ in C(X) such that p

does not divide q and h̃q = g̃p. Put q = sp+r , where s and r are integers with 1 ≤ r ≤ p−1
(note q/p /∈ N). Since h does not vanish on M ∪ N , the function g = g̃|M∪N/hs is a well-

defined continuous mapping of M ∪ N into C. Since h̃q = g̃p, for each x ∈ M ∪ N we
obtain

gp(x) =
(

g̃(x)

hs(x)

)p

= h̃q(x)

hsp(x)
= hq−sp(x) = hr(x) ,

and so hr = gp on M ∪ N . Since

gp(x) = hr(x) = exp(iπrf (x))

for x ∈ M , we get

g(x) = ω(x) exp

(
iπrf (x)

p

)
for every x ∈ M , where ω(x) is one of the p-th roots of 1. The above equation and the
continuity of f and g imply that ω(x) is a continuous mapping of M into the set of all p-th
roots of 1. Since M is connected, ω must be constant. So there is a p-th root ω0 of 1 such that

g(x) = ω0 exp

(
iπrf (x)

p

)
(1)

for each x in M . In a way similar to the above, we see that there exists a p-th root γ0 of 1
such that

g(x) = γ0 exp

(
− iπrf (x)

p

)
(2)

for each x in N .
Pick an x0 ∈ A arbitrarily. Since x0 ∈ A ⊂ M ∩ N , the equations (1) and (2) imply that

ω0 exp

(
iπrf (x0)

p

)
= g(x0) = γ0 exp

(
− iπrf (x0)

p

)
.

Recall that f = 0 on A and f = 1 on B, and so f (x0) = 0. We thus obtain ω0 = γ0. For
y ∈ B, it follows from (1), (2) and ω0 = γ0 that

ω0 exp

(
iπr

p

)
= g(y) = ω0 exp

(
− iπr

p

)
,
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because B ⊂ M ∩N . Thus we have r/p ∈ N, which contradicts 1 ≤ r < p−1. We conclude
that X is hereditarily unicoherent. �

LEMMA 2.2. Let X be a compact Hausdorff space. If the condition (a) of Theorem
1.1 holds, then X is almost locally connected.

PROOF. Assume that (a) holds and suppose that X is not almost locally connected. By
definition, X contains mutually disjoint connected closed subsets Cn (n ∈ N), which are open

in ∪n∈NCn, the closure of ∪n∈NCn in X, with the following property: to each n ∈ N there
correspond xn, yn ∈ Cn such that {xn}n∈N and {yn}n∈N converge to distinct points, say x0 and
y0. Put F = ∪n∈NCn. Since X is a compact Hausdorff space, there exist open neighborhoods

A and B of x0 and y0 respectively such that Ā ∩ B̄ = ∅. Let f be a continuous mapping of

X into the interval [−1, 1] such that f (x) = 1 on Ā and f (x) = −1 on B̄. We consider the
following mapping h of F̄ into C:

h(x) =


f (x) + i

n
(1 − f 2(x)) x ∈ Cn; n is even

f (x) − i

n
(1 − f 2(x)) x ∈ Cn; n is odd

f (x) x ∈ F̄ \ F .

We see that h ∈ C(F̄ ). Let h̃ ∈ C(X) be a mapping with h̃|F̄ = h. Since the condition (a) of
Theorem 1.1 is assumed to hold, there exist a continuous mapping g̃ ∈ C(X) and p, q ∈ N

with q/p /∈ N such that h̃q = g̃p on X. Put q = sp + r , where s and r are integers with

1 ≤ r ≤ p − 1 (note q/p /∈ N). Now we define the mapping g of F̄ into C as follows:

g(x) =


g̃(x)

hs(x)
x ∈ F̄ , h(x) �= 0

0 x ∈ F̄ , h(x) = 0 .

Recall that h̃|F̄ = h. Since h̃q = g̃p on X, for each x ∈ F̄ with h(x) �= 0 we obtain

gp(x) =
(

g̃(x)

hs(x)

)p

= h̃q(x)

hsp(x)
= hq−sp(x) = hr(x) ,

and so hr(x) = gp(x) whenever x ∈ F̄ , h(x) �= 0. It follows that g ∈ C(F̄ ) such that
hr = gp on F̄ .

