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Abstract. This paper is concerned with giving explicitly the invariant density for a class of rational transfor-
mations from thereal line R into itself. We proved that the invariant density can be written in terms of the fixed point
zoin C\ R or in terms of the periodic point zg in C \ R with period 2. The explicit form of the density alows usto
obtain the ergodic properties of the transformation R.

1. Introduction and main results

A various kind of 1-dimensional transformations have been found to have absolutely
continuous invariant measures ([3], [7] and [10]). However, there are not many transforma-
tions whose densities are explicitly known. The aim of this article is to prove that a rational
transformation R(x) onthereal line R, under some assumptions, has an invariant probability
density (1/7) Im(1/(x — zo)), if thereexists zo = xo+iyo € C\ R with R(zg) = zp or with
R(z0) = zo. Precisely, we have the following theorems, which we shall prove in the second
section by using the factor theorem.

THEOREM 1. Assumethat R(x) = h(x)/g(x) isarational transformation fromR into
itself with the following properties:

(1) g(x) =[li1(x —ay) for someas < az < --- < ay.

(2) h(x)isapolynomial with real coefficients, deg ((x)) < n + 1 and h(ax) # O for
all k.

(3) Therestriction R; of R to the subinterval (a;, a;+1) is monotonic for each j =
0,1,...,n,whereap = —oo and a,+1 = co.

(4) Thereexistszg = xo +iyo € C\ R with R(zg) = zo, or with R(zp) = Zo.
Then

/OO |mLf(R(x))dx - /OO |mif(x)dx (1.1)
X — 20 X — 20
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holds for any essentially bounded real-valued function f(x). Hence the probability measure
= (1/7) Im(1/(x — zo))dx isinvariant under R.
Theorem 1 can be rewritten as the following Theorems 2 and 3.

THEOREM 2. Supposethatfor somea >0,8€ R, by >0k =1,...,n)

Rx)=ax+p — Z

X — ak
Suppose also that there exists zo = xo + iyo € C \ R with R(z0) = zo. Then

/00 ImLf(R(x))dx = /00 ImLf(x)dx
—00 X —2Z20 —00 X —20

holds for any essentially bounded function f (x).

THEOREM 3. Supposethatfor somea <0,8 € R, by <0(k=1,...,n)

R(x) =ax + 8 — Z

x—ak

Suppose also that there exists zo = xo + iyo € C \ R with R(z0) = Zo. Then

/ ImLf(R(x))dx = / ImLf(x)dx
—00 X —2Z20 —00 X 0

holds for any essentially bounded function f(x).

We will also use thisresult to study the ergodic propertiesof (R, ) on R, where p is
an absolutely continuous probability measure with adensity (1/7) Im(1/(x — zo)). Note that
we clearly have

1 d _
e (2T
x—z20 (x—x0)2+y® dx Yo

forzo = xo +iyg € C \ R. Denote

o(x) = arctan(x — xo) .
Yo

Im

Then we can prove that the transformation 7'(t) := @(R(¢~1(1))) on (—n/2,7/2) pre-
serves the normalized Lebesgue measure A and that (7', 1) is isomorphic to (R, u) (see
Lemma 2.1 in 82). Hence, the above results enable us to get the ergodic properties of the
transformation R on R fromthoseof T on (—x/2,7/2) .

AsinLemma2.1in 82, it is also clear that T is piecewise monotonic. The piecewise
monotonic transformations on the finite interval have been widely investigated by many au-
thors. In particular, if the piecewise monotonic transformations on the finite interval are uni-
formly expansive, then it has been shown that they have good ergodic properties ([4], [5], [6]).
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In Lemma 2.1 we give therelation (2.15)

|x — zo/?
IR(x) — zol?
Consequently, combining the relation (2.15) with the known results, we can easily prove
the following Theorem 4, where N (0, 02)(y) (62 > 0) stands for the distribution function
of Gaussian measure with mean 0 and variance o2 and N (0, 0)(y) stands for that of Dirac
measure. Examples that satisfy the assumptions of Theorem 4 will be found in Section 3.

