TOKYO J. MATH.
VoL. 30, No. 1, 2007

Courant Brackets on Noncommutative Algebras
and Omni-Lie Algebras

Kyousuke UCHINO

Tokyo University of Science

(Communicated by Y. Maeda)

Abstract. We define a Courant bracket on an associative algebra using the theory of Hochschild homology,
and we introduce the notion of Dirac algebra. We show that the bracket of an omni-Lie algebra is quite a kind of
Courant bracket.

1. Introduction

T. Courant [1] defines a skew-symmetric bracket (1) below on the set of sections
I'(TM & T*M) onasmooth manifold M

1
(X, @), (¥, B)llskew := ([X, Y], LxB — Lya + Zd({Y, @) = (X, £))). D

where (X, «), (Y,B) € I'(TM & T*M). The bracket is not a Lie bracket, but the modified
bracket

(X, ), (Y, B)ll := (X, Y], LxB — Lya +d(Y, &) @)

satisfies a Leibniz identity and the bracket (1) is given as the skew-symmetrization of (2).
These brackets (1) and (2) are both called Courant brackets. In addition, he gives a smooth
nondegenerate symmetric bilinear formon TM & T*M:

((x,a), (y, D)) = %((y, a) +(x, b)), 3
where (x, a), (v, b) € TM&®T*M. The Courant bracket and the bilinear form are used to give
acharacterization of Poisson structureon M. Let = bea2-vector fieldon M, and let L, denote
the graph of =, i.e., the set of elements (7 (a), a), wherea € T*M and 7 : T*M — TM is
the bundle map defined by 7 (a1, a2) = (7 (a1), a2). 7w isaPoisson structureif and only if the
Courant bracket is closed on the set of sections I' L, and L, is maximally isotropic for the
bilinear form (3). Such subbundlesof TM & T*M are called Dirac structures ([1]).
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DEFNITION 1.1. Let M be a smooth manifold. A subbundle L of TM @ T*M is
called a Dirac structure, if the Courant bracket (2), or equivaently (1) is closed on the set of
sections I' L and L is maximally isotropic for the bilinear form (3) .

A. Weinstein [8] gives a linearization of (1), or (2) motivated by an integrability prob-
lem of Courant brackets. We refer [3] for the study of the integrability problem of Courant
brackets. Let V be avector space. Weinstein's bracket is defined on the space g/(V) & V:

1
[(&1, v1), (52, V2) Iskew := ([1, &21, 5(51(”2) — & (1)), 4

where (£1, v1), (&2, v2) € gl(V) @ V. Thisbracket is the skew-symmetrization of a Leibniz
bracket:

[(§1. v1), (52, v2)] := ([€1, &2, §1(v2)) . ©)
The V-valued nondegenerate symmetric bilinear form is also defined by

1
(€1, v1), (62, v2)) = E(éz(vl) +&1(v2)) . (6)

Similar to Poisson structures on amanifold, every Lie algebrastructure on V is characterized
asthegraph. Let u : V ® V — V be a binary operation. Set the graph of u: L, :=
{((A(v),v) | v € V}, where i : V — gl(V) is the map defined by i(v)(u) = (v, u).
The operation v isaLie bracket if and only if Weinstein's bracket (4), or equivalently (5) is
closedon L, and L, is maximally isotropic for the bilinear form (6). Such objects are called
D-structuresin [8]. Hecalls g/(V) & V an omni-Lie algebra. Here we consider relationships
between Courant brackets (2) and Weinstein's brackets (4), or (5).

In [8] it is suggested that V is a non-unital algebra of linear functions on the dual
space V* with trivial multiplication. Then g¢/(V) is the set of derivations of V. Further-
more (0, v) € gI(V) @ V isacertain derivative D : v — (0, v), Similar to manifolds cases
D :C®M) > I'TM & T*M), f — (0,df). So one can view omni-Lie algebras as
geometrical “linearization” of Courant’s original examples.

In this paper we construct an algebraic Courant bracket using Hochschild cohomol-
ogy (resp. homology) groups. Let A be an associative and unital algebra, not necessarily
commutative, and we set the Hochschild cohomology (resp. homology) group H1(A, A)
(resp. Hi(A, A)). In Section 3, we define on the space H1(A, A) & H1(A, A) aLeibniz
bracket by the same formula as (2), using algebraic derivatives. We will call the bracket on
HY(A, A) ® Hi(A, A) aCourant bracket on A. Denote H1(A, A) @ Hi(A, A) by E(A).
Our motivation is given by the following example.

ExAamMPLE 1.2. Let V beafinite-dimensional vector space. Set V[1] .=V & R-1as
aunital algebra over the field R, where the multiplication is amost trivial except the unit 1.
Then H1(V[1], V[1]) isjust g/(V) and the Courant bracket on V[1] has the same formulaas
Weinstein's bracket (5):

[(51, dv1), (62, dv2)]| = ([&1, 621, d§1(v2)) ,
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whered : V[1] — H1(V[1], V[1]) is an agebraic de Rham derivative. (See Section 5, for
the detailed study.)