Pick an n ∈ N arbitrarily. By the definition of h, there is a continuous mapping θn of Cn

such that h(x) = |h(x)| exp(iθn(x)) for every x ∈ Cn and that θn(Cn) ⊂ [0, π] if n is even

and θn(Cn) ⊂ [−π, 0] if n is odd. Since hr = gp on F̄ , for each x ∈ Cn

gp(x) = |h(x)|r exp(irθn(x)) ,



408 DAI HONMA AND TAKESHI MIURA

and so there is a p-th root ωn(x) of 1 such that

g(x) = ωn(x)|h(x)|r/p exp

(
irθn(x)

p

)
.

Since h, g and θn are continuous, ωn(x) is a continuous mapping of Cn into the set of all p-th
roots of 1. Furthermore, since Cn is connected, ωn(x) must be constant, say ωn. So,

g(x) = ωn|h(x)|r/p exp

(
irθn(x)

p

)
(x ∈ Cn) .(3)

Since {xn}n∈N and {yn}n∈N converge to x0 ∈ A and y0 ∈ B, respectively, we may assume

that {xn}n∈N ⊂ A and {yn}n∈N ⊂ B. Recall that f = 1 on Ā and f = −1 on B̄. So, we get
h(xn) = 1 and h(yn) = −1 for every n ∈ N. Since θ2n(C2n) ⊂ [0, π] and θ2n−1(C2n−1) ⊂
[−π, 0] for every n ∈ N, it follows from the equation h(x) = |h(x)| exp(iθn(x)) that θn(xn) =
0, θ2n(y2n) = π and θ2n−1(y2n−1) = −π for every n ∈ N. It follows from (3) that g(xn) = ωn

converges to g(x0). On the other hand, since g(yn) converges to g(y0), we see from (3) that
both g(y2n) = ω2n exp(irπ/p) and g(y2n−1) = ω2n−1 exp(−irπ/p) converge to g(y0). That
is,

g(x0) exp

(
irπ

p

)
= g(y0) = g(x0) exp

(−irπ

p

)
.

Since |g(x0)| = |h(x0)|r/p = |f (x0)|r/p = 1, we see that exp(irπ/p) = exp(−irπ/p). In
other words, r/p ∈ N, which contradicts 1 ≤ r ≤ p − 1. We thus conclude that X is almost
locally connected. �

The following results, Lemma 2.3 and 2.4 are deduced from [13, Theorem 3.3]; More-
over, Lemma 2.4 is well-known (cf. [11, Chap.VIII §57 Section III, Theorem 3, p.438]). Here
we give a proof for the sake of completeness.

LEMMA 2.3. Let X be a locally connected compact Hausdorff space. If X is heredi-
tarily unicoherent, then dim X ≤ 1.

PROOF. Let A = {Ok}nk=1 be a finite open covering of X. We show that there is an
open refinement B for A such that every x ∈ X is in at most two elements of B. Since X is
assumed to be locally connected, it follows from [13, Lemma 3.2] that X is an A-space, that
is, the class of all open sets whose boundaries are finite sets forms an open base. Without loss
of generality we may assume that each Ok has at most finitely many boundary points. Put

B = ⋃n
k=1(Ok \ Ok), where · denotes the closure in X. We define mutually disjoint open

family {Vk}nk=1 as follows:

V1 = O1 \ B and Vk = Ok \
B ∪

k−1⋃
j=1

Oj

 for k = 2, 3, . . . , n .

Since {Ok}nk=1 is an open covering of X, we see that
⋃n

k=1 Vk = X \ B.
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Since B consists of at most finitely many points, to each x ∈ B there corresponds an open
neighborhood Ux of x with the following property: Ux ⊂ Ok for some k and Ux ∩ Uy = ∅
whenever x, y ∈ B, x �= y. Put B = {Vk}nk=1 ∪ {Ux : x ∈ B}. We see that B is an open
covering of X. Recall that both {Vk}nk=1 and {Ux : x ∈ B} are mutually disjoint. This implies
that if x ∈ X, then at most two elements of B contain x. So, we get dim X ≤ 1. �

LEMMA 2.4. Let X be a locally connected compact Hausdorff space. If X is heredi-

tarily unicoherent, then Ȟ 1(X, Z) is trivial.