T'(t) = R (x).

THEOREM 4. (1) Supposethat R(x) satisfiesthe assumptionsin Theorem 1. Sup-
pose also that the inequality

|x |2
R x| >1 (1.2
x¢{ay,az,....a 202
holds. Then for all M-integrablefuncnons f thelimit
n 1
lim —Zf(ka) = f*(x) (1.3)

n—-oon

exists u-a.e. andtheset {f*(x) : x € R} consistsof M pointsfor some M € N.
(2) Moreover, if we assume further that f(x) isa function of bounded variationon R
andthat v isaprobability measureon R with adensity dv/du with respect to u, then there

exist ¢; >0 =1,2,..., M) with Y™ ¢; =1 and 6;2>0( = 1,2, ..., M) for which

R 1 — k * a 2

n“;g@ v :ﬁ Z(f(R x)— f7(x)) < y} = ZCiN(O, ai ) () (1.4)
k=0 i=1

holds for all continuity points of the right hand side. If we assume further that ;2 > 0

(i=1,2,...,M) andthat (14 x2)(dv/dx) isof bounded variation, then we have

M

1 n—1
{ IZ(f(ka) fH@) sy} — Y ciN©,6;)(y)

C
2 =< ﬁ (1.5

yeR

for some C > 0.

(3) If R(x) satisfiesthe above assumptions and if deg (i(x)) = n + 1, then we have
that (R, u) isexactand M = 1. Hence, thecentral limit theoremholdsfor the transformation
R:if f(x) and v satisfy the assumptionsin (2), then the limit

n—1 2

1
lim = f {Z(f(R"x)—u(f))} dp =0 (1.6)
k=0

n—o0o n

exists and

n— oo

. 1 B 5
lim v{ﬁg(f(R x)—/L(f))Sy}—N(O,U )(y) (L7)
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holds for all continuity points of N (0, o2)(y). If we assume further that o2 > 0 and that
(14 x2)(dv/dx) isof bounded variation, then there exists a constant C > 0 such that

sup

C
< —. 1.8
yeR N ﬁ ( )

1 n—1 L )
v :ﬁ k;(f(R x) = p(f) < y} — N0, ?)(y)

holdsfor all n € N.

2. Proofs

In this section we prove Theorems 1, 2, 3 and 4. First we show that Theorem 1 is derived
from Theorems 2 and 3.

2.1. Proof of Theorem1. Because g(x) = [[;_1(x —ax) forsomeas <ap < --- <
an, deg(h(x)) <n+21andh(ar) # Oforal k, therational function R(x) = h(x)/g(x) can
be rewritten as

n
b
R@) =ax+ - ——. (2.1)
X — ag
k=1
This shows that
lim |R(x)| = 00
xX—ay
and

lim R(x) = — lim R(x)
xPag xlag

foral k = 1,2,...,n. These properties and the assumption (3) in Theorem 1 imply that

the restriction R; := R|(;.q;,,) Isincreasingforal j = 0,1,...,n, or decreasing for all
j=0,1,...,n. Hencewe have

a>0,b,>0(k=1,...,n), (2.2)
or

a<0 by,<0((k=1,...,n). (2.3)

Denote Cy ={ze€ C|Im(z) >0} and C_ = {z € C|Im(z) < 0}. If theinequalities
(2.2) are satisfied, then it iseasy to seethat R (C;) ¢ C+ and R(C_-) c C_. And hence
R(zo0) = zo implies zo € R. Similarly, the inequalities (2.3) show that R (C;) c C_ and
R(C_) c C, andthat R(z0) = zo implies zo € R. The above arguments ensure us to get
Theorem 1 from combining Theorems 2 and 3.