In addition, the symmetric bilinear form of E(A) is aso well-defined by the formula
(3) without the factor 1/2, by means of a duality between H1(A, A) and Hi(A, A). We
wish a hondegenerate symmetric bilinear form to define the notion of Dirac structure on A.
However, the bilinear form on E(A) is degenerate in general. We notice that the kernel of
the bilinear form becomes an ideal for the Courant bracket on A. Thus we have the exact
sequence of Leibniz algebras:

0—-J—EWA —EWA/J]—DO0, (7

where J is the set of the kernel of the bilinear form. The quotient Leibniz algebras(A) :=
E(A)/J has an induced nondegenerate symmetric bilinear form and the induced Courant
bracket. Even if A is noncommutative, thanks to the nondegeneracy of the bilinear form on
e(A), the notion of Dirac structure is well-defined as a maximally isotropic submodule L
of e(A) such that the induced Courant bracket is closed on the submodule. We call the pair
(A, L) a (noncommutative) Dirac algebra. We will show that every Poisson bracket on a
commutative algebrais characterized as the corresponding Dirac structure.

We denote the matrix algebra of an algebra .A by M, (A). In Proposition 3.3 we will
show that the Courant bracket on M, (A) isisomorphic to the one of E(A) and the bilinear
formisalso preserved by the isomorphism. By this proposition, we obtain an Courant bracket
isomorphism e(A) = (M, (A)). Thefirst main theorem of this paper is

THEOREM 1.3. Let A beaunital and associative algebra. Then there existsa Courant
bracket isomorphisme(A) = (M, (A)) preserving the bilinear form. Thus Dirac structures
on A and M, (A) correspond bijectivelly.

It is well-known that the dual bundle of a Lie algebroid A — M is a Poisson manifold
with Lie-Poisson bracket. When M is a point, the Lie algebroid is a Lie algebra and the
Lie-Poisson bracket is the ordinary one. One can view the algebra V[1] of Example 1.2 as
a linearization of the smooth functions on the vector bundle V* — {0} on a point. In fact
the part R - 1 is the set of functions on the base point. Thus e(V[1]) is the linearization of
Courant’s original type example TV* @ T*V*. The second main result of this paper is

THEOREM 1.4. Let V bea vector space of finite dimension. Then ¢(V[1]) isisomor-
phic to omni-Liealgebra gl(V) @ V, i.e., Weinstein's bracket on ¢/ (V) @ V isthe (induced)
Courant bracket on (V[1]).

The paper organized as follows.

In Section 2 we recall some basic properties of Hochschild (co)homology theory and the
algebraic operations corresponding to Lie derivative, interior product and exterior derivative.

In Section 3 we definethe Courant bracket, the bilinear form on E (A) and study the basic
property. Especially we show that the algebraic Courant bracket on A satisfies the axioms of
Courant algebroids.
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In subsection 4.1 we study the bilinear form and introduce the quotient space (A) with
nondegenerate bilinear form. Algebraic Dirac structures are introduced (Definition 1.1). The-
orem 1.3 is proved.

In subsection 4.2 we show that a Poisson algebra is a Dirac algebra and every Poisson
bracket is characterized by the corresponding Dirac structure.

In Section 5 the second main theorem is shown.

ACKNOWLEDGEMENTS. | would like to thank very much Professors Yoshiaki Maeda
and Akira Yoshiokafor their helpful comments and encouragement.

2. Preéliminalies

In this section we recall Hochschild (co)homology groups of algebras and set an al-
gebraic differential-calculus. We refer the book [6] for the detailed study of the theory of
Hochschild (co)homol ogy.

2.1. Hochschild homology. Let k be a commutative ring, A be an algebra over the
ring k. The Hochschild n-complex is C,, (A, A) := A ® A®", where the tensor product is
defined over k. Theboundary map b : C, (A, A) — C,_1(A, A) isdefined by the rule below.
Let P; : Cph(A, A) —> Cr—1(A, A) be ak-homomorphism:

P(ag® ...Qay) = (-1 (a0 ® ... ® ajai11® ... Q@ ay), 0<i <n—1)
Py(ag® ... ® ap) = (—1)"(ana0 ® ... ® an—1) ,

whereag, ..., a, € A. Themap b is defined by the formula:

n
b(ag® ... Q ay) := Z Pi(ao® ...®ay).
i=0

It holdsthat 5 = 0, and thus the homology groups H,, (A, .A) are defined. For example, since
b(ao ® a1) = [ao, a1] = aoa1 — aiao, the 0-th Hochschild homology group is Ho(A, A) =
A/[A, Al, where [ A, A] is a k-module generated by all [a, a’]. We denote the center of A
by Z(A). One can check that by the action of Z(A) — C,(A, A): z2(ag ® ... ® a,) =
(zap ® ... ® ay), each H, (A, A) becomes a Z(A)-module. In fact, for any z € Z(A) we
obtainzb(ag ® ... @ ay) = b(zag ® ... ® ap). If Aiscommutative then Ho(A, A) = A, and
if A isunital then H1(A, A) isisomorphic to the .A-module of K&hler differentials which is
an A-module generated by 1-formsada’ (see the next subsection 2.2.).

2.2. Kahler differentials. Weassume A isunital and commutative. Set an.A-module
O 4« generated by da for any a € A, whered is merely a symbol. Define two relations (or
axioms) on the module O 4

d(ha+Ma') —rda —Nda' =0, (8)
d(ad’) —ada' —a'da=0, 9
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where 1, 1" € k. The quotient module O 4x/ ~ is the module of Kahler differentials, and
it is denoted by Q}Hk. It is known that Hy(A, A) = 9¢l4|1< (see 1.1.10 Proposition in [6]).
The isomorphism between Hi (A, A) and Q.lA\k isgiven by ag ® a1 = aopdas, on the level of

cycles. In fact, by the relation (8), O 4« becomes the tensor product .4 ® A, and the second
relation is the same as the defining relation of the Hochschild homology Hi(A, A).

