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1. Introduction

Fors = (s1,...,s4) € N? withs; > 1, the Multiplze Zeta Value (MZV) series £4(5) is
defined as

) =Calsr, o5y = Y kyttek M
1<ki<---<kg
We call d itsdepth and wr (5) := Y%, s; itsweight.
Now we consider partial sums of these MZV series. More precisely, for s € N¢ and a
non-negative integer n, the nth partial sum of MZV series H,(s; n) is defined by

Hy(5:n) = Hy(s1,...,54:n) = Z [ SREREN TR (1.1)

1<ki<---<kg<n

where H;(s;r) = Oforr = 0,...,d — 1. Then the following theorem was obtained by
Wolstenholme ([3], p. 89):

THEOREM 1.1. For any prime number p > 5, H1(1; p — 1) = 0 (mod p2).

In [6] Zhao studied the p-divisibility of H,(s; p — 1) for general s, which turned out
to be closely related to the Bernoulli numbers B; defined by -+ = > /2, %x’. When
(p, 1) isanirregular pair, i.e., p|B; forevenr with2 <t < p — 3, Hy(s; p — 1) isdivis-
ible by higher power of p than usually expected. As another generalization of Theorem 1.1,
Bayat considered the p-divisibility of Hy(s; p* — 1) for a positive integer a in [1], where
Hi(s; n) = Zli]j{fn k=% forany n € Nandwehave H'(s; p — 1) = Hi(s; p — 1).
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In this paper, we study the p-divisibility of the series H;(s: p* — 1) for 5 =
(51,...,84) € Nd, where

Hi(s;n) = Z ki*t-- k% for nmeN.
1<ky<--<kg=n
piky.....ptkq

This series was originally introduced by Zhao in [7], and although H; depends on p, we do
not put p here by following Zhao's notation. We generalize Zhao's resultsin [6] toa > 2,
where he treated the case « = 1, and these contain Bayat'swhend = 1 (Lemma 2.2 in Sec.
2). Here we will see that these sums are related to irregular pairs of higher order introduced
by Keller, which is very interesting. The definition of such a primeis the following:

DEFNITION 1.2 ([5], p- 3). Let B()=B/1. A pair (p,1) iscaled anirregular pair
of order aif p¢ |B() with2 <1 < p*~1(p — 1) and even .

Here is the outline of the paper: We start with MZV series of depth 1 in Section 2, and
deal with homogeneous MZV series, i.e., 5 = ({s}¢) the set formed by repeating s d timesin
Section 3; In Section 4 we treat with the non-homogeneous series of depth 2, and relate the
result to the p-divisibility set J (s1, s2 | p), thesetof n € Z- suchthat p | H3 (s1, s2; n) (see
Corollary 4.5).

2. Zeta-valueseries

Let a be apositive integer throughout this paper. The resultsin this section are general-
izations of thosein [6] toa > 2.
We need the following Clausen-von Staudt Theorem (see [4], p. 233):

l . .
p—1j2m  iS@ninteger.

LEmMMA 2.1. For apositiveinteger m, Ba, + Y
Now we begin with the following lemma.

LEMMA 2.2 (cf.[6,LemmaZ2.2]). Let p bean odd prime and s be a positive integer.
Then

0 (mod p® s+Da) if sisoddandp —1{s+1,
sr. a1\ — or sisevenandp — 115,
Hilsspm =D =1 et (mod pe) if p—1]s,

—p%=Ym+1)/2(mod p%) if s+1=m(p—1),

where g (i) denotes the parity of i whichis 1if i isodd and 2 otherwise.
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PROOF. Suppose s is odd, and choose n such that 3 < 1 = np®(p — 1) —s5 <
p%*~1(p — 1) + 2. Thent isodd. By Fermat's Little Theorem we have

pafl pafl paflil

1
Hi(s;p®—1) = Z = = K — Z (pk)"  (mod p%).
k,éOk(ﬁ]c_)d p) k=1 k=1

Now we use the formula of power-sum

pi-1
1
Z k' = ——(Biy1(p*) — Biy1) fort>1, (2.1
r+1
=1
where B, 1(z) are the Bernoulli polynomials defined by 2¢7 = % B2 ¢ and so
t+1
t+1
Bi1(p) = kZO( L >Br+1k pr.

Thus,

t
HiGs;p" =1 = p"Bi + 5 p*B,_1 (mod p*).

When p — 11 s+ 1, thislemmafollows from the fact that B; isOfor odd j greater than 1 and
that B;_1 is p-integral by Lemma2.1.

