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Abstract:

We give some new formulae relating an obstruction to the weak approximation

on homogeneous spaces to the set of local and global Brauer and R-equivalence classes.
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1. Introduction. This paper is the continu-
ation of [Th21], where we give some applications
of the results obtained there, to which we refer as
the Part (I). We first recall briefly some notation
and convention used in Part (I) and in the present
paper.

Let k be a field, k, a separable closure of &k in an
algebraic closure k of k, and let I' := Gal(ky/k) be
the absolute Galois group of k. Denote by V the
set of all places of k and let k, be the completion of
katveV.

Let X be a smooth, geometrically integral
k-variety and assume that X (k) # 0. We say that X
has the weak approrimation property with respect to
a finite subset S C V' if X (k) is dense in the product
Xs :=]],eq X(k,) via the diagonal embedding and
that X has the weak approrimation property over k
@es above holds for any finite set S C V. Denote
X (k) (resp. X(k)) the closure of X (k) being taken
in the product Xg:=[[,qX(k,) (resp. in the
product Xy =[], X(ky)).

If X is a smooth variety over k, let Br(X) :=
Hgt(X, G,,) denote the cohomological Brauer group
of X. For a field extension K/k we denote X x; K
the base change of X from k to K; if K =k, (resp.
K =k,), we denote X,=X Xy ks (resp. X, =
X Xy ky) for short. Then we have natural homo-
morphisms Br(k) — Br(X) — Br(X;), where the
image of the former lies in the kernel of the latter.
Following [CTS87], [Sk], [Sa], we set Bri(X):=
Ker (Br(X) — Br(Xj)), Bry(X) := Im (Br(k) —
Br(X)), Br,(X) := Br;(X)/ Bro(X), (the “arithmet-
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ic” Brauer group of X), B,(X):={z € Br,(X)

xzy =0 for almost all v € V}, and finally B(X) :=
{z €Bry(X) |z,=0forall wveV},
x € Br,(X), we denote by z, the image of z in
Br,(X,). For a subset of places S CV, we de-
note Bg(X) := Ker (Brq(X) — [[,45 Bra(Xy,)), then
B,(X) := llns Bg(X) = UgBs(X), and notice that

B(X) = By(X). Denote by Y? = Hom(Y,Q/Z) the
Pontrjagin dual of an abelian torsion group Y.

Now let X be a smooth, geometrically integral
variety defined over a global field k£ and assume that
HueV X<kb) 7é [Z)

Consider the following natural (Brauer—Manin)
pairings IL, X(k,) x B,(X) — Q/Z, and
[es X (k) x Bs(X) — Q/Z, ((2,),) — {(w,),b) =
>, invy(by(xy)) (cf. [Sa, Lem. 6.2]), and inv, denotes
the local Hasse invariant of the local field k,.

Assume that X(k) # (0. Then for two elements
x,y € X(k), we say that x, y are Brauer (Br-)equiva-
lentin X (k) (and denote it simply by  ~p, y, if X, k
are clearly indicated), if via the natural pairing
X(k) x Br(X) — Br(k), (z,b)+— b(z), where b(z)
denotes the evaluation of b at z, we have b(z) =
b(y) for all elements b € Br(X). (If we consider the
group Bri(X) instead of Br(X), then we get
Bri-equivalence relation.)

Further, for a set T of places of k, we define
Brauer equivalence relation on the product
[Ler X(ky) just as the product of the Brauer
equivalence relation, i.e., if (z,),(y) € [[, X(kv),
then (x,) ~pr (y,) if and only if z, ~p, y, (with
respect to Br(X,)) for all v € T. Thus the quotient
set [[,er X(ky)/Br is by definition, the product

[Ler(X(ky)/Br).

where for
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Two k-points z,y are R-equivalent if there is a
chain of k-points = z1,x9,...,2, =y in X(k) and
a chain of k-rational maps fi: P! — X, (i=1,...,
n—1) such that f1(0) =21, fi(1) = xo,...,
fn—l(o) = Tp-1, fn—l(l) = Tn. In general, the
R-equivalence relation is finer than the Brauer
equivalence relations (cf. [CTS77]).