2.3. Hochschild cohomology. Next, we consider the Hochschild cohomology groups
for general algebras. The n-complex C"(A, A) is Hom;(A®", A) and when n = 0,
C%A, A) = A. The coboundary map B is defined by the following formula. For any
feC'A A:

B(Ha1®...Qant1) =a1f(a2® ... @ ant1)

n
+ Z(_l)if(al ®..0aai+1Q ... ® ant1)
i=1

+ (D" @1 ® ... @ an)ania

and B : COA, A) — CYA, A)isa — [a,-]foranya € A. Itis easily checked that
HO(A, A) = Z(A) and the cocycles of C1(A, A) isthe set of derivations on .A. Denote the
derivations on A by Der(A). We have

HY(A, A) = Der(A)/[A, 1,

where [A, -] is the submodule of C1(A, A) generated by inner derivations [a, -] : a' —
la, a’]. Especially if A is commutative then H1(A, A) = Der(A). Notethat each H" (A, A)
isalso a Z(A)-module.

2.4. Algebraic derivatives. Secondly, we recall a Lie bracket on H(A, A), aLie
derivative Lx, aninterior product i x and Connes’ boundary map B on homology.

REMARK 2.1. In[6], the Lie derivative and the interior product are denoted by L p
and ep respectively. Here we use geometrical notations Ly and i x.

For any A, Der(A4) hasacanonical Lie bracket by taking the commutator. One can easily
check that the module generated by inner-derivations [«, -] isan ideal of Der(A). ThusalLie
bracket on H1(A, A) isinduced.

A Liederivative Ly : H,(A, A) — H,(A, A) associated with an element X € Der(A)
is defined by the formula below, on the level of cycles (Section 4.1 of [6]).

n

Lx(@0®..Qa) =Y a®..®X(@)®...Qa.
i—0

Further, we can show that L, . is the zero map on the level of homology groups for any
a € A (see4.1.5 Propositionin [6]). Thus Ly iswell-defined for any X € H1(A, A).
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It is known that an interior product is also well-defined on Hochschild homology. For
any X € Der(A), set an operator ix : Hy(A, A) — H,_1(A, A), onthelevel of cycles, by
the formula:

ix(@®..®a,) = (1" (X(@a)ao ® ... ® ap-1).
LEMMA 2.2. Foranya € A, if4,1 isthe zero map on the level of homology groups.
PROOF. Forany a’ € A, setthemap iy : C(A, A) — Ch(A,A),a0® ... Q ay +—
dag® ... ® a,. We have

n—1
hy ob(ag® ... Q@ ay) =d'a,ag® ... ® a1+ Z P(dag®..®ay),
i=0
n—1
bohy(ag® ...Qay) =a,a'ag® ... ® a1+ Z P(dag®..®ay).
i=0
Thus by o b — b o hy = (—=1)"*Lif, ; which implies that if, ; is homotopic to the zero
map. o

Thusthe interior product i x is well-defined for any X € H1(A, A). Like smooth mani-
fold cases, the following lemma holds.

LEMMA 2.3. ForanyX,Y € HY(A, A):
Lixyj=LxoLy—LyoLx, ixyj=Lxoiy —iyoLy.

PrRoOOF. We only show the second formula. For the first formula, we refer 4.1.6 Corol-
layin[6]. Foranya:=ao® ... ® a, :

()" Lx oiy(@ = LxY (a)ao ® ... ® an-1
=XY(@an)ao® ... an—1+Y(a,)X(ag) @ ... ®an—1
n—1

+) Y(@)ao®..® X(a) ®...Qap-1, (10)
i=1

and on the other hand,

n
(=)™ iy o Lx(a) = (1) Ly Zao ®.0Xa®..Qa
i=0
n—1
= Y(an)X(a) ® ... ® an_1 + Z Y(a)ao® ... ® X(a;) ® ... ® an_1
i=1
+YX(ay)ao® ... @ a,_1. (12)

The difference of (10), (11) is (—1)"*Lijx.v)(@). ]
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25. Connes boundary map. In the following, we assume that A4 is unital. The
Connes’ boundary map B : H,(A, A) — H,+1(A, A) is defined by using cyclic operators
on C, (A, A) (Section 2.1.7 of [6]). We use an explicit definition:

n
B@ao®...®a,) =) (-1)"(1®a¢®..0a, ®a0® ... ® aj-1)
i=0

+(-D)"@®1®a1®..0a, ®a0® ... ® aj_1),
where 1 isthe unit of A. For example,
Blag®a1) =1®ag®a1—1®a1®ap+ac®1®a1—a1®1®ap.

REMARK 2.4. Itisknown that the condition of boundary operator B2 = O is satisfied.
However, in our explicit definition, it is difficult to show the condition.

Itisknownthat Lx = Boix +ix o B foreach H, (A, A) (4.1.9 Corollary of [6] and see
Remark 2.6 below). We directly show the condition: Ly = B oix + iy o B for H1(A, A).
For any cyclesa and o’ wedenotea = o/, if o« = o’ onthe level of homology.

