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Abstract:

Let X be a complex smooth projective variety such that the exterior power of

the tangent bundle A" T is nef for some 1 < r < dim X. We prove that, up to a finite étale cover,
X is a Fano fiber space over an Abelian variety. This gives a generalization of the structure
theorem of varieties with nef tangent bundle by Demailly, Peternell and Schuneider [5] and that of
varieties with nef /\2 Tx by the author [20]. Our result also gives an answer to a question raised by
Li, Ou and Yang [15] for varieties with strictly nef A" Tx when r < dim X.
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1. Introduction. Positivity for vector bun-
dles such as ampleness and nefness has left its mark
on the study of algebraic geometry. Let X be a
complex smooth projective variety of dimension n;
we focus on the positivity of the tangent bundle
Tx, which reflects the global geometry of X. As a
generalization of the Hartshorne-Frankel conjecture
solved by Mori [17] (see also [18] by Siu and Yau),
Campana and Peternell [2] studied the structure
of smooth projective varieties with nef tangent
bundle, paying special attention to 3-folds. In
higher dimensional case, Demailly, Peternell and

Schneider obtained the following structure
theorem:
Theorem 1.1 ([5, Main Theorem]). If Tx is

nef, then there exists a finite étale cover X' — X
such that X' is a locally trivial fibration ¢ : X' —
Alb(X") whose fibers are Fano varieties.

Remark that [5] proved something more than
Theorem 1.1; they proved the above theorem holds
for any compact Kéhler manifold with nef tangent
bundle. Moreover the local triviality of the above
Albanese map follows from [5,3.D]. On the other
hand, some years ago, Cao and Horing extended
Theorem 1.1 to a more general setting:

Theorem 1.2 ([4, Theorem 1.3]). If the an-
ticanonical divisor —Kx is nef, then there exists a
finite étale cover X' — X such that X' =2Y x Z
where Ky is trivial and Z is a locally trivial fibration
w: Z — Alb(Z) with a rationally connected fiber.
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In general a fiber of ¢ in Theorem 1.2 is not a
Fano variety, because there exists a lot of rationally
connected projective varieties with nef anticanon-
cial divisor which is not Fano (for instance, consider
the blow up of P? in nine points). Theorem 1.2 can
be seen as an extension of the classical Beauville-
Bogomolov decomposition [1]. The main result of
this paper is a generalization of Theorem 1.1:

Theorem 1.3. Let X be a smooth projective
variety of dimension n. Assume that N\ Tx is nef
for some 1 <r < n. Then if we take a suitable finite
étale cover X — X, there exists a locally trivial
fibration ¢ : X — A such that the fiber F is a Fano
variety and A is an Abelian variety. Moreover, if
dimA>r—1, then Tx is nef; otherwise
/\rfdimA TX/A is nef.

This theorem reduces the study of smooth
projective varieties with nef A\"Tx (r < dim X) to
that of Fano varieties. For r =1, Theorem 1.3 is
nothing but Theorem 1.1; for r =2 this was ob-
tained in [20, Theorem 1.5]. The proof of [20, Theo-
rem 1.5] involves the deformation theory of rational
curves and some complicated arguments. On the
other hand, in this short paper, we give a simple
proof of Theorem 1.3. Our proof relies on two key
ingredients; one is Theorem 1.2; the other is a
recent result of Gachet [6]. In [6, Theorem 1.2], she
proved that for a smooth rationally connected
projective variety X of dimension n if A" ' Tx is
nef, then X is a Fano variety. Moreover by using
a result by Laytimi and Nahm [12], we see that if
N Tx is nef for some r < n, then so is A"~ Ty.
Thus we have the following
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Proposition 1.4. Let X be a smooth projec-
tive wvariety of dimension n. Assume that X is
rationally connected and N\ Tx is nef for some
1 <r<n. Then X is a Fano variety.

Remark that, combining with [15, Theorem
1.2], Proposition 1.4 gives an affirmative answer to
the following question by Li, Ou and Yang when
r < dim X:

Question 1.5 ([15, Remark 5.3], [16, Conjec-
ture 4.9], [6, Question in Section 1]). Assume that
A" T is strictly nef for some 1 < r < n. Thenis X a
Fano variety?

Finally, Theorem 1.3 follows from Theo-
rem 1.2, Proposition 1.4 and standard arguments.
We remark that the results of this paper will be
extended to compact Kéahler manifolds if Theo-
rem 1.2 is also valid for those manifolds.

2. Preliminaries.

2.1. Notation and conventions. We will use
the basic notation and definitions in [8], [10], [13],
[14] and [11]. Along this paper, we work over the
complex number field.

® A curve means a projective variety of dimen-
sion one.

e Let X be a smooth projective variety. A line
bundle L on X is said to be strictly nef (resp.
nef) if the intersection number L - C is positive
(resp. non-negative) for any curve C' C X. In
general, we say that a vector bundle &£ is
strictly nef (resp. nef) if the tautological line
bundle Opg) (1) is strictly nef (resp. nef) on
P(&).

e For a non-constant morphism f : P! — X from
a projective line P! to a smooth projective
variety X, f is said to be free if f*Tx is nef.
Throughout this section, we always assume the

following

Assumption 2.1. Assume X is a smooth pro-
jective variety of dimension n such that the exterior
power \" Ty is nef for some 1 < r < n.

Proposition 2.2. The following hold:

(i) The anticanonical divisor —Kx is nef.
(ii) If the Kodaira dimension k(X) = 0, then there
exists a finite étale cover f: X — X such that

X is an Abelian variety.