If G is a connected reductive group defined
over afield kand 1 — F — G; — G — 1 is a flasque
resolution of G (cf. [CTO08, Sec. 2]), then there is an
exact sequence of abelian groups

Pic(G) — Pic(G1) — Pic(F) % Bry(G) — Bry(G),

and the equivalence relation on the group G(k)
which is coming from the pairing (induced from
that of G(k) x Br(G) — Br(k))
G(k) x 6(Pic(F)) — Br(k)

is called weak Brauer equivalence (denoted by
Brs-equivalence for short) (cf. [Th20, Sec. 3.1.3]).
Let denote ByG(k) :={x € G(k) | x ~py, 1},
BG(k) :={z € G(k) | x ~p 1}, RG(k):={x €
G(k) | ¢ ~g 1}. These are subgroups of G(k) (cf
[Th20, Sec. 3]).

Further, for a linear algebraic k-group G let
denote by H'(k, G) := H (', G(k,)) the Galois coho-
mology in degree i of G. Then we denote III'(G) :=
Ker (H'(k,G) — 1,y H'(ky, G)),i > 0, the Tate—
Shafarevich kernel in degree i of G. One denotes by

=[] G*)/GR), =[] G*)

veV veS

A(G) :

the obstruction (or defect) to the weak approrima-
tion property of G over k and obstruction to weak
approzimation of G at S, respectively. It is well-
known that if G is a connected reductive group
defined over a global field k, then we have the
following exact sequence of groups
(11) 11— Gk —Gs—A(S,G) — 1,
(1.2) 1-Gk) — Gy = AG)—1
where A(S,G), A(G) are finite abelian groups (cf.
[Sa, Thm. 3.3] for number fields and [Th13, Thm.
2.3] for global function fields).

In [CTS77,Prop. 19] it has been shown that if
T is a torus over a number field k, S the

corresponding Néron-Severi torus, then there is an
exact sequence of finite abelian groups

(CTS)
1 — [1(S) —

R—>HT

)/R — A(T) —
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This sequence inspires another ones in this direction
as follows:

In [Th97, Thm. 2.7, 2.8], it was shown that, if
G is a connected reductive group defined over a
global field k, S a finite set of places, then there
are the following exact sequences of finite abelian
groups

G(k)/R— [[ G(k)/R — A(S,G) — 1,

ves

G(k)/R— [[G(k)/R — A(G) — 1

Then [CTGP, Thm. 4.13] extends this to the case of
fields of type (Il) and (gl) (we refer the interested
readers to [CTGP] for the definition of fileds of type
(il) and (g1)). In [ThOO0, Prop. 2.4, Thm. 3.4] and
[Th20, Th. 5.3, 5.10] we extend these sequences to
the case of groups of Brauer equivalence classes, to
get the following exact sequences of finite abelian
groups

/Br—>HG

veS

1— Gk /BT—>HG

)/Br — A(S,G) — 1,
)/Br — A(G) — 1,

where the same exact sequence also holds with
respect to other Brauer equivalence relations: Brg
or Bry. Recall that by [Th21, Thm. 2.1}, we also
have canonical isomorphisms

A(S,G) = (Bs(G)/B(G))”,

A(G) ~ (B4(G)/B(G))”,
so above exact sequences can be written as
1= G = Gs — (Bs(G)/BG)” -1,
1 G(k) = Gy — (Bu(G)/B(G)” — 1,
G/ Br =[] G/ Br = (Bs(G)/B(G))” — 1.

1— Gk /Br—>HG

(1.1a)
(1.2a)

)/Br— (b

— 1.