2.2. Proof of Theorem 2. First we prove Theorem 2 in the case of « > O, by >
O(k=1,...,n).Inthiscaseitisalsoeasytoseethat R; isincreasingand R;((a;,a;+1)) =
(—o0,00) foral j = 0,1,...,n. Hence there exist inverse functions RJTl such that
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R(R7*(y)) = y holdsforal j = 0,1,...,n and for dl y € R. The equations

R(Rj?l(y)) =y arerewritten as

Y9(R7H(3) — h(R7H(y) =0 (2.4)

forall j =0,1,...,n andforall y € R. Notethatinthiscase yg(x) —h(x) isapolynomial
in x of degreen + 1. The factor theorem shows that

yg() —h(x) = —a [ x = R7*(») (2.5)
j=0

holdsfor al y € R. Differentiating the equation (2.5) with respect to y, we get

g =a)y RYW][[E-RTo).

i=0 i
Dividing this by (2.5), we have
SIS Z M .
yg(x) — h(x) —  — R ()
Put x = zo, and we get
n R—l /
% = Z &) (2.6)

i— 0 ()’)—ZO.

Because h(z0) = z0g(zo0), theleft hand side of (2.6) isequal to 1/(y — zp). Thus we obtain
the key eguation

~ Z' CRIYD) @7

y—20 i=0 R ()’)—ZO

Note that the function Im(1/(x — zg)) isessentialy bounded and integrableon R, since zg is
not areal number.
Now we have

aj+1 1
/ Im—f(R(x))dx = Z/ Im—— f(R(x)dx

for any essentially bounded function f(x). Since R;(a; +0) = —o0 and R;(a;+1—0) = oo
we get

ai4+1
Z / lm—f(R(x))dx— / 0 )(y : I;dy. 28

—1
i=0 Ri
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The key equation (2.7) enables usto obtain

o 1
/ ZI _1 )(y ) — 0y = / Im—— f(y)dy. 2.9)
R 00 y—20

i=0 -

which completes the proof of Theorem 2inthecasea > 0, by >0k =1,...,n).

If «a =0, by >0(k=1,...,n), thesame result can be proved by modifying the above
argument. Inthiscase Ro((ao, a1)) = (B, 00) and R, ((ay, ay+1)) = (—o0, B), however we
have R;((aj,aj+1)) = (—oo,00) fordl j =1,2,...,n — 1 asbefore. If y € (8, 00),the
equation (2.4)

YI(R7H(3) — h(R7H(y) =0

holdsforany j = 0,1,...,n — 1. On the other hand, if y € (—o0, 8), the equation (2.4)
holdsforany j = 1,2,...,n. Notethat yg(x) — h(x) isapolynomial in x of degreen, since
a = 0. Instead of (2.5) we have

o-BITZsx — R0,  y>8B
G=B T = R0, y<B.

Differentiate the equation (2.10) with respect to y. Then we get the equation

g(x):{ = RO + (B — 0 TIERTY D Tjw — RFA0). v > B
Moy = RGN+ B =0 TR O [T = R7E0) . vy <B.

yg(x) — h(x) = { (2.10

As before, divide this by (2.10). Then we have
90 _[YO=p TSGR O/RTED =0 v > B
yg) —h(x) |1y =B+ X RO/ (R —x), vy <B.
Putting x = zo, we obtain, as before,
1 JYo-p+ YR O/ R -0, y>B
y—z20 |YO-B+Xi®RYOD/R ) -0, ¥y <B.
Therefore, the equation, corresponding to (2.7),