Proof. The first part follows from

det </\Tx> = OX(<Z—11> (KX)>-

The second part follows from [22, Theorem 1.1]
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(see also [3, Proposition 1.2]). O

Lemma 2.3 ([3, Lemma 1.3], [21,
2.9]). Let f:P' — X be a non-free rational curve,
that is, f*Tx is not nef. Then we have

—Kx-f.(PY>n—r+1.

Lemma

Proof. Assume that the splitting type of f*Tx

is (a1, ag,...,a,), that is,

n

f*TX'E@(’)Pl(ai) (a1 >ay > ... 2 Ay, a122).
i=1

The r-th exterior power

/T\ f*TX =

n

D

1<ii<ig<...<1,<n

OPI (ail —|- aiQ + e + air)

is nef; this yields
Ap—r1 + A2 + ...+ ap 2 0.

Since f is not free, a, is negative. These imply that

(T - 1)anfr+1 > Oprg1 + Qpepg2 + .o+ Ay
Z —ap 2 1.
Thus a,_,1 is positive. As a consequence, we have
the inequality
— Kx - f.(P")
=a+(aa+...+an)+ (@nri1+...+ay)
>24+n—r—1)+0=n—r+1.
O

Proposition 2.4 ([19, Proposition 3.3]). Let
w: X — A be a smooth morphism onto an Abelian
variety with connected fibers. Then the following
hold:

(1) Ifdim A >r—1, then Ty is nef.

(i) Ifdim A < r—1, then \'~ ™4 Tx)4 is nef.

Proof. We have an exact sequence
(1) 0— Txja—Tx — ¢"Ty — 0.

By [8, Chapter II, Exercise 5.16 (d)], we have a
filtration of A" Tx:

AH:WDEDWDWDE“:0
such that

EP BV = (/p\ TX/A> ®<T/\I)SO*TA>

for any p. In particular, we have the following exact
sequences:
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(2) 0—>E1—>/\TX—>/\¢*TA—>0,

r—1
(3) 0— E? - E' — TX/A®</\@*TA> — 0.

To prove (i), assume dim A > r — 1. Remark that
Ty = (’)ff dmA We claim that E* is nef. If dim A > 7,
then it follows from the sequence (2) and [2, Prop-
osition 1.2 (8)] that E' is nef. If dim A = r — 1, then
the sequence (2) yields E' = A" Ty; this implies
that E' is nef. By the sequence (3), Tx/u Q@
(/\“1 gp*TA> is nef. Since A"'(p*Ty) is trivial
bundle, we conclude that the relative tangent
bundle Ty, is nef. Finally our assertion follows
from the sequence (1).

To prove (ii), assume that dim A < r — 1. Since
N ©*Ty = 0 for any p > dim A, we have

/\TX _ E() _ El - .= ErfdimA.

Thus we have a surjection

r r—dim A
—dim A .
/\TX — pr-dimA /\ TX/A7

this implies that /\“dimA T4 is nef. O

3. Proof of the Main Theorem. The fol-
lowing is due to Gachet:

Proposition 3.1 ([6, Theorem 1.2]). Let X
be a smooth projective variety of dimension n.
Assume that X is rationally connected and N\ Tx
is nef. Then —Kx is ample, that is, X is a Fano
variety.

Remark 3.2. Although Proposition 3.1 was
not written explicitly in the first draft of [6], Gachet
introduced this statement holds at Algebraic Ge-
ometry seminar of the University of Tokyo (see
Acknowledgements below).

Theorem 3.3 ([12, Theorem 3.3], [9]). Let
X be a smooth projective variety of dimension n.
For a vector bundle E of rank r, assume that its
exterior power \™ E is nef for some positive integer
m. Then the vector bundle N™™ E is also nef for any
0<k<r—m.

Remark 3.4. In general, if a vector bundle
FE is strictly nef, it is not necessarily true that its
exterior power \" F is strictly nef. For instance, see
([7, Section 10 in Chapter I] and [16, Example 2.1]).
This means that an analogue of Theorem 3.3 does
not hold if we replace nefness of A" E by strict
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nefness.

Proof of Proposition 1.4. Assume that X is
rationally connected and A"Ty is nef for some
1 <r < n. Then Theorem 3.3 implies that /\”71 Tx
is nef. Applying Proposition 2.4, we see that X is a
Fano variety. (I

Proof of Theorem 1.3. By Proposition 2.2
(i), —Kx is nef; according to Theorem 1.2, this
turns out that there exists a finite étale cover X' —
X such that X' 2 Y x Z where Ky is trivial and Z
is a locally trivial fibration Z — Alb(Z) with a
rationally connected fiber. Since we have X' — X
is étale, A\"Tx is also nef; then by Theorem 3.3,
/\"71 Tx is also nef. Let p;: X' =Y (resp. p:
X' — Z) be the first projection (resp. the second
projection). We denote by ¢ the dimension of Y.
Since \""' Ty is isomorphic to the direct sum of

l n—{—1
(A @ (A7)
and
(-1 n—~{
i(Ar) @ (A1)

The direct summand pi(A“ Ty) @ py(\" " Ty) is
nef; restricting this bundle to a fiber of the
projection po, we see that /\5_1 Ty is also nef
provided that ¢ > 0. If £ =1, then Y is an elliptic
curve. Furthermore if ¢ > 1, then Proposition 2.2
(ii) implies that Y is a finite étale quotient of an
Abelian variety Y. Hence, in any case, there exists
a finite étale cover X — X’ such that X is a locally
trivial fibration ¢ : X — A onto an Abelian variety
A with a rationally connected fiber. Then our
assertion follows from Proposition 2.4 and Proposi-
tion 1.4. O
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