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Abstract. We define a Courant bracket on an associative algebra using the theory of Hochschild homology,
and we introduce the notion of Dirac algebra. We show that the bracket of an omni-Lie algebra is quite a kind of
Courant bracket.

1. Introduction

T. Courant [1] defines a skew-symmetric bracket (1) below on the set of sections
Γ (T M ⊕ T ∗M) on a smooth manifold M

[[(X, α), (Y, β)]]skew := ([X,Y ],LXβ − LY α + 1

2
d(〈Y, α〉 − 〈X,β〉)) , (1)

where (X, α), (Y, β) ∈ Γ (T M ⊕ T ∗M). The bracket is not a Lie bracket, but the modified
bracket

[[(X, α), (Y, β)]] := ([X,Y ],LXβ − LY α + d〈Y, α〉) (2)

satisfies a Leibniz identity and the bracket (1) is given as the skew-symmetrization of (2).
These brackets (1) and (2) are both called Courant brackets. In addition, he gives a smooth
nondegenerate symmetric bilinear form on T M ⊕ T ∗M:

((x, a), (y, b)) := 1

2
(〈y, a〉 + 〈x, b〉) , (3)

where (x, a), (y, b) ∈ T M⊕T ∗M . The Courant bracket and the bilinear form are used to give
a characterization of Poisson structure on M . Let π be a 2-vector field on M , and let Lπ denote
the graph of π , i.e., the set of elements (π̃(a), a), where a ∈ T ∗M and π̃ : T ∗M → T M is
the bundle map defined by π(a1, a2) = 〈π̃(a1), a2〉. π is a Poisson structure if and only if the
Courant bracket is closed on the set of sections Γ Lπ and Lπ is maximally isotropic for the
bilinear form (3). Such subbundles of T M ⊕ T ∗M are called Dirac structures ([1]).
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DEFINITION 1.1. Let M be a smooth manifold. A subbundle L of T M ⊕ T ∗M is
called a Dirac structure, if the Courant bracket (2), or equivalently (1) is closed on the set of
sections Γ L and L is maximally isotropic for the bilinear form (3) .

A. Weinstein [8] gives a linearization of (1), or (2) motivated by an integrability prob-
lem of Courant brackets. We refer [3] for the study of the integrability problem of Courant
brackets. Let V be a vector space. Weinstein’s bracket is defined on the space gl(V ) ⊕ V :

[[(ξ1, v1), (ξ2, v2)]]skew := ([ξ1, ξ2], 1

2
(ξ1(v2) − ξ2(v1))) , (4)

where (ξ1, v1), (ξ2, v2) ∈ gl(V ) ⊕ V . This bracket is the skew-symmetrization of a Leibniz
bracket:

[[(ξ1, v1), (ξ2, v2)]] := ([ξ1, ξ2], ξ1(v2)) . (5)

The V -valued nondegenerate symmetric bilinear form is also defined by

((ξ1, v1), (ξ2, v2)) = 1

2
(ξ2(v1) + ξ1(v2)) . (6)

Similar to Poisson structures on a manifold, every Lie algebra structure on V is characterized
as the graph. Let µ : V ⊗ V → V be a binary operation. Set the graph of µ: Lµ :=
{(µ̃(v), v) | v ∈ V }, where µ̃ : V → gl(V ) is the map defined by µ̃(v)(u) = µ(v, u).
The operation µ is a Lie bracket if and only if Weinstein’s bracket (4), or equivalently (5) is
closed on Lµ and Lµ is maximally isotropic for the bilinear form (6). Such objects are called
D-structures in [8]. He calls gl(V ) ⊕ V an omni-Lie algebra. Here we consider relationships
between Courant brackets (2) and Weinstein’s brackets (4), or (5).

In [8] it is suggested that V is a non-unital algebra of linear functions on the dual
space V ∗ with trivial multiplication. Then gl(V ) is the set of derivations of V . Further-
more (0, v) ∈ gl(V ) ⊕ V is a certain derivative D : v �→ (0, v), similar to manifolds cases
D : C∞(M) → Γ (T M ⊕ T ∗M), f �→ (0, df ). So one can view omni-Lie algebras as
geometrical “linearization” of Courant’s original examples.

In this paper we construct an algebraic Courant bracket using Hochschild cohomol-
ogy (resp. homology) groups. Let A be an associative and unital algebra, not necessarily

commutative, and we set the Hochschild cohomology (resp. homology) group H 1(A,A)

(resp. H1(A,A)). In Section 3, we define on the space H 1(A,A) ⊕ H1(A,A) a Leibniz
bracket by the same formula as (2), using algebraic derivatives. We will call the bracket on

H 1(A,A) ⊕ H1(A,A) a Courant bracket on A. Denote H 1(A,A) ⊕ H1(A,A) by E(A).
Our motivation is given by the following example.

EXAMPLE 1.2. Let V be a finite-dimensional vector space. Set V [1] := V ⊕ R · 1 as
a unital algebra over the field R, where the multiplication is almost trivial except the unit 1.

Then H 1(V [1], V [1]) is just gl(V ) and the Courant bracket on V [1] has the same formula as
Weinstein’s bracket (5):

[[(ξ1, dv1), (ξ2, dv2)]] = ([ξ1, ξ2], dξ1(v2)) ,
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where d : V [1] → H1(V [1], V [1]) is an algebraic de Rham derivative. (See Section 5, for
the detailed study.)

In addition, the symmetric bilinear form of E(A) is also well-defined by the formula

(3) without the factor 1/2, by means of a duality between H 1(A,A) and H1(A,A). We
wish a nondegenerate symmetric bilinear form to define the notion of Dirac structure on A.
However, the bilinear form on E(A) is degenerate in general. We notice that the kernel of
the bilinear form becomes an ideal for the Courant bracket on A. Thus we have the exact
sequence of Leibniz algebras:

0 → J → E(A) → E(A)/J → 0 , (7)

where J is the set of the kernel of the bilinear form. The quotient Leibniz algebra ε(A) :=
E(A)/J has an induced nondegenerate symmetric bilinear form and the induced Courant
bracket. Even if A is noncommutative, thanks to the nondegeneracy of the bilinear form on
ε(A), the notion of Dirac structure is well-defined as a maximally isotropic submodule L

of ε(A) such that the induced Courant bracket is closed on the submodule. We call the pair
(A, L) a (noncommutative) Dirac algebra. We will show that every Poisson bracket on a
commutative algebra is characterized as the corresponding Dirac structure.