PROOF. Assume that X is hereditarily unicoherent. By a theorem of Arens and Royden,

it is enough to show that the equality C(X)−1 = exp C(X) holds: Since exp C(X) ⊂ C(X)−1,

it suffices to prove that C(X)−1 ⊂ exp C(X). To do this, pick f ∈ C(X)−1 arbitrarily.
Since X is locally connected, each connected component of X is open. It follows that X has
at most finitely many connected components. Without loss of generality, we may assume

that X is connected. Recall that f ∈ C(X)−1, and so f vanishes nowhere. Since X is
locally connected, for each x in X there exists a connected open neighborhood Vx of x and

a continuous mapping gx of the closure Vx of Vx into C such that f = egx on Vx . Since X

is compact, there are finite number of points x1, x2, . . . , xn+1 such that ∪n+1
k=1Vxk = X. For

simplicity, we denote gk = gxk and Vk = Vxk for k = 1, 2, . . . , n + 1. Note that {Vk}n+1
k=1

is a class of non-empty connected closed sets with ∪n+1
k=1Vk = X. Since X is connected, V1

intersects at least one of V2, V3, . . . , Vn+1; we may assume that V1 meets V2. Then eg1 = f =
eg2 on V1 ∩ V2, and so we have eg1−g2 = 1 on V1 ∩ V2. Since X is hereditarily unicoherent,

V1 ∩V2 is connected. Hence by the continuity of g1 − g2, the equation eg1−g2 = 1 implies the
existence of an integer k1 such that

g1 − g2 = 2k1πi on V1 ∩ V2 .

We define a mapping g̃1 of V1 ∪ V2 into C as follows:

g̃1(x) =
{
g1(x) x ∈ V1

g2(x) + 2k1πi x ∈ V2 \ V1 .

It is easy to see that g̃1 is continuous on V1 ∪ V2 and

f = eg̃1 on V1 ∪ V2 .

In the same way, V1 ∪ V2 intersects at least one of V3, V4, . . . , Vn+1. We may assume

that V1∪V2 meets V3. The equation eg̃1 = f = eg3 holds on (V1∪V2)∩V3, and so eg̃1−g3 = 1

on (V1 ∪ V2) ∩ V3. Since X is hereditarily unicoherent, (V1 ∪ V2) ∩ V3 is connected. Hence
by the continuity of g̃1 − g3, there exists an integer k2 such that

g̃1 − g3 = 2k2πi on (V1 ∪ V2) ∩ V3 .
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We define a mapping g̃2 of (V1∪V2)∪V3 into C as follows: If x is in V1∪V2, let g̃2(x) = g̃1(x),

and let g̃2(x) = g3(x)+2k2πi otherwise. It is easy to see that g̃2 is continuous on V1 ∪V2 ∪V3

and

f = eg̃2 on V1 ∪ V2 ∪ V3 .

Continuing this process, we have a continuous mapping g̃n of ∪n+1
k=1Vk such that

f = eg̃n on
n+1⋃
k=1

Vk

Since ∪n+1
k=1Vk = X, we have that f ∈ exp C(X). Since f ∈ C(X)−1 was arbitrary, we

conclude that C(X)−1 ⊂ exp C(X) and the proof is complete. �

LEMMA 2.5. Let X be a compact Hausdorff space. If dim X ≤ 1 and Ȟ 1(X; Z) is
trivial, then {gp : g ∈ C(X)} is uniformly dense in C(X) for every p ∈ N.

PROOF. Pick p ∈ N and f ∈ C(X) arbitrarily. We show that for every ε > 0 there
exists a g ∈ C(X) such that ‖f − gp‖∞ < ε. Without loss of generality we may assume that
‖f ‖∞ ≤ 1. Choose a k ∈ N so that 2p/εp < k. Then put

Ek =
{
x ∈ X : |f (x)| ≥ 1

k

}
.

Since dim X ≤ 1, there exists a u ∈ C(X)−1 with |u| = 1 on X such that u = f/|f | on Ek .