B.(G)/B(G))”
and (almost) similarly for R-equivalence relations:

/R — []Gk)/R - (Bs(@)/B(G))"

veS
(])/R =[] Gk)/R = (Bu(G)/B(G)” = 1.

If X is a homogeneous space then the exact
sequences (1.1a), (1.2a) have been extended to
homogeneous spaces under connected reductive
k-groups G with connected reductive k-stabilizers
H in [Bo099, Thms. 1.3, 1.11] (number field case)

— 1,
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and [Th21, Thm. 4.1] (global function field case).
Namely, if we select the image of the trivial coset
[H] as the pointed element in X (k) (resp. in Xg, Xy,
via the diagonal map), then we have the following
exact sequence of pointed sets

(1L1) 1—X(R — Xs — (Bs(X)/BX)” — 1,
and one derives from this the following exact
sequence of pointed sets

(1.2) 1 — X(k) — Xy — (B,(X)/B(X))” =1,
which generalize (1.1a) and (1.2a) to an important
class of homogeneous spaces. (Here and in the
sequel, for all considered exact pointed sets 1 —
A 4, B — C, the exact on the left means the
injectivity of f.) So X has weak approximation in
S (resp. over k) if and only if the dual group
(Bs(X)/B(X))? (resp. (B,(X)/B(X))") is trivial.
In other words, the abelian group (Bg(X)/B(X))”
(resp. (Bu(X)/B(X))”) is an obstruction to the
weak approximation in S (resp. over k) for X.

The aim of this note is to show that if X is a
homogeneous space under a connected reductive
k-group G with stabilizer a connected reductive
k-subgroup H of G, then some of the above exact
sequences also hold for Br, Br;, Br; and R-equiv-
alence relations. Namely we have the following
generalization of the above sequences to the case of
homogeneous spaces.

2. Theorem. Let k be a global field, X a
homogeneous space under a connected reductive
k-group G with stabilizer a connected reductive
k-subgroup H of G. Then we have the following exact
sequences of pointed sets, which connect the various
(local and global) sets of Brauer (Br, Bry, or Bry),
R-equivalence classes, the arithmetic Brauer groups
and obstruction to weak approximation with each
other:

(2.1) X(k)/B— [[X(k)/B— (Bs(X)/B(X))” — 1,
ves

1 X(k)/B 2 [[ X(k,)/B — (Bu(X)/B(X))” —1

where B stands for Br, Bry or Brj-equivalence
relation;

(22) X(k)/R— []X(k)/R— (Bs(X)/B(X))” -1,

veS

X(k)/R % [[X(k)/R — (Bu(X)/B(X)” — 1.

(Here, for any field extension L/k, the set X(L) is a
pointed set, with distinguished element e := [H]|
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given by the coset H and the set X(L)/Br (resp.
X(L)/R) is pointed with the equivalence class of e.)

Before proving the theorem, we need the
following lemmas. Recall that a connected reduc-
tive group G defined over a field k is called quasi-
trivial ([CTO8, Sec. 2]) if the semisimple part G of
G is simply connected and G¥":= G/G* is an
induced k-torus.

3. Lemma. (1) (cf. [Th20, Corol. 4.4]). If k

is a local field, G is a quasi-trivial reductive k-group,
then we have G(k)/R={1},G(k)/Br={1},
G(k)/Bry = {1},G(k)/Br; = {1}.
(2) (cf. [Bo99, Thms. 1.3, 1.11] (number field case)
and [Th21, Thm. 4.1] (function field case)). If k is a
global field, with notation as in Theorem 2, there are
the following exact sequences of pointed sets

1= X0 2 x5 S (Bs(X)/B(X)P =1,
1— X0 L Xy S (BUX)/BX)? = 1.

The following lemma complements [Th97, Lem.
2.5] (cf. [Ko,Corol. 1.5, Corol. 1.7] for smooth
proper varieties over local fields).