We denote the matrix algebra of an algebra A by Mr (A). In Proposition 3.3 we will
show that the Courant bracket on Mr (A) is isomorphic to the one of E(A) and the bilinear
form is also preserved by the isomorphism. By this proposition, we obtain an Courant bracket
isomorphism ε(A) ∼= ε(Mr (A)). The first main theorem of this paper is

THEOREM 1.3. Let A be a unital and associative algebra. Then there exists a Courant
bracket isomorphism ε(A) ∼= ε(Mr (A)) preserving the bilinear form. Thus Dirac structures
on A and Mr (A) correspond bijectivelly.

It is well-known that the dual bundle of a Lie algebroid A → M is a Poisson manifold
with Lie-Poisson bracket. When M is a point, the Lie algebroid is a Lie algebra and the
Lie-Poisson bracket is the ordinary one. One can view the algebra V [1] of Example 1.2 as
a linearization of the smooth functions on the vector bundle V ∗ → {o} on a point. In fact
the part R · 1 is the set of functions on the base point. Thus ε(V [1]) is the linearization of
Courant’s original type example T V ∗ ⊕ T ∗V ∗. The second main result of this paper is

THEOREM 1.4. Let V be a vector space of finite dimension. Then ε(V [1]) is isomor-
phic to omni-Lie algebra gl(V ) ⊕ V , i.e., Weinstein’s bracket on gl(V ) ⊕ V is the (induced)

Courant bracket on ε(V [1]).
The paper organized as follows.
In Section 2 we recall some basic properties of Hochschild (co)homology theory and the

algebraic operations corresponding to Lie derivative, interior product and exterior derivative.
In Section 3 we define the Courant bracket, the bilinear form on E(A) and study the basic

property. Especially we show that the algebraic Courant bracket on A satisfies the axioms of
Courant algebroids.
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In subsection 4.1 we study the bilinear form and introduce the quotient space ε(A) with
nondegenerate bilinear form. Algebraic Dirac structures are introduced (Definition 1.1). The-
orem 1.3 is proved.

In subsection 4.2 we show that a Poisson algebra is a Dirac algebra and every Poisson
bracket is characterized by the corresponding Dirac structure.

In Section 5 the second main theorem is shown.

ACKNOWLEDGEMENTS. I would like to thank very much Professors Yoshiaki Maeda
and Akira Yoshioka for their helpful comments and encouragement.

2. Preliminalies

In this section we recall Hochschild (co)homology groups of algebras and set an al-
gebraic differential-calculus. We refer the book [6] for the detailed study of the theory of
Hochschild (co)homology.

2.1. Hochschild homology. Let k be a commutative ring, A be an algebra over the
ring k. The Hochschild n-complex is Cn(A,A) := A ⊗ A⊗n, where the tensor product is
defined over k. The boundary map b : Cn(A,A) → Cn−1(A,A) is defined by the rule below.
Let Pi : Cn(A,A) → Cn−1(A,A) be a k-homomorphism:

Pi(a0 ⊗ ... ⊗ an) := (−1)i(a0 ⊗ ... ⊗ aiai+1 ⊗ ... ⊗ an), (0 ≤ i ≤ n − 1)

Pn(a0 ⊗ ... ⊗ an) := (−1)n(ana0 ⊗ ... ⊗ an−1) ,

where a0, ..., an ∈ A. The map b is defined by the formula:

b(a0 ⊗ ... ⊗ an) :=
n∑

i=0

Pi(a0 ⊗ ... ⊗ an) .

It holds that b2 = 0, and thus the homology groups Hn(A,A) are defined. For example, since
b(a0 ⊗ a1) = [a0, a1] = a0a1 − a1a0, the 0-th Hochschild homology group is H0(A,A) =
A/[A,A], where [A,A] is a k-module generated by all [a, a′]. We denote the center of A
by Z(A). One can check that by the action of Z(A) → Cn(A,A): z(a0 ⊗ ... ⊗ an) =
(za0 ⊗ ... ⊗ an), each Hn(A,A) becomes a Z(A)-module. In fact, for any z ∈ Z(A) we
obtain zb(a0 ⊗ ... ⊗ an) = b(za0 ⊗ ... ⊗ an). If A is commutative then H0(A,A) = A, and
if A is unital then H1(A,A) is isomorphic to the A-module of Kähler differentials which is
an A-module generated by 1-forms ada′ (see the next subsection 2.2.).

2.2. Kähler differentials. We assume A is unital and commutative. Set an A-module
OA|k generated by da for any a ∈ A, where d is merely a symbol. Define two relations (or
axioms) on the module OA|k:

d(λa + λ′a′) − λda − λ′da′ = 0 , (8)

d(aa′) − ada′ − a′da = 0 , (9)
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where λ, λ′ ∈ k. The quotient module OA|k/ ∼ is the module of Kähler differentials, and

it is denoted by Ω1
A|k . It is known that H1(A,A) ∼= Ω1

A|k (see 1.1.10 Proposition in [6]).

The isomorphism between H1(A,A) and Ω1
A|k is given by a0 ⊗ a1 ∼= a0da1, on the level of

cycles. In fact, by the relation (8), OA|k becomes the tensor product A ⊗ A, and the second
relation is the same as the defining relation of the Hochschild homology H1(A,A).