Then ũ(x) = max{|f (x)|, 1/k}u(x) is in C(X)−1 with ũ| = f on Ek . Since Ȟ 1(X; Z) is
trivial, by a theorem of Arens and Royden there exists a v ∈ exp C(X) such that ũ = vp . We
define mappings g and h as follows:

g(x) =
p
√|f (x)| v(x)

|v(x)| (x ∈ X) ,

h(x) =


0 f (x) = 0

f (x)

g(x)p−1
f (x) �= 0 .

Then we see that g, h ∈ C(X), ‖g‖∞ ≤ 1 and f = gp−1h. Since f (= ũ) = vp on Ek , we
see that g = v = h on Ek . Therefore

‖g − h‖∞ = sup{|g(x) − h(x)| : x ∈ X \ Ek}

≤ 2 sup
{

p
√|f (x)| : x ∈ X \ Ek

}
≤ 2

(
1

k

)1/p

< ε .

Since f = gp−1h and ‖g‖∞ ≤ 1, it follows that

‖f − gp‖∞ = ‖gp−1h − gp‖∞ ≤ ‖gp−1‖∞ ‖h − g‖∞ < ε .
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This completes the proof. �

The case where p = 2 in Lemma 2.6 was essentially proved in [1, Corollary 5.9]. Here,
we generalize the result to the case where p ≥ 2.

LEMMA 2.6. Let X be a locally connected compact Hausdorff space and p ∈ N with
p ≥ 2. If {fn

p}n∈N ⊂ C(X) converges uniformly to f ∈ C(X), then there is a Cauchy
subsequence of {fn}n∈N.

PROOF. For each k ∈ N, set

E(k) =
{
x ∈ X : |f (x)| >

1

k

}
.

Note that the closure E(k) of E(k) in X is a compact subset of E(2k). Since X is locally
connected, each connected component of E(2k) is open. So, there are finitely many connected
components C(k, 1), C(k, 2), . . . , C(k,Nk) such that C(k, j) ∩ E(k) �= ∅ for each j , 1 ≤
j ≤ Nk and that

E(k) ⊂
Nk⋃
j=1

C(k, j) ⊂ E(2k) .(4)

Pick xk,j ∈ C(k, j) ∩ E(k) for each k ∈ N and j , 1 ≤ j ≤ Nk . By a diagonal argument, we
obtain a subsequence of {fn}n∈N converging at each point xk,j , which we denote by the same
letter {fn}n∈N. We show that {fn}n∈N is a Cauchy sequence in C(X). Put ωl = exp(2lπi/p)

for l = 0, 1, 2, . . . , p − 1. Fix k ∈ N arbitrarily. We define ε(k) as follows:

ε(k) = min

{
1

2k
−

(
1

2k

)p

,

(
1

4k
|ω1 − 1|

)p}
.(5)

Since limn→∞ ‖fn
p − f ‖∞ = 0 and since {fn} converges at each point xk,j , we have, for a

sufficiently large n(k) ∈ N,

‖fn
p − fm

p‖∞ < ε(k) ,(6)

‖fn
p − f ‖∞ < ε(k) ,(7)

|fn(xk,j ) − fm(xk,j )| < ε(k)1/p(8)

for n,m ≥ n(k) and j = 1, 2, . . . , Nk . Fix n,m ≥ n(k) and x ∈ E(2k) arbitrarily. Since

fn
p(x) − fm

p(x) =
p−1∏
l=0

(fn(x) − ωlfm(x)) ,

it follows from (6) that there exists an l with 0 ≤ l ≤ p − 1 such that the inequality

|fn(x) − ωlfm(x)| < ε(k)1/p(9)
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holds. To prove the uniqueness of such l, suppose that there exists another l′, l �= l′ such that
the equation (9) is valid for l′ in place of l. We get

|ωl − ωl′ | |fm(x)| ≤ |ωlfm(x) − fn(x)| + |fn(x) − ωl′fm(x)|
< 2ε(k)1/p ≤ 1

2k
|ω1 − 1| ,

and so

|ωl − ωl′ | |fm(x)| <
1

2k
|ω1 − 1| .(10)

On the other hand, since x ∈ E(2k), the inequality (7) implies that

|fm(x)|p ≥ |f (x)| − |f (x) − fm
p(x)| >

1

2k
− ε(k) ≥

(
1

2k

)p

.