4. Lemma. With notation as in Theorem 2,
let v be a place of k. Then
(1) Each Brauer (Br, Bri and Bry) and R-equiv-
alence class in G(ky,) is open and closed in G (k).
(2) Each Brauer-equivalence class in X(k,) is a
union of finitely many RG(k,)-orbits, so each
Brauer and R-equivalence class in X(k,) is open
and closed in X (k).

(3) The set of Brauer (resp. R)-equivalence classes
X(ky)/B, where B stands for Br, Bry or Bry-equiv-
alence relation, (resp. X(k,)/R) is finite.

Proof. (1) If k,~C then it is trivial that
RG(ky) = G(ky). If ky ~ R, let z € G(R), © = z51y
be the Jordan decomposition of z, z, z, € G(R).
Since the unipotent R-groups are R-rational, we
have z, € RG(R). There is an R-subtorus T of G
such that z,€ T(R) and by [CTS77,Corol. 3,
p. 200], T(R)/R=1. Thus z;, € RG(R). Hence
RG(R) = G(R), thus BG(R) = G(R) and the as-
sertion holds for archimedean v. Next we assume
that v is non-archimedean. We know that the weak
Brauer, Brauer and R-equivalence relations on the
k,-points G(k,) of any connected reductive k-group
G coincide (cf. [Th20,Lem. 4.9]), so it suffices to
show the assertion for the weak Brauer equivalence
relation. Also, it suffices to show that the subgroup
ByG(k,) :={x € G(k,) |  ~p, 1} is an open (and
thus also closed) subgroup of G(k,). We know that
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B;G(ky) = f,(Gi(ky)) (cf. [Th20,Lem. 4.9]) where
1—-F— Gy > G —1is a flasque resolution of G
(cf. [CTO8,Sec. 2]). Since F, being a k,-torus, is
smooth, so f is a separable morphism, which defines
an open map f,: Gi(k,) — G(k,) with respect to
v-adic topologies on Gy (k,) and G(k,). In particular,
B¢G(k,) is an open subgroup in G(k,) as asserted.
Hence each Brauer and R-equivalence class in G(k,)
is open and closed in G(k,).
(2) We have the following exact sequence

Glk) ™ X (k) 2 | (ky, H) — H(ky, Q).

It is well-known that for any connected reductive
group K defined over a local field k,, the cohomol-
ogy set H!(k,, K) is finite (see [Se, Chap. III, Sec. 4],
cf. also [Th19, Thm. 2.7]).

For every element y € X(k,), let [y]; be the
Brauer equivalence class of y in X(k,). From what
we have said, the image 6,([y]p,) in H'(k,, H) is
finite, say

6’1/'([y]Br) = {h’17 R hr}a h? # h’JvZ # .]
Let z; € [y] g, such that 6,(x;) = h;. If = € [y] 5, such

that 6,(z) = é,(z;), then we have z = g;x;, for some
gi € G(kiv), ie.,

g = U([y]Br m G(ky)z;).
Since G(ky,)/Br = G(k,)/R is finite (cf. [Th20, Lem.
4.9] and the finiteness of H' for connected reductive
groups), let

G(k,) = |J RG(k)z 2 € G(k,)

1<s<t

be a disjoint union of cosets of RG(k,), so

[y]Br = U U([y]Br ﬂ RG(kU)Z-SxL)
Then we have either

[y]Br ﬂ RG(ki))sti = RG(k1/)29x1
or
W], [ RG (k)2 = 0,

according to whether z,z; ~p, x; or not. Hence we

have
Y] 5, = U U RG(ky)zsx;.

i 8,25~ Bri

Then by changing the notation appropriately, we
have the following disjoint union

g = RG(k) |- | RG () i,
where y; ~p, y,i = 1,...,t. Since RG(k,) is open in
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G(ky) (cf. [Th97,Lem. 2.5]), and the map G(k,) —
X (k,) is open, it follows that the image of RG(k,) —
RG(ky).z; is also open in X(k,), hence [y]p, is open
in X(k,). Each RG(k,)-orbit in X (k,) is the comple-
ment to the disjoint union of other RG(k,)-orbits,
hence is also closed, and hence so is each Brauer
equivalence class [y]z,.