2.3. Hochschild cohomology. Next, we consider the Hochschild cohomology groups
for general algebras. The n-complex Cn(A,A) is Homk(A⊗n,A) and when n = 0,
C0(A,A) = A. The coboundary map β is defined by the following formula. For any
f ∈ Cn(A,A) :

β(f )(a1 ⊗ ... ⊗ an+1) = a1f (a2 ⊗ ... ⊗ an+1)

+
n∑

i=1

(−1)if (a1 ⊗ ... ⊗ aiai+1 ⊗ ... ⊗ an+1)

+ (−1)n+1f (a1 ⊗ ... ⊗ an)an+1

and β : C0(A,A) → C1(A,A) is a �→ [a, ·] for any a ∈ A. It is easily checked that
H 0(A,A) = Z(A) and the cocycles of C1(A,A) is the set of derivations on A. Denote the
derivations on A by Der(A). We have

H 1(A,A) = Der(A)/[A, ·] ,

where [A, ·] is the submodule of C1(A,A) generated by inner derivations [a, ·] : a′ �→
[a, a′]. Especially if A is commutative then H 1(A,A) = Der(A). Note that each Hn(A,A)

is also a Z(A)-module.

2.4. Algebraic derivatives. Secondly, we recall a Lie bracket on H 1(A,A), a Lie
derivative LX, an interior product iX and Connes’ boundary map B on homology.

REMARK 2.1. In [6], the Lie derivative and the interior product are denoted by LD

and eD respectively. Here we use geometrical notations LX and iX.

For any A, Der(A) has a canonical Lie bracket by taking the commutator. One can easily
check that the module generated by inner-derivations [a, ·] is an ideal of Der(A). Thus a Lie

bracket on H 1(A,A) is induced.
A Lie derivative LX : Hn(A,A) → Hn(A,A) associated with an element X ∈ Der(A)

is defined by the formula below, on the level of cycles (Section 4.1 of [6]).

LX(a0 ⊗ ... ⊗ an) :=
n∑

i=0

a0 ⊗ ... ⊗ X(ai) ⊗ ... ⊗ an .

Further, we can show that L[a,·] is the zero map on the level of homology groups for any

a ∈ A (see 4.1.5 Proposition in [6]). Thus LX is well-defined for any X ∈ H 1(A,A).
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It is known that an interior product is also well-defined on Hochschild homology. For
any X ∈ Der(A), set an operator iX : Hn(A,A) → Hn−1(A,A), on the level of cycles, by
the formula:

iX(a0 ⊗ ... ⊗ an) := (−1)n+1(X(an)a0 ⊗ ... ⊗ an−1) .

LEMMA 2.2. For any a ∈ A, i[a,·] is the zero map on the level of homology groups.

PROOF. For any a′ ∈ A, set the map ha′ : Cn(A,A) → Cn(A,A), a0 ⊗ ... ⊗ an �→
a′a0 ⊗ ... ⊗ an. We have

ha′ ◦ b(a0 ⊗ ... ⊗ an) = a′ana0 ⊗ ... ⊗ an−1 +
n−1∑
i=0

Pi(a
′a0 ⊗ ... ⊗ an) ,

b ◦ ha′(a0 ⊗ ... ⊗ an) = ana
′a0 ⊗ ... ⊗ an−1 +

n−1∑
i=0

Pi(a
′a0 ⊗ ... ⊗ an) .

Thus ha′ ◦ b − b ◦ ha′ = (−1)n+1i[a′,·] which implies that i[a′,·] is homotopic to the zero
map. �

Thus the interior product iX is well-defined for any X ∈ H 1(A,A). Like smooth mani-
fold cases, the following lemma holds.

LEMMA 2.3. For any X,Y ∈ H 1(A,A) :
L[X,Y ] = LX ◦ LY − LY ◦ LX , i[X,Y ] = LX ◦ iY − iY ◦ LX .

PROOF. We only show the second formula. For the first formula, we refer 4.1.6 Corol-
lary in [6]. For any a := a0 ⊗ ... ⊗ an :

(−1)n+1LX ◦ iY (a) = LXY (an)a0 ⊗ ... ⊗ an−1

= XY(an)a0 ⊗ ... ⊗ an−1 + Y (an)X(a0) ⊗ ... ⊗ an−1

+
n−1∑
i=1

Y (an)a0 ⊗ ... ⊗ X(ai) ⊗ ... ⊗ an−1 , (10)

and on the other hand,

(−1)n+1iY ◦ LX(a) = (−1)n+1iY

n∑
i=0

a0 ⊗ ... ⊗ X(ai) ⊗ ... ⊗ an

= Y (an)X(a0) ⊗ ... ⊗ an−1 +
n−1∑
i=1

Y (an)a0 ⊗ ... ⊗ X(ai) ⊗ ... ⊗ an−1

+ YX(an)a0 ⊗ ... ⊗ an−1 . (11)

The difference of (10), (11) is (−1)n+1i[X,Y ](a). �
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2.5. Connes’ boundary map. In the following, we assume that A is unital. The
Connes’ boundary map B : Hn(A,A) → Hn+1(A,A) is defined by using cyclic operators
on Cn(A,A) (Section 2.1.7 of [6]). We use an explicit definition:

B(a0 ⊗ ... ⊗ an) :=
n∑

i=0

(−1)ni(1 ⊗ ai ⊗ ... ⊗ an ⊗ a0 ⊗ ... ⊗ ai−1)

+ (−1)ni(ai ⊗ 1 ⊗ ai+1 ⊗ ... ⊗ an ⊗ a0 ⊗ ... ⊗ ai−1) ,

where 1 is the unit of A. For example,

B(a0 ⊗ a1) = 1 ⊗ a0 ⊗ a1 − 1 ⊗ a1 ⊗ a0 + a0 ⊗ 1 ⊗ a1 − a1 ⊗ 1 ⊗ a0 .

REMARK 2.4. It is known that the condition of boundary operator B2 = 0 is satisfied.
However, in our explicit definition, it is difficult to show the condition.