1 {Z Olm((R_l) (y)/(R_l(y)—zo)) y>B

Im L
Yy —20 Y Im((R;” by )/ (R, (y) —20)), y<§8

(2.11)

has been proved.
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We have
[m e pwenar =Y [ im ke
—00 X — 20 im a; X — 20

for any essentially bounded function f(x). Remark that in this case Ro(—o0) = B,
Ro(a1 — 0) = o0, Ry(a, + 0) = —o0, and R,(c0) = B, however R;(a; + 0) = —o0
and Rj(aj+1 —0) =00 fori =1,2,...,n — 1. Thenwe have

ai+1 1
Z/ Im——— f(R(x))dx
) X — 20
= RY ) R7Y ()
ZZ/ Im f( )dy +Z/ Wf()’)d)’o

=y R -0

The equation (2.11) shows that the right hand side is rewritten as

o0 1 B 1 o0 1
/ Im—— f(y)dy + / Im—— f(»)dy = / Im—— f(»dy.
B y—20 oo Y20 y—20

This enables usto have the result in question

/ |mLf(R(x))dx=/ |mLf(x)dx.
X — 20 X 0

—00 —00 -

2.3. Proof of Theorem 3. The proof of Theorem 3 is similar to that of Theorem 2.
Hence, we sketch only the difference.

First we consider thecase ¢ < 0, by < 0 (k = 1,...,n). Asin the first case of
the proof of Theorem 2, however R; is decreasing, R;((aj,a;+1)) = (—o0, 00) for al
j=0,1,...,nand R(R;*(y)) =y holdsforal j =0,1,...,n andal y € R. Therefore,
we also have (2.4)

Y9(R7H(3) —h(R7H(y) =0
foral j =0,1,...,n andal y € R. The same argument as the first half of the proof of
Theorem 2 allows us to have the equation (2.6)
9(zo) Z (R7Y ()
y9(zo) — h(zo) e Ri_l(y) — 20 .

holds for all y € R. However, we have h(zg) = zog(zo) in this case. Therefore, the left
hand side of (2.6) isnow equal to 1/(y — zo). Remarking that
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we obtain the analogous equation to (2.7) ,

—Z —(R —RY() 212

— 20 — (y) - zo

Now we have
/ m—f(R(x))dx = Z/ m—f(R(x))dx

for any essentially bounded function f(x). Since R;(a; +0) = co and R;(aj+1—0) = —o0,
we get the equation, corresponding to (2.8),

aiy1 1 0o M Ry
Z/ Sim o= [ m )(y) 0y
i=0

The key equation (2.12) enables us to obtain

') o0 1
Im dy = Im—— dy,
/ S im o 1 o) = [ im0

i=0 -0

which completes the proof of Theorem3inthecase @ <0, by <0 (k= 1,...,n).

Second, we consider thecaseof « = 0, by < 0(k = 1,...,n). Asin the second case
in the proof of Theorem 2, Ro((ao, a1)) = (—oo, B) and R, ((an, ay,+1)) = (B, 00), however
we have R;((aj,aj+1)) = (—oo,00) foral j =1,2,...,n — 1. When y e (8, c0), the
equation (2.4)

yoR; ()~ h(R; () =0

holdsforany j = 1,2, ..., n. Onthe other hand, if y € (—o0, 8), the equation (2.4) holds
forany j =0,1,...,n—1. Notethat the polynomial yg(x)—Ah(x) in x isof degreen, since
a = 0. Instead of (2.10) we have

- BT} 10— R —1(y)> y>B

2.13
BT - R,y <8. (213)

yg(x) — h(x) = {

This shows

g0 — [T 10— R RGN+ B = YR O [ — R0, y>8
e —R‘l(y)>+(ﬂ—y> iz &(R‘% O [T (0 = ;1(y)>, y<B.

As before, divide this by (2.13). Then we have

90 |YO-B+ TR ORI =X, y> B
vgx) —h@) YO =B+ TR O/RTITD -0, y<B.
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Put x = zo and notethat /(zo) = zog(zo). Then we obtain, as before,

1 JYo-P+T®YO/RIG) 0. y>B
y—0 |Yo-B+X IR W/(R) —20.,  y<B.

Recall that

y—720 y—z0
Therefore, the equation, corresponding to (2.11),

L ::Zlelm((er)'(y)/(zo—er(y>)>, y> B

— _ _ 2.14
Yy —2z0 ZL& IM((R; b /(zo - R; Yo, y<Bp8 @19
has been proved.