Similarly, the same argument shows that each
R-equivalence class [y], is a disjoint union of
RG(k,)-orbits, thus is open and closed in X(k,).

(3) Since there is a natural surjective map
X(k,)/R — X(k,)/Br, so it suffices fto show that
X(k,)/R is finite. f 1 5 F -G >G—1is a
flasque resolution of G then we have the following
exact sequence

1—F—H — H-—1,

where H; := f~'(H) is a connected reductive
k,-subgroup of GGy, and also that

X = G/HZ Gl/Hl.

Hence in the presentation of X as the quotient
G/H, we may assume from the very beginning that
G is quasi-trivial. In particular, we have G(k,) =
RG(k,) by Lemma 3 (1). Since H}ppf(kv, H) is finite,
it follows from the exact sequence

G(ko) = X (k) — Hiypr(ko, H),

that the set of G(k,)-orbits in X(k,) is finite. Thus
we have
X(ky) = JG(ky) - mi, 2 € X(ky),
il
where ¢ runs over a finite set I of indices. Since all
elements from G(k,) are R-equivalent to the iden-
tity element (Lemma 3 (1)), one can check that all
the elements from G(k,) - x; are R-equivalent to x;.
In particular, the set X(k,)/R is finite as desired.
O
5. Lemma. We have the following commu-

tative diagrams with exact rows
1-XH B X S (BB 1
as | | Bs |=

=X T B oxgr & (Bs(x)/BE)Y —1
(Bu(X)/B(X))” = 1

1-Xk L x &

al Bl 1=

1= XM/ L Xe/T S (BuX)/BX)” — 1,
where T stands for either Br, Br;, Bry or R-
equivalence relation and the Brauer (resp. R-)equiv-
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alence relation on ms (resp. X(k)) is the one
mduced by the relation on Xg (resp. Xy) and

X(k) /T (resp. X(k)/T) denotes the corresponding
set of T-equivalence classes.

Proof. We consider only the first diagram for
the Br-equivalence (the other cases are similar). It
is clear that fg is an injective map.

Next we define a map

Cs - [T X(k)/Br — (Bs(X)/B(X))".

veS

Recall that the map (g is defined as follows. From
the definition of B(X) it follows that the natural
Brauer-Manin  pairing  [],.¢ X(ky) x Bg(X) —
Q/Z, factors through the pairing [[,.q X(k,) x
(Bs(X)/B(X)) — Q/Z, which in turn gives the
map (s. Notice that if = (2,),cq ~Br ¥ = (Yo)pes
then their images via (¢ are the same, thus (g
factors through [],.qX(k,)/Br, and it defines a
map Cs : [[,es X(ku)/Br — (Bs(X)/B(X))". Tt fol-
lows that the diagram stated above is commutative,
where the first row is exact according to Lemma 3
(2).

It remains to show that the second row is exact.
It is clear that we have (go fi(z) =1 for any
e X(k) /Br Conversely, if (4(p)=1, pe
[I,cs X(ky)/Br, then take p € [],.q X(k,) with its
image equal to p. We hSave 1 =(5(Bs(p)) = Cs(p),
so  p=fs(x),xr € X(k). Hence p=0s(p) =
Bs(fs(x)) = fs(as(z)) as required.