It is known that LX = B ◦ iX + iX ◦B for each Hn(A,A) (4.1.9 Corollary of [6] and see
Remark 2.6 below). We directly show the condition: LX = B ◦ iX + iX ◦ B for H1(A,A).
For any cycles α and α′ we denote α ≡ α′, if α = α′ on the level of homology.

LEMMA 2.5. For any X ∈ Der(A), and any cycle α ∈ C1(A,A) :
LX(α) ≡ B ◦ iX(α) + iX ◦ B(α) .

Thus LX = B ◦ iX + iX ◦ B on H1(A,A) for any X ∈ H 1(A,A).

PROOF. We can put α = a0 ⊗ a1 without loss of generality. By b(1 ⊗ 1 ⊗ a) = a ⊗ 1,
a ⊗ 1 ≡ 0. Thus we obtain

iX ◦ B(a0 ⊗ a1) = iX(1 ⊗ a0 ⊗ a1 − 1 ⊗ a1 ⊗ a0 + a0 ⊗ 1 ⊗ a1 − a1 ⊗ 1 ⊗ a0)

≡ −X(a1) ⊗ a0 + X(a0) ⊗ a1 ,

and B ◦ iX(a0 ⊗ a1) ≡ 1 ⊗ X(a1)a0. In addition, we have

b(1 ⊗ X(a1) ⊗ a0) = X1(a1) ⊗ a0 − 1 ⊗ X(a1)a0 + a0 ⊗ X(a1) .

Thus 1 ⊗ X(a1)a0 ≡ X1(a1) ⊗ a0 + a0 ⊗ X(a1). This gives a proof of the lemma. �

Here we remark that when A is commutative, the derivative da into the space of Kähler
differentials is the same as the the boundary B(a):

B(a) ≡ 1 ⊗ a ∼= da, B = d : A → Ω1
A|k .

REMARK 2.6. We can take a normalized-Hochschild homology group Hn(A,A)

which is defined by the certain quotient Cn(A,A)/ ∼ of Hochschild complex. It is known that
the normalized-Hochschild homology group is isomorphic with an ordinary one (see 1.1.14
of [6]). The condition LX = B ◦ iX + iX ◦ B is shown in the normalized framework for any
Hn(A,A).
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2.6. Canonical pairings. We now set the pairing between H 1(A,A) and H1(A,A)

using the interior product by the form:

〈·, ·〉 : H 1(A,A) × H1(A,A) → H0(A,A), 〈X,α〉 := iXα , (12)

where X ∈ H 1(A,A) and α ∈ H1(A,A). Note that the pairing is Z(A)-bilinear.
We remark here that the pairing (12) is equivalent to the Kronecker product. The Kro-

necker product 〈·, ·〉 : Hn(A,A) ⊗ Hn(A,A) → A ⊗Ae A, is a canonical pairing between
cohomology groups and homology groups defined by, on the level of (co)chains,

〈f, a0 ⊗ a1 ⊗ ... ⊗ an〉 = f (a1 ⊗ ... ⊗ an) ⊗Ae a0 ,

where f ∈ Cn(A,A), Ae := A ⊗ Aop and Aop is the opposite algebra of A (see 1.5.9
Duality of [6]). One can easily show that A ⊗Ae A ∼= H0(A,A). The isomorphism is

a ⊗Ae a′ ∼= aa′, where aa′ is the equivalence class of aa′. In fact, by the definition, we have
a ⊗Ae a′ = 1(1 ⊗ a) ⊗Ae a′ = 1 ⊗ a′a. On the other hand, a ⊗Ae a′ = 1(a ⊗ 1) ⊗Ae a′ =
1 ⊗ aa′. Thus a ⊗Ae a′ = a′ ⊗Ae a. This commutativity is expressed as the abelianzation
A/[A,A] = H0(A,A).

Recall the bilinear forms (3) and (6). By means of the bilinear form, the notion of Dirac
structure is defined as a maximally isotropic subspace. We use carefully the term “maximally
isotropic” in the algebraic framework.

Let k be a unital commutative ring, and let E and M be (left) k-modules, and let (·, ·)
be a M-valued nondegenerate symmetric k-bilinear form on E. Here (·, ·) is nondegenerate,
namely (e, ·) : E → M is injective for any nontrivial e ∈ E.

DEFINITION 2.7. Under the notations above, let L be a submodule of E. We say that
L is “isotropic” for the bilinear form, if the bilinear form is zero on L. When L is isotropic,
we say that L is “maximally isotropic”, if (e, ·) vanishes on L then e is in L for any e ∈ E.

3. Courant bracket of H 1(A,A) ⊕ H1(A,A)

In this section we define a Courant bracket on an associative algebra using the operations
of Section 2.

DEFINITION 3.1. Let A be a unital and associative k-algebra. We call a bracket on

H 1(A,A) ⊕ H1(A,A) below a Courant bracket on A.

[[(X1, α1), (X2, α2)]] = ([X1,X2],LX1α2 − LX2α1 + B〈X2, α1〉) ,

where (X1, α1), (X2, α2) ∈ H 1(A,A) ⊕ H1(A,A). We denote H 1(A,A) ⊕ H1(A,A) by
E(A).

When k contains 1/2, we have Courant’s original formula (1) as the skew-
symmetrization of the Courant bracket on A.
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We set a symmetric Z(A)-bilinear form (·, ·) on H 1(A,A)⊕H1(A,A) using the formula
(3) without the factor 1/2, i.e., for any e1 := (X1, α1), e2 := (X2, α2) ∈ E(A):

(e1, e2) := 〈X2, α1〉 + 〈X1, α2〉 . (13)

Note that this bilinear form is H0(A,A)-valued in general. In addition, we set a map ρ :
E(A) → H 1(A,A) as the canonical projection:

ρ(X, α) := X . (14)

By the definition, ρ has a Z(A)-linearity. We notice a derivative action:

H 1(A,A) × Z(A) → Z(A) , (X, z) �→ X(z) , (15)

This action is well-defined on the level of homology, since [a, z] = 0 for any a ∈ A.

