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Abstract: In 1977, Gosper introduced a conjectural evaluation for a hypergeometric series

that has been described as strange by a number of authors. In 2013, Ebisu proved Gosper’s

conjecture using contiguity operators. Subsequently, in 2017, Chu provided another proof of

Gosper’s conjecture, using a telescoping argument together with Pfaff’s transformation. In this

article, we present a new and simplified proof of Gosper’s conjecture that is inequivalent to the

previous proofs due to Ebisu and Chu. Our proof relies on an evaluation technique that was

previously given by Campbell and Cantarini and that involves the modified Abel lemma on

summation by parts. We also show how this method may be applied to prove generalizations and

variants of Gosper’s summation.
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1. Introduction. As in [3,4], our article is

based on the following identity that had been

conjectured to hold true by Gosper in 1977:

2F1

1� a; b ;

bþ 2 ;

b

aþ b

� �
¼ ðbþ 1Þ a

aþ b

� �a
:ð1Þ

We are letting generalized hypergeometric series be

defined and denoted so that

pFq
�1; . . . ; �p ;

�1; . . . ; �q ;
x

� �
¼
X1
n¼0

ð�1Þn � � � ð�pÞn
ð�1Þn � � � ð�qÞn

xn

n!
:

We are letting the Pochhammer symbol be such

that ð�Þn ¼
�ð�þnÞ

�ð�Þ , and we recall that the �-function

is such that �ðxÞ ¼
R1

0 ux�1e�u du for <ðxÞ > 0. In

this article, we introduce a new, simplified proof of

Gosper’s conjecture that is inequivalent to the

previous proofs due to Ebisu [4] and Chu [3], and we

apply a method related to our new proof to

determine new generalizations and variants of (1).

1.1. Background. Ebisu’s proof [4] of

Gosper’s conjecture heavily relied on contiguity

operators. The main feature of this proof by

Ebisu [4] is given by the following result. If ‘ 2 N,

a 2 C, and c is a non-integer complex number, then,

for any root � of

2F1

1� a;�‘ ;

2� c ;
x

� �
;

we have that

2F1

a; 1þ ‘ ;

c ;
�

� �
¼ � ð1� cÞq0ð�Þ

‘!ð1� �Þ‘

and that

2F1

c� a; c� 1� ‘ ;

c ;
�

� �

¼ �
1� c
‘!
ð1� �Þaþ1�cq0ð�Þ;

where q0ðxÞ is a polynomial given by hypergeomet-

ric expressions evaluated by Ebisu in [4]. Chu’s

proof in [3] of Gosper’s conjecture relied on the

application of a telescoping sum to produce an

identity for an infinite series with four free param-

eters, together with the application of the Pfaff

transformation. More specifically, writing

Tk ¼
ðaÞkðbÞk
ðcÞkðdÞk

;

as in [3], a telescoping argument based on the use of

the difference operator �Tk ¼ Tkþ1 � Tk was used to

evaluate the 4F3ð1Þ-series

4F3

1; a; b; 1þ ab�cd
aþb�c�d ;

cþ 1; dþ 1; ab�cd
aþb�c�d ;

1

" #
¼

cd

cd� ab ;

and this, in turn, was used to reprove a similar

4F3ð1Þ-series evaluation given by Gessel and

Stanton [5] in 1982. A limiting case then produced

a rational function evaluation for a 3F2ðxÞ-series,

and the Pfaff transformation
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c ;
x

� �

¼ ð1� xÞ�a2F1

a; c� b ;

c ;

x

x� 1

� �

was then applied by Chu to prove Gosper’s con-

jecture [3]. From our proof in Section 2, it should be

clear that this is completely different compared to

the past proofs in [3,4]. Notably, our proof does

not involve the Pfaff transformation, telescoping,

4F3ð1Þ-series, polynomial roots, etc.