To treat the case of R-equivalence, one uses
the natural surjective maps X(L)/R — X(L)/Br
for any field extension L/k (cf. [CTS77,p. 213],
[Th20,4.1(c), p. 1038]), and proceed as above.
Consider the following diagrams

Xm L x¢ 8 @msx)/BX)”
L (1) Byl 1=
X0 R 5 XoR S (Bs(x)/BX)”
L @ Bl 1=
X0 L xemr S (Bs(X)/B(X)),

where the lower diagram (2) is commutative, and
the following commutative diagram

Xm 5 xS (Bs(/B)”

| as Bs | l=

f// C//
X0 /Br = Xs/Br = (Bs(X)/B(X))",

where we have ag=afody, fBs= 050 [ Using
this, we infer that the upper diagram (1) is also
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commutative. Further one proves the exactness of
the middle row in a similar way as above. (I

6. Lemma. We have the following commu-
tative diagrams with exact rows

(6.1) X(k/T 5 Xg/T = (Bs(X)/B(X))
vs | =] 1=

XWT LB xgr S (Bs(0)/B(X)”,

6.2) X(k)/T 5 X7 % (By(X)/B(X))?
yr | =] 1=

X0/ L xS (BuX)/BX)”,

where T stands either for Br, Br; or Bry or R-
equivalence relation.

Proof. We treat the diagram (6.1) for the
case Br only; the other cases are treated in a
similar way. Consider the following commutative
diagram

Xk 5 xm
pl Pl
S oS
X(k)/Br = X(k) /Br.
Consider the quotient topology of the topology
of the product [[.¢X(k,) on the quotient set
X (k) /Br. Since ig has dense i image, it implies that

vs(p(X(k))) is also dense in X (k) /Br

As we have seen by Lemma 4, each Br-equiv-
alence class in X(k,) is an open and closed subset,
so the natural topology on X(k,)/Br is the discrete
one, hence so is the topology on [ [, X(k,)/Br, and

thus also the one on X (k) /Br. Therefore vs is
surjective. Since the second row of diagram (6.1) is
exact by Lemma 5, so from the surjectivity of g
it follows that so is the first row.

By passing to the limit for the first exact
sequence of diagram (6.1), we get the following
exact sequence

/Br—>HX

and the lemma is proved. O

Proof of Theorem 2. By Lemma 5, it re-
mains to show that the second sequence appearing
in the diagram (2.1) is exact on the left, that is, the
maps jp are injective, for B = Br or Bry. But it is
well-known (see [MaTs, Sec. 4.5]), that jp is injec-
tive due to the Hasse principle for the Brauer group
Br(k), hence we have the following exact sequence

— 1

)/ Br = (Bu(X)/B(X))"
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1 — X(k)/Br 2% T] X(k,)/Br

& (Bu(X)/B(X))” = 1.

The proof of Theorem 2, is therefore complete. [

Remark. Notice that in the case of R-equiv-
alence, the last sequence may not be exact on the
left side, i.e., jr : X(k)/R — [, X(k,)/R may not be
injective. In some special cases, we have a formula
to compute the kernel Ker (jr) for tori, see the exact
sequence (CTS) ([CTS77,Prop. 19]), and for con-
nected reductive groups, see [Th20,Thm. 5.11,
Thm. 5.14]. Tt is still an open question to obtain
such a formula for homogeneous spaces. Based on
[Th20, Thm. 5.11, Thm. 5.14], one conjectures that
the following holds. Assume k is a global field, such
that for all simply connected semisimple k-group é,
we have G(k)/R=1. Then for any homogeneous
k-space X with a smooth k-compactification Z°, the
following sequence of pointed sets is exact

1— II'(Sy) — X(k)/R 2 [[ X (k)/R —

v
— (Bu(X)/B(X))” = 1,

where Sy denotes the Néron-Severi k-torus of 2.
According to Theorem 2, for this to hold, it is
sufficient to show that there is a bijection

Ker (jg) ~ II' (Sy).

Acknowledgements. Many thanks are due
to the referee for his/her careful reading of the
manuscript and for valuable comments and advices
towards the clarity of the text. This research is
partially funded by VAST grant NVCC01.13/22-22.