PROPOSITION 3.2. Let A be a unital and associative k-algebra. Then the Courant
bracket satisfies the following properties. For any e1, e2, e3 ∈ E(A) and z ∈ Z(A) :

[[e1, [[e2, e3]]]] = [[[[e1, e2]], e3]] + [[e2, [[e1, e3]]]] (16)

ρ[[e1, e2]] = [ρ(e1), ρ(e2)] , (17)

[[e1, ze2]] = z[[e1, e2]] + ρ(e1)(z)e2 , (18)

2[[e1, e1]] = D(e1, e1) , (19)

Lρ(e1)(e2, e3) = ([[e1, e2]], e3) + (e2, [[e1, e3]]) , (20)

where D is a k-homomorphism:
D : H0(A,A) → H1(A,A), α �→ (0, B(α)) ,

and ρ(e1)(z) of (18) is the action (15).

PROOF. The formulas (17) and (19) are clearly. For (16), (18) and (20), by Lemma 2.3,
2.5 we can take the same proof as the case of T M ⊕ T ∗M on a smooth manifold. �

The conditions (16)–(20) above are the set of axioms of Courant algebroids in [7] (see
also [4], [5]). However E(A) is not a Courant algebroid, because the bilinear form is degen-
erate in general. In the next section we will study the bilinear form on E(A).

For given algebras A and A′, we write E(A) ∼= E(A′), if there exists an isomorphism
φ : H0(A,A) ∼= H0(A′,A′) and if there exists a Courant bracket isomorphism preserving the
bilinear form up to φ. We study isomorphisms between Courant brackets.

It is well-known that a unital algebra A and the matrix algebra Mr (A) are Morita equiv-
alent, and thus the Hochschild (co)homology groups of A and Mr (A) are isomorphic (see
1.2.4 and 1.5.6 in [6]).

PROPOSITION 3.3. For any A, E(A) ∼= E(Mr (A)).

PROOF. We take isomorphisms cotr : H 1(A,A) → H 1(Mr (A),Mr (A)) and inc :
H1(A,A) → H1(Mr (A),Mr (A)) in [6]. Here these maps are defined by

cotr(X)(mij ) := (X(mij )), inc(a0 ⊗ ... ⊗ an) = E11(a0) ⊗ ... ⊗ E11(an) ,
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on the level of chains, where X ∈ H 1(A,A), mij ∈ Mr (A) and E11(a) is a matrix such that
the (1, 1)-position is a and other positions are all zero. We denote cotr and inc by T and I

respectively.
It is obvious that T is a Lie algebra isomorphism. First we show that T ⊕ I preserves the

bilinear form. It is sufficient to show that iT (X) ◦ I (a0 ⊗ a1) = I ◦ iX(a0 ⊗ a1).

iT (X) ◦ I (a0 ⊗ a1) = iT (X)(E11(a0) ⊗ E11(a1))

= T (X)(E11(a1)) · E11(a0)

= E11(X(a1)) · E11(a0)

= E11(X(a1)a0) = I ◦ iX(a0 ⊗ a1) .

Thus the bilinear form is preserved by the isomorphism. Secondly we show that the Courant
bracket is preserved. For any a ∈ A, we have B ◦ I (a) ≡ 1Mr (A) ⊗ E11(a) and I ◦ B(a) ≡
E11(1) ⊗ E11(a), where 1Mr (A) is the unit element of Mr (A). On the other hand,

(B ◦ I − I ◦ B)(a) ≡ (1Mr (A) − E11(1)) ⊗ E11(a)

= −b{(1Mr (A) − E11(1)) ⊗ E11(a) ⊗ E11(1)}
≡ 0 .

Thus B ◦ I (a) = I ◦ B(a) on the level of homology. We now obtain below, on the level
of homology: I ◦ B ◦ iX(a0 ⊗ a1) = B ◦ iT (X) ◦ I (a0 ⊗ a1). One can directly show:
iT (X) ◦ B ◦ I (a0 ⊗ a1) = I ◦ iX ◦ B(a0 ⊗ a1), on the level of homology. Thus we obtain

LT (X) ◦ I (α) = I ◦ LX(α) and I ◦ B〈X,α〉 = B〈T (X), I (α)〉 for any X ∈ H 1(A,A) and
α ∈ H1(A,A). Thus T ⊕ I preserves the Courant bracket. �

This proposition will be used to give a proof of Theorem 1.3 in the next section. As an
example of other isomorphisms we can easily check that E(A) ∼= E(Aop), where Aop is the
opposite algebra of A. (We refer E.2.1.4 of [6].)

EXAMPLE 3.4. E(A) ∼= E(Aop).

4. Dirac algebras and Poisson brackets

4.1. Dirac structures. Let M be a smooth manifold. Dirac structures L on M are
defined as maximally isotropic subbundles of T M ⊕ T ∗M for the bilinear form (3) such that
the Courant bracket (2) is closed on the set of sections Γ L. The maximality condition is
well-defined because the bilinear form (3) is nondegenerate. In Courant’s original example,
the pair (M,L) is called a Dirac manifold. In this subsection, we introduce a notion of Dirac
algebra. First we study the bilinear form of E(A).

Let A be a unital k-algebra. The bilinear form (13) of E(A) is degenerate in general.
But we can show that the kernel of the bilinear form is an ideal of E(A) with respect to the
Courant bracket. Denote the kernel by J , i.e.,

J := {e ∈ E(A) | (e, e′) = 0 for any e′ ∈ E(A)} . (21)
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LEMMA 4.1. The kernel J is an ideal of E(A).

PROOF. For any e ∈ J , e1, e2 ∈ E(A), by (20) in Proposition 3.2 we have

Lρ(e1)(e, e2) = ([[e1, e]], e2) + (e, [[e1, e2]]) .