LEMMA 2.5. Forany X € Der(A),andanycyclea € C1(A, A):
Lx(a@)=Boix(a)+ixoB(x).

ThusLx = Boiy +ix o Bon Hi(A, A) forany X € H1(A, A).

PROOF. We can put @ = ap ® aj without loss of generality. By h(1® 1 ® a) = a ® 1,
a ® 1= 0. Thuswe obtain

ixoBla®a) =ix(1®a®a1—1®a1®ap+ar®1®a1— a1 ®1® ap)
= —X(a1) ® ao + X(ao) ® a1,
and Boix(ag® a1) = 1® X (a1)ap. In addition, we have
b(1® X(a1) ® ap) = X1(a1) ® ap — 1 ® X(ar)ao + ao ® X (a1) -
Thus1® X (a1)ag = X1(a1) ® ao + ao ® X (a1). Thisgivesaproof of the lemma. O

Here we remark that when A is commutative, the derivative da into the space of Kahler
differentials is the same as the the boundary B(a):

Bla)=1®a=da, B=d:A— Q},.

REMARK 2.6. We can take a normalized-Hochschild homology group H,(A, A)
whichisdefined by the certain quotient C,, (A, A)/ ~ of Hochschild complex. It isknown that
the normalized-Hochschild homology group is isomorphic with an ordinary one (see 1.1.14
of [6]). The condition Lx = B oiyx + ix o B isshown in the normalized framework for any
Hy (A, A).
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2.6. Canonical pairings. We now set the pairing between H1(A, A) and H1(A, A)
using the interior product by the form:

() HY(A, A) x H1(A, A) > Ho(A, A), (X,a) :=ixa, (12)

where X € HY(A, A) anda € Hi(A, A). Notethat the pairing is Z (A)-bilinear.

We remark here that the pairing (12) is equivalent to the Kronecker product. The Kro-
necker product (-, -) : H"(A, A) ® H,(A, A) - A® 4 A, isacanonical pairing between
cohomology groups and homology groups defined by, on the level of (co)chains,

(fLao®a1®..Qay) = f(a1® ... ® ay) Rae ag,

where f € C"(A, A), A° = A® A and A°? is the opposite algebra of A (see 1.5.9
Duality of [6]). One can easily show that A ® 4« A = Hp(A, . A). The isomorphism is
a ®ae a' = aa’, whereaa’ isthe equivalence class of aa’. In fact, by the definition, we have
aQ®pead =11 a)R®aea’ =1Q®a’a. Ontheother hand, a Qe a’ = 1@ ® 1) Que a’ =
1®aa’. Thusa ®ac a’ = a’ ®4¢ a. This commutativity is expressed as the abelianzation
A/[A, Al = Ho(A, A).

Recall the bilinear forms (3) and (6). By means of the bilinear form, the notion of Dirac
structureis defined as amaximally isotropic subspace. We use carefully the term “maximally
isotropic” in the algebraic framework.

Let k be a unital commutative ring, and let E and M be (left) k-modules, and let (-, -)
be a M -valued nondegenerate symmetric k-bilinear form on E. Here (-, -) is nondegenerate,
namely (e, -) : E — M isinjectivefor any nontrivial e € E.

DEFINITION 2.7. Under the notations above, let L be asubmodule of E. We say that
L is"“isotropic” for the bilinear form, if the bilinear form is zero on L. When L isisotropic,
we say that L is“maximally isotropic”, if (e, -) vanisheson L thene isin L forany e € E.

3. Courant bracket of H1(A, A) ® Hi(A, A)

In this section we define a Courant bracket on an associative algebra using the operations
of Section 2.

DerNITION 3.1. Let A be aunital and associative k-algebra. We call a bracket on
HY(A, A) & Hi(A, A) below aCourant bracket on A.
[(X1, @1), (X2, 02)] = ([ X1, X2], Lx, a2 — Lx,a1 + B(X2, a1)),
where (X1, @1), (X2, a2) € HY(A, A) @ Hi(A, A). We denote H1(A, A) & Hi(A, A) by
E(A).

When k contains 1/2, we have Courant's origina formula (1) as the skew-
symmetrization of the Courant bracket on A.
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We set asymmetric Z(A)-bilinear form (-, -) on H1(A, A)@® H1(A, A) usingtheformula
(3) without the factor 1/2, i.e., for any e1 := (X1, a1), e2 := (X2, a2) € E(A):
(e1, €2) := (X2, a1) + (X1, @2) . (13)
Note that this bilinear form is Ho(A, A)-valued in general. In addition, we set amap p :
E(A) — HY(A, A) asthe canonical projection:
o X,a) =X. (14)
By the definition, p hasa Z(A)-linearity. We notice a derivative action:
HY (A, A) x Z(A) — Z(A), (X.2) > X(@2), (15)
Thisaction is well-defined on the level of homology, since [a, z] = Ofor any a € A.

PrROPOSITION 3.2. Let A be a unital and associative k-algebra. Then the Courant
bracket satisfies the following properties. For any e1, e2, e3 € E(A) andz € Z(A):

[e1, [e2, el = [le1, e21l, e3]l + [e2. [e1, e3]l]] (16)
plle, e2ll = [p(e1), p(e2)], (17)
lle1, ze2ll = zllea, e2ll + p(e1)(z)ez, (18)
2[[e1, e1]l = D(e1, e1) (19)

Lo(er) (€2, €3) = ([e1, e2]l, e3) + (e2, [[e1, e3])) , (20)

where D is a k-homomor phism:
D : Hy(A, A) — H1(A, A), ar— (0, B()),
and p(e1)(z) of (18) isthe action (15).