Let us write

�
a; b; . . . ; c

A;B; . . . ; C

� �
¼

�ðaÞ�ðbÞ � � ��ðcÞ
�ðAÞ�ðBÞ � � ��ðCÞ :

The key to our new proof is the following hyper-

geometric identity introduced by Campbell and

Cantarini in 2022 [1]: For free parameters �, �, and

�, the identity
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�þ � � ð��1Þð��1Þ
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1

" #
ð2Þ
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�
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holds true. Actually, as we are to demonstrate in

Section 2, Gosper’s summation (1) can be shown

to hold in a direct way by applying the limiting

operator lim�!1 � to both sides of the equality in

(2). This approach is considerably simpler relative

to [3,4].

The 3F2ð1Þ-identity (2) was proved in [1] via an

evaluation technique introduced in [1] that may,

informally, be described as being given by some-

thing of a combination of the modified Abel lemma

on summation by parts and a method of undeter-

mined coefficients. Letting r and �� be such that

r�n ¼ �n � �n�1 and �� �n ¼ �n � �nþ1 for a sequence

ð�n : n 2 NÞ, the aforementioned summation lemma

gives us thatX1
n¼1

BnrAnð3Þ

¼ ð lim
m!1

AmBmþ1Þ � A0B1 þ
X1
n¼1

An�� Bn

if this limit exists and one of the two series given

above converges, referring to [1] and the references

therein. We may obtain (2) by combining (3) and

Gauss’s famous evaluation for 2F1ð1Þ-series. This

evaluation technique from [1] may be used to

produce families of generalizations and variants of

Gosper’s sum (1), which will be obtained in

Section 3.

An interesting property concerning (2) is

given by how the Wilf–Zeilberger method and/or

Zeilberger’s algorithm [6] cannot be used directly

to prove (2), in contrast to classically known

3F2ð1Þ-identities. Also, it is quite remarkable that

current or recent Computer Algbera Systems such

as the 2022 version of Mathematica and the 2023

version of Maple cannot evaluate the 3F2ð1Þ-series

due to Campbell and Cantarini [1] for free param-

eters �, �, and �, which adds to the interest in the

material in Section 2 below.

2. A proof of Gosper’s summation.

Theorem 2.1. The evaluation for Gosper’s

series (1) holds.

Proof. We apply the operation lim�!1 � to

both sides of (2). Elementary real analysis may then

be used to justify our interchanging the operation of

lim�!1 � and the infinite summation operator, for

parameters � and � such that the resultant series

converges. We may verify the evaluation

lim
�!1

ð�Þn
�þ � � ð��1Þð��1Þ

�
� 1

� �
n

¼
�

� � � þ 1

� �n

using the Euler asymptotic identity

�ð�þ nÞ � ðn� 1Þ!n�:

By again using the Euler asymptotic identity, the

right-hand side of (2) tends to

ð� þ 1Þ exp

�
ð� � 1Þ

�
log

� � � þ 1

�

� �
ð4Þ

� log
1� �
�

� ���

¼ ð� þ 1Þ
� � � � 1

� � 1

� ���1

as �!1. So, we have shown that (4) is equal to

the following:

X1
n¼0

�
���þ1

� �n
ð�Þnð�Þn

n!ð� þ 2Þn
:

This equality is equivalent to Gosper’s identity (1),

since we may rewrite the above series as
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2F1

�; � ;

� þ 2 ;

�

� � � þ 1

� �

and we may thus proceed to set � ¼ b and � ¼
1� �. �

3. Further applications of an Abel-type

lemma. Informally, the evaluation technique

from [1] is given by setting the B-sequence in (3)

to be hypergeometric and by then setting the

corresponding A-sequence to be a rational function

such that the coefficients are solved for in such a

way so as to ensure that the summand An�� Bn

simplifies in a certain way described in [1]. In

addition to our application of this method, via the

3F2ð1Þ-identity (2) proved via this method in [1], to

determine a new proof of (1), we have applied this

same method to determine many generalizations

and variants of (1). For example, as we are to

demonstrate below, the Gosper-type identity in (6)

can be shown to be equivalent to (1).

Proof #2 of (1). Setting

An ¼
1

n� 1��x
x�1

and

Bn ¼
xnð�Þn
n!