Since e is in the kernel, we have ([[e1, e]], e2) = 0. By the definition of Courant bracket, the
skew-symmetrization is

[[e1, e]] − [[e, e1]] = 2[[e1, e]] − D(e1, e) , (22)

where D was defined in Proposition 3.2. This implies that J is a two-side ideal. �

From this lemma, when J �= E(A), we obtain a nontrivial Leibniz algebra E(A)/J

with H0(A,A)-valued nondegenerate symmetric bilinear form (·, ·). Here the bilinear form
on E(A)/J is Z(A)-bilinear. We denote E(A)/J by ε(A). When ε(A) �= 0, we obtain a
Leibniz algebra ε(A) with a nondegenerate bilinear form and a (induced) Courant bracket. So
we define Dirac structures on noncommutaitve algebras.

DEFINITION 4.2. Let A be a unital and associative k-algebra. We assume that ε(A) �=
0. We call a submodule L of ε(A) a Dirac structure on A, if L is maximally isotropic for
the induced bilinear form on ε(A) and the induced Courant bracket on ε(A) is closed on L.
We call the pair (A, L) a (noncommutative) Dirac algebra.

In general we have no hope of defining the map ρ : ε(A) → H 1(A,A). When A is
commutative, the kernel J becomes a submodule of H1(A,A), thus the map ρ is well-defined
(see Lemma 4.8 below).

An algebraic meaning of Dirac structure is that it is a Lie algebra. By the isotropy of
Dirac structure we have a corollary below.

COROLLARY 4.3. A Dirac structure L on k-algebra A is a k-Lie algebra and the
inverse image p−1(L) of the canonical projection p : E(A) → ε(A) satisfies the defining
conditions of Lie algebroids. For any l1, l2 ∈ L and z ∈ Z(A) :

σ [[l1, l2]] = [σ(l1), σ (l2)], [[l1, zl2]] = z[[l1, l2]] + σ(l1)(z)l2 ,

where σ is an anchor map defined by the composition p−1(L)
ρ→ H 1(A,A) → Der(Z(A))

and [·, ·] is a commutator on Der(Z(A)).

PROOF. It is obvious that the Courant bracket on A is closed on p−1(L). The anchor
map is well-defined by the action (15). Two conditions above follow from (17), (18) in Propo-
sition 3.2. �

Note that the above σ differs from ρ in Proposition 3.2. Especially when k = R and
Z(A) is the algebra of smooth functions on a manifold M , p−1(L) is just the space of sections
of a Lie algebroid on M .

In the next subsection we will show that a Poisson algebra is a Dirac algebra with the
corresponding Dirac structure. It is well-known that closed 2-forms on a manifold define
Dirac structures (see [1]). Similar to manifold cases, we obtain a proposition below.
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PROPOSITION 4.4. We assume ε(A) �= 0. Let ω ∈ H2(A,A) be a closed 2-form in
the sense of B(ω) = 0 and iXiY ω = −iY iXω. Then p(Lω) is a Dirac structure, where Lω is
the set of elements (X, iXω) and p is the canonical projection p : E(A) → ε(A).

PROOF. It is obvious that Lω is isotropic on E(A) and ε(A). By the same way as
geometrical cases in [1], one can easily check that the Courant bracket is closed on Lω. We
show that p(Lω) is maximally isotropic. Recall Definition 2.7. For any (X, iXω) ∈ Lω,
we assume ((X, iXω), (Y, α)) = 0 on E(A). Then we have iXiY ω = iXα for any X, thus
(0, iYω − α) is in the kernel J . Thus in ε(A) we have α = iY ω, i.e., p(Lω) is maximally
isotropic. �

From the proposition above, when ω is trivial, the projection of H 1(A,A) is a Dirac
structure.

We now give a proof of Theorem 1.3 in Introduction.

PROOF. Using the isomorphism T ⊕ I : E(A) ∼= E(Mr (A)) in Proposition 3.3, we
obtain a Courant bracket isomorphism

p ◦ (T ⊕ I) ◦ p−1 : ε(A) ∼= ε(Mr (A))

which preserves the bilinear form on ε(A) up to the isomorphism H0(A,A) ∼=
H0(Mr (A),Mr (A)). Thus Dirac structures correspond bijectively between A and Mr(A).
This gives the proof of Theorem 1.3. �

From Example 3.4 and Theorem 1.3, we obtain ε(A) ∼= ε(Mr (A)op). Using the theorem
we give an example of Dirac algebra on a smooth manifold.

EXAMPLE 4.5. Set A := C∞(M) which is the set of smooth functions on a smooth
manifold M . Then Mr (A) is identified with Γ End(Rr × M) which is the space of sec-
tions of the endmorphism bundle of the trivial bundle. Using the identification ε(C∞(M)) ∼=
Γ (T M ⊕ T ∗M), we obtain Dirac structures on the algebra Γ End(Rr × M) from geomet-
rical (i.e. ordinary) Dirac structures on the manifold. For instance, for a Poisson struc-
ture π on M , the graph Lπ is a Dirac structure on C∞(M). We can denote the deriva-

tion T (X) ∈ Der(Mr (A)) for X ∈ Γ T M in the matrix form

(
X 0
0 X

)
, where we put

r = 2. On the other hand, I (f dg) is

(
f 0
0 0

)
⊗

(
g 0
0 0

)
. Thus the Dirac structure

p ◦ (T ⊕ I) ◦ p−1(Γ Lπ) has the form, on the level of chains,
{((

f Xg 0
0 fXg

)
,

(
f 0
0 0

)
⊗

(
g 0
0 0

))∣∣∣∣ X ∈ Γ T M, f, g ∈ C∞(M)

}
,

where Xf is the Hamilton vector field of f .

REMARK 4.6. Lemma 4.1 is important for Courant algebroids in Poisson geometry.
Given a “week”-Courant algebroid with degenerate symmetric bilinear form, we can take
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the quotient bundle with the induced Leibniz bracket and the nondegenerate bilinear form.
Conversely, we expect that every Courant algebroid is given in this way.

4.2. Poisson algebras. The purpose of this subsection is to show that every Poisson
bracket is characterized as the corresponding Dirac structure.