Ifs +1=m(p—1), thenwecanputl <s < p?*L(p—-1) —1land2 <m < p*~1
Takingn = m, wegetr = mp®(p —1) —m(p — 1) + 1. From pB,_1 = —1 (mod p) by
Lemma 2.1 again, we obtain

* a L pZafl 2a
Hi(s; p —1)E§p Bi_1=— > (m + 1) (mod p=).
Similarly, we can prove thislemmafor an even s. a

REMARK. Hj(s; p* — 1) isthe particular case of H; (s; pn) forn = pa=1 (cf. [7,
Lemma3.2]). Forodds < p — 1, Lemma 2.2 is arefinement of what Bayat obtained in [1,
Theorem 4].

The proof of Lemma 2.2 is effectivein later discussion. In fact, a close look at the proof
gives us the following refinement:

THEOREM 2.3 (cf.[6, Theorem 2.8]). Supposen isa positiveinteger and p isan odd
prime such that p > 2n + 3. Then we have the congruences:

2
51 Hi@n =1L p"—D=p* Hi@2n; p*=1) (mod P
on 2.2)

2 (mod p3%).

PY oy pami B -2
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In particular, the following are equivalent:

@ (p, p*Y(p—1)—2n)isanirregular pair of order a.

(b Hf2n;p*—-1)=0 (mod p24).
(© Hj2n—-1;p*—1)=0 (mod p3*).
(d) Hi(m,n;p*—1=0 (mod p).

PROOF. Takem suchthata +1 <t := mp*Yp—1)—2n < a+ p*1(p —1).
Thenevent = p*1(p — 1) — 2n (mod p*~L(p — 1)) and p — 111, s0 B,/t isa p-integer
([41, p. 238). From (2.1) we have

pi-1

t+1
Hien—1:p-D= Y k+t="T22p (modp)
k=1 2
k#0 (mod p)
and
pi-1
Hf@n:p*—1D= Y k' =p*B (modp*),
k20 (mod )
and by the Kummer Congruences ([4], p. 239) we obtain
2nB a-10,_1y_
B, = M (mod pa) .

2n 4 po-t
Hence (2.2) and the equivalences of (a) to (c¢) follow. For the equivalence of (b) and (d), we
use the shufflerelation

Hi(n; p* — 1% = 2H} (n, n; p® — 1) + Hy (2n; p* — 1), (2.3)

(see Section 3), and apply Lemma 2.2. m]

COROLLARY 2.4 (cf.[6, Proposition 2.9]). Letn and p be asin Theorem 2.3. Then
thereexistsn’ which satisfies2n =27’ (mod p — 1) and2 <27’ < p—-3.If (p, p—2n" - 1)
isan irregular pair, then the following conditions are equivalent:

@ (p, p*L(p—1)—2n)isanirregular pair of order 2a.
(b Hi@2n;p*-1)=0 (mod p34).
(© Hi2n—1;p*—1)=0 (mod p*).

When n is odd, they are all equivalent to
(d) Hj(m,n;p"—1)=0 (mod p3%).

PROOF. Takem suchthat2a +1 <1t :=mp*L(p —1) —2n < 2a + p*1(p —1).
Thenrisevenandr = p%~1(p — 1) — 2n (mod p2*—1(p — 1)).
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Suppose p — 1|t — 2. Then p — 1|12n' + 2, namely p — 20/ — 1 = 2. Since (p, 2) is
never an irregular pair, p — 11t — 2 and B;_» is p-integral. The equivalences of (a) to (d)
follow asin the proof of Theorem 2.3. O

3. HomogeneousMZV series

In this section, we consider homogeneous MZV series, i.e., the series with 5 =
(s,s,...,s). Now shufflerelations for H; explained in [6] can be applied to Hj: for positive
integers so, 51, . . ., g and n, it holds that

H{(so;n) - Hj(s1,...,8a;n)
d
= Z H;+1G§”)+ZH;(SL-~-,Sj—1,5j+SO,Sj+1,-~-,Sd§”),
seShfl(sg, (s1,...,54)) j=1
where
Shfl(so. (51, .- .. 54)) = Y e So@) -

o permutes {0,...,d}
0_1(1)<~»<0_1(d)

Thus, foranyl =1,...,d — 1, wehave

Hi(s:m)-Hi (s)™im = Y Hj,Gin)
seShfl({is}, {s}4-1)