PrROOF. Theformulas (17) and (19) are clearly. For (16), (18) and (20), by Lemma 2.3,
2.5 we can take the same proof asthe case of TM @ T*M on asmooth manifold. O

The conditions (16)—20) above are the set of axioms of Courant algebroidsin [7] (see
also [4], [5]). However E(A) isnot a Courant algebroid, because the bilinear form is degen-
erate in genera. In the next section we will study the bilinear form on E (A).

For given algebras A and A’, we write E(A) = E(A’), if there exists an isomorphism
¢ : Ho(A, A) = Ho(A', A") and if there exists a Courant bracket isomorphism preserving the
bilinear form up to ¢. We study isomorphisms between Courant brackets.

Itiswell-known that aunital algebra.4 and the matrix algebra M, (A) are Moritaequiv-
alent, and thus the Hochschild (co)homology groups of .4 and M, (A) are isomorphic (see
124and1.5.6in[6]).

ProPOSITION 3.3. Forany A, E(A) = E(M,(A)).

PROOF. We take isomorphisms corr : HY(A, A) — HY(M,(A), M,(A)) and inc :
Hi(A, A) —» H1(M,(A), M, (A)) in[6]. Here these maps are defined by

cotr(X)(m;j) := (X (m;j)), inc(ao® ... ®ay) = E11(ap) ® ... ® E11(ay) ,
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on thelevel of chains, where X € H1(A, A), mij € M,(A) and E11(a) isamatrix such that
the (1, 1)-position is a and other positions are all zero. We denote cotr and inc by T and 1
respectively.

Itisobviousthat T isaLieagebraisomorphism. First we show that T & I preservesthe
bilinear form. It is sufficient to show that iz (x) o I(ao ® a1) = I o ix(ao ® az).

iTx) o I(ao ® a1) =irx)(E11(a0) ® E11(a1))
=T (X)(E11(a1)) - E11(ao)
= E11(X(a1)) - E11(ao)
= E11(X(a1)ao) = [ oix(ao ® a1) .
Thusthe bilinear form is preserved by the isomorphism. Secondly we show that the Courant

bracket is preserved. Forany a € A, wehave B o I(a) = 1pq,(4) ® E11(a) and I o B(a) =
E11(1) ® E11(a), where 14, 4y isthe unit element of M,.(A). On the other hand,

(Bol —10B)(a)=(1nm, (4 — E11(1) ® E11(a)
=—b{(Ipm, 4 — E11(D) ® E11(a) ® E11(1)}
=0.

Thus B o I(a) = I o B(a) on the level of homology. We now obtain below, on the level
of homology: I o B oix(ap ® a1) = B oirx) o I(ap ® a1). One can directly show:
iTxyo Bol(ap®a1) = I oix o B(ag ® a1), on the level of homology. Thus we obtain
Lrixyol(a) =10 Lx(a)and ! o B(X,a) = B(T(X), () forany X € H(A, A) and
a € Hi(A, A). ThusT @ I preservesthe Courant bracket. O

This proposition will be used to give a proof of Theorem 1.3 in the next section. As an
example of other isomorphisms we can easily check that E(A) = E(A°), where A% isthe
opposite agebraof A. (Werefer E.2.1.4 of [6].)

EXAMPLE 3.4. E(A) = E(A%).

4. Dirac algebrasand Poisson brackets

4.1. Dirac structures. Let M be a smooth manifold. Dirac structures L on M are
defined as maximally isotropic subbundles of TM & T*M for the bilinear form (3) such that
the Courant bracket (2) is closed on the set of sections I'L. The maximality condition is
well-defined because the bilinear form (3) is nondegenerate. In Courant’s original example,
thepair (M, L) is called a Dirac manifold. In this subsection, we introduce a notion of Dirac
algebra. First we study the bilinear form of E(A).

Let A be aunital k-algebra. The bilinear form (13) of E(A) is degenerate in general.
But we can show that the kernel of the bilinear form is an ideal of E(.A4) with respect to the
Courant bracket. Denote the kernd by J, i.e.,

J:={eec E(A)|(e,e)=0foranye e E(A)}. (21)
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LEMMA 4.1. Thekernel J isanideal of E(A).
PROOF. Foranye € J, e1, e2 € E(A), by (20) in Proposition 3.2 we have

Ly (e, e2) = ([e1, ell, e2) + (e, [le1, e2]]) .

Since e isin the kernel, we have ([[e1, ¢]l, e2) = 0. By the definition of Courant bracket, the
skew-symmetrization is

le1, ell — [le, eall = 2[le1, ell — D(e1, e) , (22)
where D was defined in Proposition 3.2. Thisimpliesthat J isatwo-side ideal. ad

From this lemma, when J # E(A), we obtain a nontrivial Leibniz algebra E(A)/J
with Ho(A, A)-valued nondegenerate symmetric bilinear form (-, -). Here the bilinear form
on E(A)/J is Z(A)-bilinear. We denote E(A)/J by ¢(A). When ¢(A) # 0, we obtain a
Leibniz algebras(.A) with anondegenerate bilinear form and a (induced) Courant bracket. So
we define Dirac structures on noncommutaitve algebras.