Standing Assumptions. We assume A is a unital and commutative k-algebra. Thus

H 1(A,A) = Der(A), H1(A,A) = Ω1
A|k , H 0(A,A) = Z(A) = A = H0(A,A) and the

boundary map B = d : A → Ω1
A|k . In addition we assume that ε(A) �= 0. The condition is

satisfied if there exists a nontrivial derivation on A. Thus this assumption is always satsified
in Poisson geometry.

It is known that the derivative d : A → Ω1
A|k has the universality below (see 1.3.7–

1.3.9 of [6]). For any derivative δ : A → M to an A-module, there exists a unique map

φ : Ω1
A|k → M such that δ = φ ◦ d , here φ is A-linear.

REMARK 4.7. Usually, the universal derivation of an algebra is defined as the deriva-

tion d : A → I/I 2, where I is a (non-symmetric) A-bimodule generated by 1 ⊗ a − a ⊗ 1

for any a ∈ A and I/I 2 is the symmetrization of I . One can check that I/I 2 ∼= Ω1
A|k .

LEMMA 4.8. If (X, α) is an element of the kernel J (21) of the bilinear form then
X = 0.

PROOF. By the assumption, for any a ∈ A we have ((0, da), (X, α)) = 0. When
da �= 0, this gives X(a) = 0. Even if da = 0, by the universality above, we have
X(a) = 0. �

By this lemma, when A is commutative, the map ρ : ε(A) → Der(A) is induced from ρ

on E(A). In this case, all conditions (16)–(20) of Proposition 3.2 are satisfied on ε(A). Thus
for a commutative algebra A, ε(A) can be viewed as an example of Courant algebra. In fact if
k includes 1/2 and A is commutative then ε(A) becomes an example of (k,A) C-algebra. In
[8] an algebraic edition of Courant algebroids is defined on a non-unital commutative algebra,
this is called a C-algebra. It was shown that omni-Lie algebra gl(V ) ⊕ V is a C-algebra on
the algebra V with trivial multiplication. In the next section, we will show that the brackets
of omni-Lie algebras are given by the purely algebraic Courant brackets.

Now we consider Poisson algebras (on commutative algebras). In Poisson manifold
cases, it is well-known that a Poisson bracket {·, ·} on C∞(M) is equivalent with the Poisson

structure π ∈ Γ
∧2

T M using the definition {f, g} = π(df, dg) for any f, g ∈ C∞(M).
Recall that the Poisson condition [π, π] = 0 is equivalent to the Jacobi law of the bracket
{·, ·}. The Poisson structure π is identified with the bundle map π̃ : T ∗M → T M by the
canonical pairing π(df, dg) = 〈π̃(df ), dg〉, and thus the Poisson bracket is identified with
the Dirac structure Lπ given by the graph of π̃ . For an arbitrary Poisson algebra A these
identifications are not always defined. But we can get the Dirac structure of a Poisson algebra.
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Let {·, ·} be a k-bilinear biderivation on a k-algebra A, not necessarily Poisson bracket.
From the universality above, a Hamiltonianzation A → Der(A), a �→ {a, ·} is given by the

formula: {a, ·} = π̃(da) using the unique map π̃ : Ω1
A|k → Der(A). So we obtain the graph

of the map π̃ , which we denote by Lπ :

Lπ := {(π̃(α), α) | α ∈ Ω1
A|k} .

Note that Lπ is a A-submodule of E(A).

PROPOSITION 4.9. Let {·, ·} be a k-bilinear biderivation on A, and we put the corre-
sponding map π̃ . The bracket is a Poisson bracket if and only if the pairing (·, ·) on E(A) is
zero on Lπ and the Courant bracket is closed on Lπ .

PROOF. We assume that Lπ is isotropic and the Courant bracket is closed on Lπ .
For any elements (π̃ (da1), da1), (π̃(da2), da2) ∈ Lπ , by the isotropy condition, we have
〈π̃ (da2), da1〉 = −〈π̃(da1), da2〉. Here 〈π̃(da2), da1〉 = iπ̃(da2)(da1) = {a2, a1}. This gives
the skewsymmetry of the bracket. The Courant bracket of (π̃(da1), da1) and (π̃(da2), da2)

has the form: ([π̃(da1), π̃ (da2)], 1 ⊗ {a1, a2}), here 1 ⊗ {a1, a2} is the equivalence class of

1 ⊗ {a1, a2}, i.e., 1 ⊗ {a1, a2} = d{a1, a2} on Ω1
A|k . Then we have

π̃ (d{a1, a2}) = {{a1, a2}, ·} = [π̃(da1), π̃(da2)] , (23)

this implies that {·, ·} is a Poisson bracket.
Conversely, we assume that {·, ·} is a Poisson bracket. Then we have (23) by the Jacobi

identity, i.e., generators of Lπ is closed under the Courant bracket. Since Ω1
A|k is generated

by {da|a ∈ A} as A-module, by (18) in Proposition 3.2 the Courant bracket is closed on Lπ .
The isotropy condition of Lπ is equivalent to the skewsymmetry of {·, ·}. �

LEMMA 4.10. The submodule Lπ of Proposition 4.9 is maximally isotropic on E(A),
hence p(Lπ) is maximally isotropic on ε(A), where p : E(A) → ε(A) is the canonical
projection.

PROOF. For some element (X, b′db) in E(A), we assume that ((X, b′db), ·) = 0 on
Lπ . Then for any a ∈ A, ((X, b′db), (π̃da, da)) = X(a) + b′{a, b} = 0. When da �= 0,
this implies that X(a) = π̃(b′db)(a). Even if da = 0, by the universality we obtain X(a) =
π̃(b′db)(a) = 0. Thus X = π̃(b′db) which gives that Lπ is maximally isotropic on E(A).
This implies that p(Lπ) is maximally isotropic in ε(A). �

Here we obtain the main result of this subsection.

PROPOSITION 4.11. Let {·, ·} be a binary and biderivation on A. The bracket is a
Poisson bracket if and only if p(Lπ) is a Dirac structure, where Lπ is the same as Lπ in
Proposition 4.9.