+ > H ,G;n).
FeSM({U+D)s), (s)4—1-D)
Applying "¢~ (—1) to the both sides, we get the following lemma:
LEMMA 3.1 (cf.[6, Lemma2.10]). Lets,d andn be positiveintegers. Then

d
dHy({s}in) =Y (=Dt Hi(s:n) - Hy ({s}* i n).
=1
Let P(d) bethe set of unordered partitions of d. For A = (A1,..., A,) € P(d) we put
H**(s:n) = [Ty Hi (kis i n).
LEMMA 3.2 (cf.[6,LemmaZ2.11]). Lets,d andn bepositiveintegers. Then there are
integers c; such that

dHj(sYin) = Y aH (sin), (3.1)
rEP(d)

where ¢y = (=1)4~1(d — D).
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PROOF. The proof goes by induction on d asthat of LemmaZ2.11in[6].
ForA = (A1, ..., A) € P(d), c; isdetermined recursively by

r

G |

where )Ti and >" mean that we leave out A; and that we take non-repeating sub-partitions
(A, ..., A, ..., A inthe sum, respectively. O

The following theorem treats the particular case n = p“ of Proposition 3.3 in [7], and
we obtain the stronger result:

THEOREM 3.3 (cf.[6, Lemma2.13]). Let sand d be two positive integers, and p be
anodd primesatisfying p > d +2and p — 1 dividesnoneof sl ands/+1forl =1, 2,...,d.
Then

Hi({s}4; p* —=1) =0 (mod p#d-Day, (3.2
Particularly, if p > sd + 3, then (3.2) isalwaystrue and so p“ | H} ({s}?; p® — 1).
PROOF. We use (3.1) by substituting p* — 1 for n and apply Lemma 2.2. |

PROPOSITION 3.4 (cf.[6, Proposition 2.14]). Suppose (p, p* L(p —1)— (3s+1)) is
anirregular pair of order a. Then

0 (mod p3*)  for a =1,

Hi(s,s,s;:p*—1 =
3( P ) 0 (mod p3—2) otherwise.

PROOF. By the assumption, s must be odd. From Lemma 3.2 it holds that
6H; ({s}%; p* — 1) = Hy (s; p* — D> = 3H; (s; p* — D H{ (2s5; p* — 1)+ 2H{ (3s; p* —1).

We apply Theorem 2.3 and Lemma 2.2 to H; (3s; p“ — 1) and other terms on the right-hand
side, respectively. a

4. Non-homogeneous M ZV series of depth 2

For s = (sq1, s2), we obtain the following theorem:

THEOREM 4.1 (cf.[6, Theorem 3.1]). Let s and s2 be two positive integers and p be
anoddprime. Lets; =m, sp=n (mod p —1)and0 <m,n < p — 2. Then
1

Hj (s1,52; p* = 1) = p* " - w (mod p?),
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where
n if (m,n)=(0,0),
1 if (m,n)=(,0),
_J]-1 if (m,n)=(0,1),
@= (=D" (m+n
( )Bp_m_n if p>m+nand m, n>1,
m-+n m
0 otherwise,
and
1 ifa=1,
=11
1 > otherwise.

PROOF. Letsy =m1, s2 =n1 (mod p~L(p—1))and0 < m1,n1 < p?PHp—-1)—1,
andlet M = p*Y(p—1)—miand N = p* L(p—1)—n1. Thenl< M, N < p*L(p—-1)
and

Hj (51,52, p* — 1) = Z iy (mod p®).
1§k1<k2§pa—1
ptkiand ptko

To proceed the proof for a > 2, we need the result for « = 1 in [6] and the following two
lemmas. O

LEMMA 4.2. For anodd prime p and positiveintegers M and N,

Z KMy = pet Z KMEY  (mod p®) 4.1)
1<ki<kp<p®—1 1<ki<kp<p—-1
ptkiand ptks

holds except when p — 1 divides both M and N.

ProoF. Theleft-hand side of (4.1) iswritten as

a—1
pi—-1
Y. kK= Y r+kMer+k)t
1<ki<ko<p®—1 s=0 1<kj<ko<p-1

ptkiand ptky

pa—l_lpa—l_l p—1 p—1

+ 2 2 2D ep+rkMap+ k)Y

s=0 t=s+1 k1=1kp=1

paflil
— Z Z il
s=0

1<ky<kp<p-—-1
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aflil M N
+p2 D M\ (N M Nl ) oty
1)1 2 ps

s=0 [1=0 I[,=0
I1+1>1

allpallplpl

+ > > ZZ(serkl)M(thrkz)N (4.2)

s=0 t=s+1 k1=1lko=

By (2.1)
a 1_1
11+12 Z s11+12
4.3)
4 h+bk-1 _
= PllHZ {BllJrlzpa 14 — Biyy1,-1p% l)} =0 (mod p“)

when l; + > > 1, because p in the denominator of By, +/,+1 O B+, cancelsout with p/1+/2,
Thus, the second term on the right-hand side of (4.2) is congruent to 0 modulo p?.
Asfor thethird term, we can write it as

plo1pa=1o1 p—1 p—-1 pi-1ptt-1p-1 p-1
oy ZZ(squ) tp+k)V =3 ZZkﬁdkz
s=0 t=s+1 k1=1ko= s=0 t=s+1 k1=1ko=