DEFINITION 4.2. Let A beaunital and associative k-algebra. We assumethat e(A) #
0. We call asubmodule L of ¢(A) aDirac structure on A, if L is maximally isotropic for
the induced bilinear form on &(A) and the induced Courant bracket on ¢(A) is closed on L.
We call the pair (A, L) a(noncommutative) Dirac algebra.

In general we have no hope of defining the map p : ¢(A) — H(A, A). When A is
commutative, the kernel J becomes asubmodule of H1(A, A), thusthe map p iswell-defined
(see Lemma 4.8 below).

An algebraic meaning of Dirac structure is that it is a Lie algebra. By the isotropy of
Dirac structure we have a corollary below.

COROLLARY 4.3. A Dirac structure L on k-algebra A is a k-Lie algebra and the
inverse image p~1(L) of the canonical projection p : E(A) — &(A) satisfies the defining
conditions of Lie algebroids. For anyl1,lo € Landz € Z(A):

ollly, l2ll = [0 (1), o(2)], [1, zl2]l = zlll1, l2]l + o (1) (2)12,

where o is an anchor map defined by the composition p~%(L) 2 HY(A, A) — Der(Z(A))
and [, -] isa commutator on Der(Z(A)).

PROOF. It is obvious that the Courant bracket on A is closed on p~1(L). The anchor
map iswell-defined by the action (15). Two conditions above follow from (17), (18) in Propo-
sition 3.2. O

Note that the above o differs from p in Proposition 3.2. Especially when ¥ = R and
Z(A) isthe agebraof smooth functionson amanifold M, p~1(L) isjust the space of sections
of aLiealgebroid on M.

In the next subsection we will show that a Poisson algebra is a Dirac algebra with the
corresponding Dirac structure. 1t is well-known that closed 2-forms on a manifold define
Dirac structures (see [1]). Similar to manifold cases, we obtain a proposition bel ow.
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ProPOSITION 4.4. Weassumee(A) # 0. Let w € Ho(A, A) be aclosed 2-formin
thesense of B(w) = Oandixiyw = —iyixw. Then p(L,,) isa Dirac structure, where L, is
the set of elements (X, i xw) and p isthe canonical projection p : E(A) — ¢(A).

PROOF. It is obvious that L,, is isotropic on E(A) and ¢(A). By the same way as
geometrical casesin [1], one can easily check that the Courant bracket is closed on L,,. We
show that p(L,) is maximally isotropic. Recall Definition 2.7. For any (X,ixw) € L,
we assume ((X, ixw), (Y,«)) = 0on E(A). Thenwe haveixiyw = ixa for any X, thus
(0,iyw — ) isinthe kernel J. Thusin e(A) wehave o = iyw, i.e, p(L,) is maximally
isotropic. ]

From the proposition above, when w is trivial, the projection of H1(A, A) is a Dirac
structure.
We now give a proof of Theorem 1.3 in Introduction.

PROOF. Using theisomorphism 7 @ I : E(A) = E(M,(A)) in Proposition 3.3, we
obtain a Courant bracket isomorphism

po(T@®Dopt:e(Ad)=e(M,(A)

which preserves the bilinear form on ¢(A) up to the isomorphism Hp(A, A) =
Ho(M, (A), M, (A)). Thus Dirac structures correspond bijectively between A and M, (A).
This givesthe proof of Theorem 1.3. |

From Example 3.4 and Theorem 1.3, weobtain e (A) = (M, (A)°P). Using thetheorem
we give an example of Dirac algebra on a smooth manifold.

EXAMPLE 4.5. Set A := C°°(M) which is the set of smooth functions on a smooth
manifold M. Then M, (A) is identified with "'End(R" x M) which is the space of sec-
tions of the endmorphism bundle of the trivial bundle. Using the identification e (C*>°(M)) =
'(TM & T*M), we obtain Dirac structures on the algebra I"'End(R" x M) from geomet-
rical (i.e. ordinary) Dirac structures on the manifold. For instance, for a Poisson struc-
ture = on M, the graph L, is a Dirac structure on C*°(M). We can denote the deriva-

tion T(X) € Der(M,(A)) for X € I'TM in the matrix form ( }é ; > where we put

r = 2. On the other hand, 1(fdyg) is( g 8 ) ® < g 8 ) Thus the Dirac structure

po(T ®I)op XI'Ly,) hastheform, on thelevel of chains,

fX 0 f 0 g O 00
(78 %, ) (6 o) (5 o)) xerru raecvan,

where X ¢ is the Hamilton vector field of f.

REMARK 4.6. Lemma4.1 isimportant for Courant algebroids in Poisson geometry.
Given a “week”-Courant algebroid with degenerate symmetric bilinear form, we can take
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the quotient bundle with the induced Leibniz bracket and the nondegenerate bilinear form.
Conversely, we expect that every Courant algebroid is given in this way.

4.2. Poisson algebras. The purpose of this subsection is to show that every Poisson
bracket is characterized as the corresponding Dirac structure.

Standing Assumptions. We assume A is a unital and commutative k-algebra. Thus
HY(A, A) = Der(A), Hi(A, A) = 27, HYA, A) = Z(A) = A = Ho(A, A) and the
boundary map B =d : A — 9}4“« In addition we assume that ¢(A) # 0. The condition is
satisfied if there exists a nontrivia derivation on .A. Thus this assumption is always satsified
in Poisson geometry.