It follows that

|ωl − ωl′ | |fm(x)| ≥ |ω1 − 1| |fm(x)| ≥ 1

2k
|ω1 − 1| ,

which contradicts (10). Hence the uniqueness is proved.
Since x ∈ E(2k) was arbitrary, we have proved that to each x ∈ E(2k) there corresponds

a unique l such that (9) holds. This implies that if we define

Gl(k) = {x ∈ E(2k) : |fn(x) − ωlfm(x)| < ε(k)1/p}
for l = 0, 1, . . . , p − 1, then {Gl(k)}p−1

l=0 is a mutually disjoint family with E(2k) =
∪p−1

l=0 Gl(k). Since Gl(k) is open for l = 0, 1, 2, . . . , p − 1, each connected component
of E(2k) is contained in a unique Gl(k). By the inequality (8), we get xk,j ∈ G0(k) for
j = 1, 2, . . . , Nk . Hence C(k, j) ⊂ G0(k) for j = 1, 2, . . . , Nk . By the definition of Gl(k),
it follows from (4) that

|fn(x) − fm(x)| < ε(k)1/p(11)

for every x ∈ E(k). If x ∈ X \ E(k), then we see from (7) that

|fn(x)|p ≤ |f (x)| + ε(k) <
1

k
+ 1

2k
<

2

k
.

Thus, we have that

|fn(x) − fm(x)| ≤ |fn(x)| + |fm(x)| < 2

(
2

k

)1/p

(12)

for every x ∈ X \ E(k). It follows from (5), (11) and (12) that

‖fn − fm‖∞ ≤ 2

(
2

k

)1/p

.

Since k ∈ N and n,m > n(k) are arbitrary, {fn}n∈N is a Cauchy sequence in C(X). �
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Although Lemmas 2.7 and 2.8 are well-known (cf. [11, Chap.VIII §57 Section I, The-
orem 8, p.435] and [11, Chap.VIII §46 Section XI, Theorem 2, p.165], respectively), for the
sake of completeness we give a proof.

LEMMA 2.7. Let X be a compact Hausdorff space. Then the following conditions are
equivalent.

(a) Ȟ 1(X; Z) is trivial.

(b) For each connected component Xλ of X, Ȟ 1(Xλ; Z) is trivial.

For a compact Hausdorff space X, it is well-known that
(�) Every connected component Xλ of X is the intersection of all clopen sets Gµ of X

such that Xλ ⊂ Gµ.
We can prove the following as an application of (�).
(�) If O is open with Xλ ⊂ O for some connected component Xλ of X, then there is

clopen G such that Xλ ⊂ G ⊂ O .
In fact, if Gµ ⊃ Xλ is clopen with

⋂
µ∈I Gµ = Xλ, then {X \ Gµ}µ∈I becomes an open

covering of the closed subset X\O , and so X\O ⊂ ⋃n
i=1(X\Gµi ) for some µ1, µ2, . . . , µn ∈

I . Then the clopen
⋂n

i=1 Gµi satisfies Xλ ⊂ ⋂n
i=1 Gµi ⊂ O .

PROOF OF LEMMA 2.7. First we show that (a) implies (b). Suppose that (a) is true.

Let Xλ be an arbitrary connected component of X. It is enough to show that C(Xλ)
−1 =

exp C(Xλ) by a theorem of Arens-Royden. Since exp C(Xλ) ⊂ C(Xλ)
−1, we show that

C(Xλ)
−1 ⊂ exp C(Xλ). Pick an f ∈ C(Xλ)

−1 arbitrary. By the Tietze extension theorem,

there exists a continuous extension f̃ of f to all of X. Continuity of f̃ implies that f̃ does
not vanish on a certain open set O that contains Xλ. Therefore, combining with the condition
(�), we obtain a clopen set G which satisfies that Xλ ⊂ G ⊂ O . Now we define a mapping