11pelap-1p-1 M

S5 00 i) ) v oib ol 1 [ 4 EEERVERE

s=0 t=s+1 k1=1kp=113=0 [,=0
I1+1>>1

The second term in the above equation is congruent to 0 modulo p“ by the similar calculation
asin (4.3), and the first term becomes

pa—l_lpa—l_l p—1 p—1 p

P L(pa—t — 1) p—1 p—1
> XYM == kYK =0 (modp?)
k1=1 ko=1

s=0 t=s+1 k1=1ko=1
except when p — 1 dividesboth M and N by Lemma 2.2. ]
Fors = (s1,...,54) € N9, weset 5 = (sq, ..., 51).
LEMMA 4.3 (cf.[6,Lemma3.2]). Let p beanodd prime. Then
HiG;p* =)= (D"OHH(S; p* =1 (mod p*).

PROOF. Substitute p* — k; for k; (1 < i < d) in the definition of H(s; p* — 1) in
(1.2). ]

We go back to the proof of Theorem 4.1. From Lemma 4.2 and the result for a = 1,
Theorem 4.1 follows except when p — 1 divides both s1 and s».



MULTIPLE ZETA VALUE SERIES 473

When p — 1 divides both s1 and s, from the shuffle relation and Lemma 4.3, we get

H{(s1; p* —DH{(s2; p* =1 — H*(s1+s2 p* = 1)
2 9

and apply Lemma 2.2. O

Hj(s1,52; p% — 1) =

The above proof for s1 and s» both divisibleby p — 1lisvalid for any positive integers s1
and s with the same parity:

COROLLARY 4.4 (cf.[6, Corollary 3.4]). Let p be an odd prime. Suppose s; and s>
are two positive integers satisfying (i) s1 = s2 (mod 2) and (ii) p — 11 51 + s2. Then

Hj(s1,s2; p* —=1)=0 (mod p%) (4.4)
holds for a > 2. With one more condition (iii) p — 1t s1 0or p — 1152, (4.4) holdsfor a = 1.
Now werelate Therem 4.1 to the p-divisibility set J (s1, s2 | p). Put

H(s:n) = M a(s;n), b(s;n) eN, ged(a(s;n),b(s;n) =1,
b(s;n)
anda(s;r) = 0and b(s;r) = Lforr = 0,1,...,d — 1. Then the p-divisibility set of the
MZV series J (5 | p) isdefined as

JGE|Ip)={n€Zs0: a(s;n)=0(modp)}.

In[7] Zhao surmised that J (s | p) isfinite and J (5 |2) = 0, which isthe generalization of the
conjecture for 5§ = (1) by Eswarathasan and Levine[2].

When s = (s1, s2), he obtained that J (s1, s2 | p) isfinite if s1, s2 < 20, s > 2, and
p =2,3,5([7, Theorem 1.3]), for which we get the following corollary:

COROLLARY 4.5. Suppose a > 2. Let 51 and s2 be positive integers and m and
n be asin Theorem 4.1. Then p* — 1 is not an element of J(s1,s2 | p) for (m,n) =
(0,0), (1,0), (0,1), and all the pairs (m,n) such that m,n > 1, m + n is odd, and
(p, p —m —mn)isnotanirregular pair.

PROOF. Sincewe have

1
Ha(s1,s2: p“ =D = Y g T H2 G152 pt = 1)
lsky<kp<p’~1"172
plkyor plka

and p |Hy (s1, s2; p* — 1) by Theorem 4.1, our statement istrueif p 1 > 1<x, <kp<pa—1 .
plicorplkz ~ *1 k2
From the identity

1 1
Y mmc Y oooms

1<ky<kp<p®—1 172 1<ky<kp<pi—1-1
plkyor plka
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allpallpl

P> Z(Pkl)sl(Pl—i—kz)sz

k1=1 i=k1

Pl 1kp-1 p-1

PR Ll e “9

=1 j=0k=1

the highest power of p in the denominator comes from the term

1 1
p(S1+Sz)(a—1) Z k5 kSZ ’
1<ki<kp<p—1"1

which is a partial sum of the first term in (4.5). For the pairs (m, n) in the assumption,

P X icky<kp<p-1 kslksz Thus Y 1<k <kp<pi—1 kslksz has p©1752@=1 in the denominator
plkyor plka

andso p* —1¢ J(s1,52 | p). o

REMARK. The above corollary seems true for other pairs (m, n) not mentioned in the
assumption by computer calculation.
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