PROOF. By p−1(p(Lπ )) = Lπ . �
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Note that since A is commutative, ε(A) is identified with Der(A) ⊕ (Ω1
A|k/J ). Thus

p(Lπ) is still the graph of the induced map.
By Proposition 4.11, every Poisson bracket on a unital commutative algebra A is char-

acterized by the Dirac structure of ε(A).

REMARK 4.12. There exists the case ε(A) = 0, for example A = k. For this case
we may always take the trivial Poisson bracket on A. But this zero Poisson bracket is not
characterized by Dirac structures. This is the difficulty of the algebraic formulation.

In Section 5 an example of ε(3A) will be given and studied.

Noncommutaive Poisson algebras. Finally at this subsection, we consider Poisson
structures associated with Poisson brackets. Let {·, ·} be a Poisson bracket on A. Then we
have k-homomorphism π : A⊗A → A by π(a ⊗ a′) = {a, a′}. Since {·, ·} is a biderivation,
one can easily check that π is a Hochschild 2-cocycle, thus there exists the equivalence class

π ∈ H 2(A,A). We do not know whether the class satisfies the Poisson condition [π, π] = 0
on H 3(A,A) under the Gerstenhaber bracket. P. Xu [9] showed the converse in noncommu-
tative algebra cases. If Π ∈ H 2(A,A) satisfies the Poisson condition then the center Z(A)

becomes a Poisson algebra by the bracket {z, z′} := [z, [Π, z′]]. We do not know whether a
noncommutative Poisson structure Π defines the Dirac structure or not, in general. Here we
consider a particular case. If the matrix algebra Mr (A) of a commutative algebra A has a
Poisson structure Π then Z(Mr (A)) ∼= A is a Poisson algebra, and thus we have a Dirac
structure Lπ on A. By Theorem 1.3 we obtain the corresponding Dirac structure on Mr (A).

5. Omni-Lie algebras v.s. ε(A)

In this subsection we will show Theorem 1.4 in Introduction.
Let V be a vector space over the field R. Set the vector bundle V ∗ → {o} over a point,

where V ∗ is the dual space of V . The fiber-linearized functions on the bundle is a vector space
V [1] := V ⊕ R · 1 with almost trivial multiplication:

v1 · v2 = 0 and v · 1 = 1 · v = v for any v1, v2, v ∈ V .

It is clear that V [1] is commutative.
We now move on to the proof of Theorem 1.4. To show the theorem, we determine the

module of Kähler differentials Ω1
V [1]|R. Recall the definition (8) and (9) in Section 2. Let

{vi} be a basis of V . First we consider the module OV [1]|R. It is generated by all elements
{d1, vd1, dv, vdv′ | v, v′ ∈ V } as infinite R-module. Since the multiplication on V is trivial,
v′′vdv′ = 0. First, we assume the linearity (8) of d . Then the dimension of OV [1]|R is reduced

to in 1 + 2 dim V + (dim V )2 and the induced module is generated by {d1, vid1, dvi, vidvj },
because every element of V [1] is generated by {1, vi}. Remark that the dimension is the same
as the one of tensor product V [1]⊗V [1]. Secondly, we assume the derivation property (9) of
d . All defining relations are generated by d1 = 0, vid1 = 0 and vidvj = −vjdvi . Here we
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used d(vivj ) = 0. Thus the dimension of ΩV [1]|R is dim V +dimV C2 and it is generated by
{dvi, vidvj (i<j)} as R-module, where ·C· is the combination. Thus we have R-isomorphism

Ω1
V [1]|R ∼= V ⊕ ∧2

V by dv ∼= v, vdv′ = v ∧ v′.
It is easy to determine the space of derivations Der(V [1]). For any X ∈ Der(V [1]), if

X(v) = v′ + r · 1 for any v, v′ ∈ V then 0 = X(v2) = 2rv. Thus we have r = 0, i.e.,
Der(V [1]) ⊂ gl(V ). On the other hand gl(V ) becomes the space of derivations of V [1] by
the rule ξ(1) := 0 for any ξ ∈ gl(V ). Thus we obtain Der(V [1]) ∼= gl(V ) and

PROPOSITION 5.1. E(V [1]) ∼= gl(V ) ⊕ V ⊕ ∧2
V .

Now we compute the Courant bracket on V [1]. For any (ξ1, dv1), (ξ2, dv2), the bracket
has Weinstein’s formula (5):

[[(ξ1, dv1), (ξ2, dv2)]] = ([ξ1, ξ2],Lξ1dv2 − Lξ2dv1 + d〈ξ2, dv1〉)
= ([ξ1, ξ2], d(ξ1(v2))) ,

where (ξ1, dv1), (ξ2, vdv2) ∈ ε(V [1]) and the Connes boundary map B is d . For
(ξ1, dv1), (ξ2, vdv2), the bracket is ([ξ1, ξ2], 0) from the triviality of the multiplication.

LEMMA 5.2. The kernel J of the bilinear form of E(V [1]) is generated by

{(0, vidvj )}, i.e., J ∼= ∧2
V

PROOF. By iξ (vidvj ) = ξ(vj )vi = 0 and Lemma 4.8. �

From the above lemma, we obtain an isomorphism between Leibniz algebras:

ε(V [1]) ∼= gl(V ) ⊕ V , (ξ, dv) ∼= (ξ, v) .

One can easily check that by the isomorphism the bilinear forms are isomorphic. Thus Theo-
rem 1.4 is proved. We easily obtain the corollary of the theorem.

COROLLARY 5.3. A Poisson bracket on V [1] corresponds bijectively with the Lie
bracket on V . Thus a Lie-Poisson bracket on V ∗ corresponds bijectively to the Poisson bracket
on V [1].

PROOF. By the isomorphism, the Dirac structure of a Poisson bracket on V [1] corre-
sponds to the graph of a Lie algebra structure on V . �
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