F of X into C as follows: Let F(x) = f̃ (x) if x ∈ G, and F(x) = 1 otherwise. Then we

see that F ∈ C(X)−1 with F = f on Xλ. Because Ȟ 1(X; Z) is assumed to be trivial, there
exists a g ∈ C(X) such that F = exp g . It follows that f = exp(g|Xλ). Thus we see that

f ∈ C(Xλ)
−1. Since f was arbitrary, we conclude that C(Xλ)

−1 ⊂ exp C(Xλ).
Next we show that (b) implies (a). Suppose that (b) is true. It is enough to show that

C(X)−1 ⊂ exp C(X). Pick an f̃ ∈ C(X)−1 arbitrarily. Since (b) is true, to every connected
component Xλ of X, the equation C(Xλ)

−1 = exp C(Xλ) holds. Thus to each λ, there

corresponds a gλ ∈ C(Xλ) such that f̃ |Xλ = exp gλ holds. Let g̃λ be a continuous extension

of gλ to the whole space X. If we put h̃λ = f̃ / exp g̃λ on X, then h̃λ = 1 on Xλ. Continuity

of h̃λ implies that there exists an open neighborhood Oλ ⊃ Xλ such that h̃λ(Oλ) ⊂ {z ∈ C :
|z − 1| < 1/2}. Therefore, combining with (�), we obtain a clopen set Gλ which satisfies

Xλ ⊂ Gλ ⊂ Oλ. Since h̃λ(Gλ) ⊂ {z ∈ C : |z − 1| < 1/2}, a continuous logarithm log of
{z ∈ C : |z − 1| < 1/2} into C is well-defined. So, we get

f̃ = h̃λ exp g̃λ = exp(g̃λ + log h̃λ) on Gλ .
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Since {Gλ}λ is an open covering of the compact space X, this covering has a finite open sub-

covering {Gλk}nk=1. The corresponding mappings to Gk are denoted by g̃k, h̃k (k = 1, . . . , n).
Since every member of this covering is clopen, without loss of generality, we may assume
that Gλk1

∩ Gλk2
= ∅ (k1 �= k2). Now we define a mapping g̃ of X into C as follows. If

x ∈ X, then there exists a unique k such that x ∈ Gk; Let g̃(x) = g̃k(x) + log h̃k(x). Then

we see that g̃ ∈ C(X) and f̃ = exp g̃ . Thus we conclude that C(X)−1 ⊂ exp C(X) and this
completes the proof. �

LEMMA 2.8. Let X be a compact Hausdorff space. Then the following conditions are
equivalent.

(a) dim X ≤ 1.
(b) For each connected component Xλ of X, dim Xλ ≤ 1.

PROOF. A proof of (a) ⇒ (b) is elementary and omitted (cf. [14]).

Conversely, suppose that (b) is true. Let F be a closed subset of X and f an S1-valued

continuous mapping of F . We show that there exists an S1-valued continuous mapping f̃ on

X such that f̃ |F = f . Let Xλ be a connected component of X. Since dim Xλ ≤ 1, there

exists an S1-valued continuous extension gλ of f |F∩Xλ to Xλ. We define a mapping hλ of
F ∪ Xλ into C as follows: Let hλ(x) = gλ(x) if x ∈ Xλ, and hλ(x) = f (x) if x ∈ F \ Xλ.
Then we see that hλ is an S1-valued continuous mapping on F ∪ Xλ satisfying hλ = f on

F . Let h̃λ be a continuous extension of hλ to all of X. By definition, |h̃λ| = |hλ| = 1 on

F . Continuity of h̃λ implies that there exists an open neighborhood Oλ of Xλ such that h̃λ

never vanishes on Oλ. Therefore, combined with (�), there exists a clopen set Gλ such that

Xλ ⊂ Gλ ⊂ Oλ. Thus h̃λ never vanishes on Gλ. Since {Gλ}λ is an open covering of the
compact space X, {Gλ}λ has a finite subcovering {Gλk}nk=1 for X. Since every Gλk is clopen,
without loss of generality, we may assume that Gλk1

∩ Gλk2
= ∅ (k1 �= k2). Now we define

a mapping f̃ on X as follows. If x ∈ X, then there exists a unique k such that x ∈ Gλk : We

put f̃ (x) = h̃λk (x)/|h̃λk (x)|. Since hλk = f on F for every k, we see that f̃ is an S1-valued

continuous mapping of X such that f̃ |F = f and this completes the proof. �

3. Proof of results

PROOF OF THEOREM 1.1. (a) ⇒ (b) By Lemma 2.1. (b) ⇒ (c) By Lemma 2.3 and
2.4. (c) ⇒ (d) By Lemma 2.5. (e) ⇒ (a) By definition.