As before we have

/ Im—f(R(x))dx = Z /M Im—f(R(x))dx

for any essentially bounded function f(x). Remark that in this case Ro(—o0) = B,
Ro(a1 — 0) = —oo, however R;(a; + 0) = oo and R;(ajy1 — 0) = —oo for i =
1,2,....,n—1, Ry(a, + 0) = oo, and R,(c0) = B. Then the equation (2.14) ensures
usto have

ai+1 1
Z/ Im——— f(R(x))dx
X — 20
1y
—Z/ R_l( ;(y) fo)dy +Z/ ¢f(y)dy

R7(y) —

00 1 B 1
:/ Im——— f(y)dy +/ Im——f(y)dy
I y—20 Yy =20

00 1
=/ Im——f(y)dy.
—00 y—20

This showsthe result in question

/ |mLf(R(x))dx=/ |mLf(x)dx.
X — 20 X 0

—00 —00 -
2.4. Proof of Theorem 4. Recal that zo = xg + iygp € C \ R satisfies the relation
R(z0) = zo or R(zo) = zo. Theorem 1 showsthat du = (1/7)¢’(x)dx is an invariant
probability for the transformation R where ¢(x) := arctan{(x — xg)/yo}. Define the trans-

formation 7 ontheinterval (—x/2,7/2) by T(r) := ¢(R(¢~1(r))). Then we can get the
following Lemma, which is akey to the proof of Theorem 4.
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LEMMA 2.1. Assume that the conditions on R in Theorem 1 are satisfied. Then
(R, n) is measure theoretically isomorphic to (7, 1), where A denotes the normalized
Lebesgue measure on theinterval (—m/2, w/2). Moreover, T has the following properties:

(1) T preservesthe normalized Lebesgue measure A.

(2) Therestrictions T'|(y(;),p@+1)) (¢ =0,1,...,n)aremonotonic.

3 T|(<ﬂ(ai),§0(ai+1)) (i=0,1,...,n)are smooth and

lx —z0l?

—— R 2.15
R — 2ol2 (x) (2.15)
holdsfor all ¢ ¢ {¢(a1), p(a2), ..., ¢(ay)}, wherex = ¢~ 1(1).

Proor. Recall that we have

1 Yo d X — X0 ,
Im = > 5= ——acan| —— | =¢ ().
x—2z20 (x—x0)*+yo© dx Yo

T'(t) =

Thisisfollowed by

1 (2 1 ) o
A(A) = ;/ Ix(t)dt = ;/ Ta(p(x))@' (x)dx = u(p~~(A)).

Z —00
Hence, we havethat A(A) = (¢ 1(A)) and (R, ) is measure theoretically isomorphic to
(T, A). Thisimmediately shows the assertion (1), since R preserves .
Because Rl .4, (i=0,1,...,n) ae monotonic and ¢ is increasing,
T l(p(a).ptairy) @ = 0,1, ..., n) arealsomonotonic. Recall that ¢(x) := arctan{(x —xo)/yo}
and hence ¢~1(1) = xo + yotant. Then we easily have
T'(t) = ¢'(R(e~ "N R (9™ 1) (9™ (1)
_ )0
~ (R(e7X(®) — x0)? + Yo
_(x —x0)% 4 yo?
 (R(x) — x0)? + yo?
= z0?
~|R(&x) — z0/?

5 R (¢~ (1))yo(L + tan® 1)

R'(x)

R'(x),

where x = ¢~1(¢). This completes the proof. m]

Lemma 2.1 shows that the dynamical system (R, u) ontherea line R isisomorphic
to (7, ») onthefiniteinterval (—m/2, 7/2) andthat (7, 1) is piecewise smooth and piece-
wise monotonic. The relation (2.15) impliesthat if the assumption (1.2) is satisfied, then the
transformation 7' is piecewise expanding and smooth enough.
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On the other hand it is already known that such T has a finite number of absolutely
continuous ergodic invariant measures A1, A2, ..., Ay and the other absolutely continuous
invariant measures are convex combinations of them (cf. [4], [5] and [9]). Birkhoff’s ergodic

theorem showsthat if 7 € L1(;) then

lim = Zf(Tkt)—/fdA (A ae)

n—oo n

holds. Note that the supports of ergodic measures are mutually digoint and that the normal-
ized L ebesgue measure A is also a convex combination of A1, A2, ..., Ay.