It is known that the derivatived : A — 52}4“( has the universality below (see 1.3.7—
1.3.9 of [6]). For any derivative § : A — M to an A-module, there exists a unique map
o sziuk — M suchthat 8 = ¢ o d, here¢ is A-linear.

REMARK 4.7. Usually, the universal derivation of an algebrais defined as the deriva-
tiond : A — I/I?%, where I isa(non-symmetric) .A-bimodule generated by 1 ® ¢ —a ® 1
forany a € A and /12 isthe symmetrization of 7. One can check that 1/1% = 52}4”6.

LEMMA 4.8. If (X, a) is an element of the kernel J (21) of the bilinear form then
X =0.

PrROOF. By the assumption, for any a € A we have ((0, da), (X,«®)) = 0. When
da # 0, this gives X(a) = 0. Even if da = 0, by the universality above, we have
X(a) =0. O

By thislemma, when A is commutative, the map p : ¢(A) — Der(A) isinduced from p
on E(A). Inthis case, all conditions (16)—(20) of Proposition 3.2 are satisfied on e(A). Thus
for acommutative algebra 4, £(A) can beviewed as an example of Courant algebra. Infact if
k includes 1/2 and A is commutative then ¢ (A) becomes an example of (k, .A) C-algebra. In
[8] an algebraic edition of Courant algebroidsis defined on anon-unital commutative algebra,
thisis called a C-algebra. It was shown that omni-Lie algebra g/(V) & V isa C-agebraon
the algebra V' with trivial multiplication. In the next section, we will show that the brackets
of omni-Lie algebras are given by the purely algebraic Courant brackets.

Now we consider Poisson algebras (on commutative algebras). In Poisson manifold
cases, it iswell-known that a Poisson bracket {-, -} on C° (M) is equivalent with the Poisson
structure & € 1"/\2 T M using the definition {f, g} = n(df,dg) forany f,g € C®°(M).
Recall that the Poisson condition [, 7] = 0 is equivalent to the Jacobi law of the bracket
{-,-}. The Poisson structure = is identified with the bundle map 7 : T*M — T M by the
canonical pairing 7 (df, dg) = (7 (df), dg), and thus the Poisson bracket is identified with
the Dirac structure L, given by the graph of 7. For an arbitrary Poisson algebra A these
identifications are not always defined. But we can get the Dirac structure of a Poisson algebra.
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Let {-, -} be ak-bilinear biderivation on a k-algebra .4, not necessarily Poisson bracket.
From the universality above, a Hamiltonianzation A — Der(A), a — {a, -} isgiven by the
formula: {a, -} = 7 (da) using the unique map 7 : .(2}4”( — Der(A). So we obtain the graph
of themap 77, which we denoteby L :

Ly = {G(a), ) | € 23}

Notethat L, isa.A-submodule of E(A).

PrROPOSITION 4.9. Let{., -} beak-bilinear biderivation on .4, and we put the corre-
sponding map 7. The bracket is a Poisson bracket if and only if the pairing (-, -) on E(A) is
zero on L, and the Courant bracket isclosed on L.

PROOF. We assume that L, is isotropic and the Courant bracket is closed on L.
For any elements (7 (da1), da1), (7 (da2), daz) € L, by the isotropy condition, we have
(7 (dap), da1) = —(7 (da1), daz). Here (7 (daz), da1) = iz (4ay (da1) = laz, a1}. Thisgives
the skewsymmetry of the bracket. The Courant bracket of (7 (da1), da1) and (7 (da2), daz)
has the form: ([ (da1), 7 (daz)], 1 ® {a1, az}), here 1 ® {a1, az} is the equivalence class of
1® {a1, az},i.e, 1® {a1, az} = df{ay, az} on ‘Q}éllk‘ Then we have

7 (d{a1, a2}) = {{a1, az}, -} = [ (day), 7 (da2)], (23)

thisimpliesthat {-, -} is a Poisson bracket.

Conversely, we assume that {-, -} is a Poisson bracket. Then we have (23) by the Jacobi
identity, i.e., generators of L is closed under the Courant bracket. Since £2 }4‘ . Is generated
by {dala € A} as A-module, by (18) in Proposition 3.2 the Courant bracket isclosed on L.
Theisotropy condition of L is equivalent to the skewsymmetry of {-, -}. |

LEMMA 4.10. Thesubmodule L, of Proposition 4.9 ismaximally isotropic on E (A),
hence p(L,) is maximally isotropic on ¢(.A), where p : E(A) — &(A) is the canonical
projection.

PrRoOOF. For some element (X, b’db) in E(A), we assume that ((X, b'db),-) = 0on
L. Thenforany a € A, (X,b'db), (7da,da)) = X(a) + b'{a,b} = 0. When da # 0,
thisimpliesthat X (a) = 7 (b'db)(a). Evenif da = 0, by the universality we obtain X (a) =
7 (b'db)(a) = 0. Thus X = 7(b'db) which givesthat L, is maximally isotropic on E(A).
Thisimpliesthat p(L,) ismaximaly isotropicin e(A). ]

Here we obtain the main result of this subsection.

ProPOSITION 4.11. Let {-, -} be a binary and biderivation on A. The bracket is a
Poisson bracket if and only if p(L;) is a Dirac structure, where L, is the same as L in
Proposition 4.9.