(d) ⇒ (e) Suppose that {gp : g ∈ C(X)} is uniformly dense in C(X) for every p ∈ N.
Pick f ∈ C(X) and p ∈ N arbitrarily. By hypothesis, there exists a sequence {gn

p}n∈N such
that gn

p converges to f as n → ∞. By Lemma 2.6, there is a Cauchy subsequence {gnj }j∈N

of {gn}n∈N. Since C(X) is complete, there exists a g ∈ C(X) such that gnj converges to g as

j → ∞. It follows that f = gp and the proof is complete. �
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REMARK. Let us consider the following two conditions.
(d′) {gp : g ∈ C(X)} is uniformly dense in C(X) for some p ∈ N with p ≥ 2.
(e′) There exists a p ∈ N, p ≥ 2 with the following property: For each f ∈ C(X)

there is a g ∈ C(X) such that f = gp .
Then the implications (e) of Theorem 1.1 ⇒ (e′) ⇒ (d′) are obviously true. If, in

addition, X is locally connected, then (d′) with Lemma 2.5 implies that every f ∈ C(X) is
the p-th power of a g ∈ C(X). So, we get (d′) ⇒ (e′). Consequently, both (d′) and (e′) are
also equivalent to all of the conditions from (a) to (e) of Theorem 1.1 whenever X is locally
connected. Note that Kawamura and Miura [10, Theorem 1.3] proved that if X is a compact

Hausdorff space with dim X ≤ 1, then the condition (d′) above is equivalent to that Ȟ 1(X; Z)

is p-divisible.

It is well-known [13, Theorem 3.3] that if X is locally connected, then C(X) is alge-
braically closed if and only if C(X) is square root closed as is stated in the following theorem.

THEOREM A ([13]). Let X be a locally connected compact Hausdorff space. Then the
following conditions are equivalent.

(1) C(X) is algebraically closed.
(2) C(X) is square-root closed.

(3) dim X ≤ 1 and Ȟ 1(X; Z) is trivial.
(4) X is hereditarily unicoherent.

PROOF OF COROLLARY 1.2. This is just an application of Theorem 1.1 and Theorem
A. �

If X is first-countable, then we see that the condition (a) of Theorem 1.1 holds if and
only if C(X) is algebraically closed. To prove this, we need the following result, which was
essentially proved by Countryman, Jr. [3] (see also [13]).

THEOREM B ([3, 13]). Let X be a first-countable compact Hausdorff space. Then the
following conditions are equivalent.

(1) C(X) is algebraically closed.
(2) C(X) is square-root closed.
(3) X is almost locally connected and hereditarily unicoherent.
(4) X is almost locally connected and for every connected component Xλ of X, Xλ is

locally connected, dim Xλ ≤ 1 and Ȟ 1(Xλ; Z) is trivial.

PROOF OF COROLLARY 1.3. (b) ⇔ (d) ⇔ (e): By Theorem B, each of the conditions
(b), (d) and (e) implies the other.

(a) ⇒ (b): It follows from Lemmas 2.1 and 2.2 that (a) implies (b).
(e) ⇒ (a): It is obvious that (e) implies (a).
Finally, we show that (c) is equivalent to the condition (4) of Theorem B. It follows from

Lemmas 2.7 and 2.8 that (4) of Theorem B implies (c). Conversely, we prove that (c) implies
(4) of Theorem B. By [3, Proof of Lemma 2.5], we see that each connected component Xλ of
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X is locally connected. It follows from Lemmas 2.7 and 2.8 that (c) implies (4) of Theorem
B, and the proof is complete. �
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