Henceif f isaa-integrable function, then f isa;-integrableforali = 1,2,..., M
This observation shows that for a A-integrable function f

n—1
lim % YTt = (ae) (2.16)
k=0

holdsand f*(r) = [ fdx; for A aer e supp{ir;} (i =1,2,..., M). Now, let f beau-
integrable functionon R. Then fog~! isi-integrablefunction ontheinterval (—m/2, 7/2).
Hence, replacing /7 by f o1 and r by ¢(x) in (2.16), we can get therelation (1.3). This
shows the first part of Theorem 4.

In order to prove the second part, we apply Theorem 1 in [6] to the transformation in

question (see also [5]). Hence, if f isafunction of bounded variation defined on the interval
(—m/2, 7/2) and if ¥ is an absolutely continuous probability measure, then there exist non-

negative constants ci1, ¢, ..., cy With Zf‘ilci =lando;2>0G=12...,M) for
which
1 n—1 M
i ~) - Fork _ Fx _ . 2
lim {ﬁ;;)(f(T H—f®)= y} = ;QN(O, i) () (2.17)

holds for all continuity points of the right hand side. If we assume further that ¢;% > 0 for
ali=1,2,...,M,andthat dv/dx isof bounded variation, then

(2.18)

M
C
{f DT = fra) < y} — Y aN©,0%)(y)| < 7

yER i=1
for some C > 0.

Let f(x) beafunction of bounded variation on R. Then f(¢) := (f o ¢~ 1)(¢) isaso
afunction of bounded variation, because ¢~1(r) is strictly increasing. Suppose that v isa
probability measure on R which is absolutely continuous with respect to . Thenitis clear
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that the probability measure 7(A) := v(¢~1A) isabsolutely continuous. Note that we have
1 n—1
ilre(n/2m/2); =) (f(T*) — ) <y
{ Vi s

1 n—1 _ _
=(wogp™) { te(-m/2,m/2); —= Y (f(T*) - f*@) < y}
ﬁk:o
(2.19)
1 '«
= {x €R; = ((f oo ™H(T () = (f oo™ H*(p(x))) < y}

:u{xeR; %kzzo(f(ka)—f*(x))E)’}'

Therefore we get the relation (1.4), combining (2.17) and (2.19).
On the other hand we have

- dv
V(A) :/ —(x)dx
w—lA dx

d
= / d—”(gfl(r»(qfl)/(r)dr
A X

= / @(go*l(r»yo(lﬂanzt)dr
A dx

-1 B 2
=/ Do) yo <1+ (m) ) dt.
A dx Yo

This shows that the total variation of dv/d isequal to the one of

Therefore, if (x2+ 1)(dv/dx) is of bounded variation, so is dv/dx. This and (2.18) show
theinequality (1.5) of Theorem 4.

In order to prove the last part of Theorem 4 we remark that if deg(h(x)) = n + 1,
then @ # 0 and hence R((a;, ai+1)) = (—oo,00) foral i = 0,1,...,n. Thisimplies
that T((p(a;), p(ai+1))) = (—n/2,7/2) foral i =0,1,...,n. Thusthetransformation T
fromtheinterval (—m/2, 7/2) intoiitself is piecewise C?, piecewise expanding and piecewise
onto. Then it follows by the Folklore Theorem ( Theorem 6.1.1 in [3]) that such a transfor-
mation is exact (seeaso [1], [2] and [10]). Therefore the number M of absolutely continuous
ergodic measuresfor T isequal to 1. Hence the third part of Theorem 4 is proved.