ð5Þ

in the modified Abel lemma (3), we then write x ¼
b
aþb and � ¼ �a. It then follows from (3) that

2F1

�a; bþ b

a
;

bþ 2þ b
a

;

b

aþ b

" #
ð6Þ

¼ a

aþ b

� �aaþ bþ ab
aþ b

:

By replacing replacing ða; bÞ with ðaþ 1; bþ b
aÞ in

(1), we find that (1) and (6) are equivalent. �

The new proof for Gosper’s strange series (1)

given above inspires the application of variants of

the B-sequence indicated in (5), as below.

Example 1. Setting

An ¼
1

nþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x2�4�x2þ4x2�4xþ4
p

þ�xþ2x�4
2ðx�1Þ

and

Bn ¼
xnð�Þn
ðnþ 2Þn!

in the modified Abel lemma and in accordance with

the technique from [1], this gives us a way of

determining a closed form for

X1
n¼0

xnð�Þn
n!ðnþ 2Þ

�
1

ð2þ 2n� 2nx� x�þ �Þ

�
1

ð4þ 2n� 2x� 2nx� x�þ �Þ
;

writing � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x2 � 4�x2 þ 4x2 � 4xþ 4
p

.

Example 2. Setting

An ¼
1

n� 1��x
x�1

and

Bn ¼
ð�1Þnxnð�Þn

n!

in the modified Abel lemma and in accordance with

the technique from [1], we can show that

X1
n¼0

ð�xÞnð�Þn
n!

�
2nx� 2nþ 2�x� x� 1

ðnx� nþ �x� 1Þðnx� nþ �x� xÞ

¼
ðxþ 1Þ1��

ð�� 1Þx :

Example 3. Setting

An ¼
1

n� 1��x
x�1 þ 1

and

Bn ¼
xnð�Þn
n!

in the modified Abel lemma and in accordance with

the technique from [1], we can show that

X1
n¼0

xnð�Þn
n!

�
nx2 � 2nxþ nþ �x2 � 2�x� xþ 2

ðnx� nþ �x� 1Þðnx� nþ �xþ x� 2Þ
¼ ð1� xÞ��:
We may produce many similar results, by

altering the B-sequences indicated above.

4. Conclusion. In much the same way that

the modified Abel lemma was applied in [1] to
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Gauss’ 2F1ð1Þ-identity so as to obtain the 3F2ð1Þ-
identity (2), the Abel-based technique from [1] was

applied in [1] to Kummer’s 2F1ð�1Þ-identity so as

to obtain a new 3F2ð�1Þ-identity, and such results

could, in view of the material from Section 2,

perhaps be applied to obtain 2F1ð�1Þ-variants of

Gosper’s sum. We encourage the exploration of this

area.

Recall that the 3F2ð1Þ-identity (2) was proved

via a direct application of the technique from [1]

using Gauss’ 2F1-identity. If instead a pFqð1Þ-var-

iant were to be applied using the technique from [1],

how could we mimic our proof of Theorem 2.1?

Campbell and Cantarini’s technique from [1]

was also applied to prove and generalize the

Ramanujan-like formula

X1
n¼0

�
1

64

� �n 2n

n

� �3 ð4nþ 1Þ2

ð4n� 1Þð4nþ 3Þ

¼ �
32ð2þ

ffiffiffi
2
p
Þ�2 1

4

	 

�4 1

8

	 


introduced by Cantarini in [2] in the context of the

study of the Clebsch–Gordan integral. In view of

our applications of the technique from [1], perhaps

the proof in [1] of Cantarini’s Ramanujan-like

formula could be altered in some way by analogy

with the proof of Theorem 2.1.
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[ 6 ] M. Petkovšek, H. S. Wilf, and D. Zeilberger,
A ¼ B, A K Peters, Ltd., Wellesley, MA, 1996.

64 J. CAMPBELL [Vol. 99(A),


	c_rf1
	c_rf2
	c_rf3
	c_rf4
	c_rf5
	c_rf6