PrOOF. By p~Y(p(Ly)) = L. ]
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Note that since A is commutative, ¢(A) is identified with Der(A) & (9,14”(/])- Thus
p(Ly) isdtill the graph of the induced map.

By Proposition 4.11, every Poisson bracket on a unital commutative algebra A is char-
acterized by the Dirac structure of £(A).

REMARK 4.12. There exists the case ¢(A) = 0, for example A = k. For this case
we may aways take the trivial Poisson bracket on A. But this zero Poisson bracket is not
characterized by Dirac structures. Thisisthe difficulty of the algebraic formulation.

In Section 5 an example of ¢(3.4) will be given and studied.

Noncommutaive Poisson algebras. Finaly at this subsection, we consider Poisson
structures associated with Poisson brackets. Let {-, -} be a Poisson bracket on .A. Then we
have k-homomorphismz : A® A — Abyn(a®a’) = {a,a’}. Since{:, -} isabiderivation,
one can easily check that = is a Hochschild 2-cocycle, thus there exists the equivalence class
7 € H(A, A). We do not know whether the class satisfies the Poisson condition [, 7] = 0
on H3(A, A) under the Gerstenhaber bracket. P. Xu [9] showed the converse in noncommu-
tative algebra cases. If IT € H2(A, A) satisfies the Poisson condition then the center Z(A)
becomes a Poisson algebra by the bracket {z, 7'} := [z, [T, z’]]. We do not know whether a
noncommutative Poisson structure IT defines the Dirac structure or not, in general. Here we
consider a particular case. If the matrix algebra M, (A) of a commutative algebra .4 has a
Poisson structure I7 then Z(M, (A)) = A is a Poisson algebra, and thus we have a Dirac
structure L, on A. By Theorem 1.3 we obtain the corresponding Dirac structure on M, (A).

5. Omni-Liealgebrasv.s. (A)

In this subsection we will show Theorem 1.4 in Introduction.

Let V be avector space over the field R. Set the vector bundle V* — {0} over a point,
where V* isthedual space of V. Thefiber-linearized functions on the bundleis avector space
V[1] := V & R - 1 with amost trivial multiplication:

vi-vp=0andv-1=1.-v=vforanyvy, vz, veV.

Itisclear that V[1] iscommutative.

We now move on to the proof of Theorem 1.4. To show the theorem, we determine the
module of Kahler differentias .Q‘l,[l”R. Recall the definition (8) and (9) in Section 2. Let
{vi} be abasis of V. First we consider the module Oy q)r. It is generated by all elements
{d1,vdl, dv, vdv' | v,v' € V} asinfinite R-module. Since the multiplication on V istrivial,
v"vdv’ = 0. First, we assumethelinearity (8) of 4. Then thedimension of Oy 1)r isreduced
toin 1+ 2dimV + (dim V)2 and theinduced module is generated by {d1, v;d1, dv;, vidvj},
because every element of V[1] isgenerated by {1, v;}. Remark that the dimension is the same
asthe one of tensor product V[1] ® V[1]. Secondly, we assume the derivation property (9) of
d. All defining relations are generated by d1 = 0, v;d1 = 0 and v;dv; = —v;dv;. Herewe
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used d(v;v;) = 0. Thusthe dimension of 2y qr isdimV +amv C2 and it is generated by
{dv;, vidv; (l.<j)} as R-module, where .C. is the combination. Thus we have R-isomorphism
.Q‘l,[l“R = V@/\zV by dv = v, vdv' =v AV

It is easy to determine the space of derivations Der(V[1]). For any X € Der(V[1]), if
X(w) =v +r-1foranyv,v’ € Vthen0 = X(v?) = 2rv. Thuswe haver = 0, i.e,
Der(V[1]) C ¢l(V). On the other hand ¢/(V) becomes the space of derivations of V[1] by
therule& (1) := Oforany & € g/ (V). Thuswe obtain Der(V[1]) = ¢/(V) and

PROPOSITION 5.1. E(V[I)Z gl(V)®V & A?V.

Now we compute the Courant bracket on V[1]. For any (£1, dv1), (&2, dv2), the bracket
has Weinstein's formula (5):

[(61, dv1), (&2, dv2) ]l = (&1, &2], L, dv2 — Lg,dv1 + d (&2, dv1))
= ([61, 2], d(61(v2))) ,

where (&1, dv1), (52, vdve) € &(V[1]) and the Connes boundary map B is d. For
(&1, dv1), (&2, vdv2), the bracket is ([£1, &2], 0) from the triviality of the multiplication.

LEMMA 5.2. The kernel J of the bilinear form of E(V[1]) is generated by
{0, vidvj)},ie, J = N\?V

PROOF. By ig(vidv;) = &(vj)v; = Oand Lemma4.8. O

From the above lemma, we obtain an isomorphism between Leibniz algebras:

e(VIID =gl(V)® VvV, (& .dv)=(§,v).

One can easily check that by the isomorphism the bilinear forms are isomorphic. Thus Theo-
rem 1.4 is proved. We easily obtain the corollary of the theorem.

COROLLARY 5.3. A Poisson bracket on V[1] corresponds bijectively with the Lie
bracket on V. Thusa Lie-Poisson bracket on V* corresponds bijectively to the Poisson bracket
on V[1].

PrRoOOF. By the isomorphism, the Dirac structure of a Poisson bracket on V[1] corre-
sponds to the graph of aLie algebra structureon V. m|
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