INVARIANT MEASURES FOR RATIONAL TRANSFORMATIONS 337

3. Examples

We consider examples and applications in this section. First we prove the following
proposition, which gives a sufficient condition for the existence of zp € C\ R with R(zp) =
20-

PropPosITION 3.1. Let

R = 3.1
() =ax + - Zx_ak (3.1)
and 0 < a < 1, by >0k =1,...,n), a1 < ap < --- < a,. Assume further that
a1 < (B/(1—a)) and a, > (B/(1 — «)) and that
1/3 1/3
b:
ajy1—a; < i Hbial (3.2
Y

holdsfor i =1,2,...,n — 1. Thenthereexists zo € C \ R with R(z0) = zo.
ProOOF. Putting ¥ (x) =x + (B/(1 — )), we easily have

n

-1 b
R =ax — '
VYR () = ax ];x_(ak_(ﬁ/(l—a)))

Remark also that R(zg) = zo if and only if

v HRW (20 — (B/(L—a)))) = z0 — (B/(1 —a)).

Hence we can assumethat 8§ = 0 without loss of generality.
First we provethat theequation x = ax — )} _; (b /(x — ax)) has n—1 real solutions.
Infact we havefor a; < x < ajy1

n

, by
(R(x) = x) —Z G -(1-a
b; bit1
= (x — ai)2 * (x—ais1)? (1-a)
0Pl
(az+l_a1)2 (1_0{).

The assumption (3.2) shows that the right hand side is greater than 0. Hence, G(x) :=
R(x) — x isdtrictly increasingin (a;, aj+1). Ontheother hand, as by > 0(k =1,2, ..., n),
weclearly have R(a;+0) = —oo and R(ax+1—0) = oco. Thisimpliesthat G(a; +0) = —
and G(a;+1—0) = oco. Therefore, R(x) —x = 0 hasauniquereal solutionin (a;, a;4+1) for
eechi=12,...,n—1.



338 HIROSHI ISHITANI AND KENSUKE ISHITANI

The assumptions a; < 0 and 0 < @ < 1 ensureusto have x < ax < R(x) for all
x € (—o00, a1),and hence R(x) —x > 0 in (=00, a1). Therefore, R(x) —x = 0 hasnored
solutionin (—oo, a1). Similarly, we can get that thereis no real solutionin (a,,, 00).

From the above arguments we have obtained that the equation R(x) —x =0 hasn — 1
real solutions. On the other hand the equation R(x) — x = O clearly hasn + 1 solutions.
Thereforethereis zp € C\ R with R(zp) = zo. Thiscompletes the proof. O

REMARK 3.1. Thecondition (3.2) isthebest possiblein thefollowing sense: Consider
the transformation R(x) = ax — (x —a) ' — (x +a)" !, where 0 < @ < 1 and a > O.
Then it can be easily proved that R(x) has zg € C \ R with R(zg) = zo if and only if the
condition (3.2) is satisfied.

We consider some examples using the above proposition.

EXAMPLE 1. Letusconsider thetransformation R(x) = ax —bx L withO<a <1
and b > 0. Putting ¥ (x) = +/bx, weget v L(R(Y(x))) = ax — x~ L. Hence, we can as-
sume b = 1 without loss of generality. However thistransformation R(x) = ax —x 1 sat-
isfies the assumptions of Proposition 3.1, we directly get that the fixed point zo of R in C is
20 = iyo = iv/I/(I — @) inthiscase. Theorem 2 showsthat diu = 7 ~m(1/(x —iyo)) dx
isan invariant probability for the transformation R.