References

[ Bo99 | M. Borovoi, The defect of weak approximation
for homogeneous spaces, Ann. Fac. Sci.
Toulouse Math. (6) 8 (1999), no. 2, 219-
233.

J.-L. Colliot-Thélene, Résolutions flasques des
groupes linéaires connexes, J. Reine Angew.
Math. 618 (2008), 77-133.

J.-L. Colliot-Thélene, P. Gille and R. Parima-
la, Arithmetic of linear algebraic groups
over 2-dimensional geometric fields, Duke
Math. J. 121 (2004), no. 2, 285-341.

[ CTO8 |

[CTGP]

[CTST77]

[CTS87]

[ Ko ]

[ MaTs |

[ Sa ]

[ Sk ]

[ Tho7 |

[ ThoO |

[ Thi3 |

[ Th19 ]

[ Th20 ]

[ Th2l ]

Weak approximation, Brauer and R-equivalence 89

J.-L. Colliot-Théléene and J.-J. Sansuc, La
R-équivalence sur les tores, Ann. Sci. Ecole
Norm. Sup. (4) 10 (1977), no. 2, 175-229.

J.-L. Colliot-Thélene and J.-J. Sansuc, La
descente sur les variétés rationnelles. II,
Duke Math. J. 54 (1987), no. 2, 375-492.

J. Kollar, Rationally connected varieties over
local fields, Ann. of Math. (2) 150 (1999),
no. 1, 357-367.

Yu. I. Manin and M. A. Tsfasman, Rational
varieties: algebra, geometry, arithmetic,
Uspekhi Mat. Nauk 41 (1986), no. 2(248),
51-116.

J.-J. Sansuc, Groupe de Brauer et arithmé-
tique des groupes algébriques linéaires sur
un corps de nombres, J. Reine Angew.
Math. 327 (1981), 12-80.

J.-P. Serre, Cohomologie galoisienne, 5th ed.,
Lecture Notes in Mathematics, 5, Springer-
Verlag, Berlin, 1994. also: “Galois cohomol-
ogy”, Springer-Verlag, 1997.

A. Skorobogatov, Torsors and rational points,
Cambridge Tracts in Mathematics, 144,
Cambridge University Press, Cambridge,
2001.

N. Q. Thang, Weak approximation, R-equiv-
alence and Whitehead groups, in Algebraic
K-theory (Toronto, ON, 1996), 345-354,
Fields Inst. Commun., 16, Amer. Math.
Soc., Providence, RI, 1997.

N. Q. Thang, Weak approximation, Brauer
and R-equivalence in algebraic groups over
arithmetical fields, J. Math. Kyoto Univ. 40
(2000), no. 2, 247-291.

N. Q. Thang, On Galois cohomology of semi-
simple groups over local and global fields of
positive characteristic, III, Math. Z. 275
(2013), no. 3-4, 1287-1315.

N. Q. Thang, On Galois cohomology of con-
nected reductive groups and Kottwitz exact
sequence, Bull. Sci. Math. 151 (2019) 66—
138, Erratum: Bull. Sci. Math. 153 (2019),
118-119.

N. Q. Thang, Tate-Shafarevich kernel, weak
Brauer and R-equivalence on connected
reductive groups over local and global
fields, Ann. Sc. Norm. Super. Pisa Cl. Sci.
(5) 20 (2020), no. 3, 1009-1070.

N. Q. Th:gmg7 On Brauer-Manin obstructions
and analogs of Cassels-Tate’s exact se-
quence for connected reductive groups over
global function fields, Proc. Japan Acad.
Ser. A Math. Sci. 97 (2021), no. 9, 67-72.



	c_rf1
	c_rf3
	c_rf4
	c_rf5
	c_rf6
	c_rf7
	c_rf8
	c_rf9
	c_rf10
	c_rf11
	c_rf12
	c_rf13
	c_rf14
	c_rf15
	c_rf16
	c_rf17