Let us consider the transformation 7' (1) := ¢(R(¢~1(1))), where p(x) := arctan(x/yo).
Using Lemma?2.1 we have

_ [x — Z0|2
~ |R(x) — zo/?
 x—z0f?
~ |R(x) — R(z0)|?
_ lx — zo/?
a(x — 20) + (x — z0)/(xz0) |2
B o+ 1/x2
e+ (1/(xzo)) 2

ax?+1
Tt l-a

/(1) R (x)
R'(x)

R'(x) (3.3)

For 0 < @ < 1/2 we havethe estimation

ax?+1 - ax?+1 1

?2x24+1—a " al—o)x?2+1—a 1—-a

sincea <1l—a.lf 1/2 <a < 1, then we have

=

ax?+1 - ax?+1 .
a’x24+1—a ~ o?x2+4+a

Q|
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Hence, the transformation 7' on (—x/2, 7 /2) isuniformly expansive. Precisely, we have

, (1 1
T'(t) > min|( —, >1
¢ 1l—«a
forall r # 0. Therefore, R(x) = ax—x~1 (0 < « < 1) satisfiesthe assumption of Theorem
4 and the conclusions of Theorem 4 arevalid for (R, ).
Inthe case o = 0, we have

o~ {t+7t/2, (—1/2 <x <0),
t—mn/2, O<x<mn/2).

Put A = (—m/2, —/4) U (0, w/4). Thenwe have T-1A = A and A(A) = 1/2. Hence
neither (7', A) nor (R, ) isergodic.

Note that the relation R(iyo) = iyo isregarded as —R(iyo) = iyo. Thus we get the
following example from Example 1.

EXAMPLE 2. Letusconsider the transformation
b

R(x) = —ax + —

X

with 0 <o <1 and b > 0. Asisin Example 1, we can also assume » = 1 without |oss of
generality. Remark that the transformation — R (x) isthe onein Example 1. This fact shows
that R(zg) = Zo holdsfor zg = iyp = i/1I/(A — ). Thus, Theorem 3 can be applied and
hence

1 1

du=—Im -
T X —1yo

dx

is an invariant probability for the transformation R. The analogous argument allows us to
have

, (1 1
—T'(t) > min| —, >1,
o 1l—«
and hence the same results as those of Example 1 hold.

If the number n of polesis morethan 2, it is generdly not easy to get the desired esti-
mation of |T’(¢)|. However, there are some examples that satisfy the assumption of Theorem
4,

ExAMPLE 3. Let usconsider the transformation
R(x) = 1 1
=X x—1 x+1
with 0 < o < 1. Wecan easily get that R(iyo) = iyo, where yo = /(1 +a)/(1— ). Asin
Example 1, we obtain

a(x? =124+ 2x242

T = i A2t A—alta)

(3.4)
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Theright hand side of (3.4) is not smaller than

a(x®> =12+ 2x%2 42 o1
Q- {a(x2—=1D2+Q-a)x2+1+a} ~ 1-«

for 0<a <1—a.For 0 <1—a < a theright hand side of (3.4) is greater than or equal to

a(x?—1)°2+2x2+2 >1
a{a(xz—l)z—{-(l—ot)xz—{—l—i—a} -

p” .

Therefore, if 0 < o < 1, we also get the inequality

, . (1 1
T'(t) > mn| —, >1
a l—«a

foral ¢t ¢ {—7/2, (1), (1), n/2}. If @ = O, then it is clear that the right hand side of
(3.4) isequal to 2 and

2t+n (—m/2<t<-—m/d),
T(t)= 2t (/4 <t <m/d),
2t—n1 (m/h<t<m/2).
Consequently, Theorem 4 can be also applied for these transformations.

ExAMPLE 4. Consider the transformations

) 1 1
R(x) = —ax + —— +
x—1 x+1

(3.5)

with 0 < o < 1. Because the transformations —R(x) are those in Example 3 and have the

fixed point iyp (yo # 0), we have R(iyo) = iyo, where yo = /(I+«)/(1—a). Hence,
Theorem 3 shows that R has the invariant probability density yo/7(x2 + yo?). Similar
arguments allows us to have the parallel resultsto those of Example 3.
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