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Euler tangent numbers modulo 720 and Genocchi numbers modulo 45
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Abstract:

We establish congruences for higher order Euler polynomials modulo 720. We

apply this result for constructing analogues of Stern congruences for Euler secant numbers Ey, =
5(mod 60), Ey,+2 = —1(mod 60) to Euler tangent numbers and Genocchi numbers. We prove that
Euler tangent numbers satisfy the following congruences Ey,11 = 16(mod 720), and Ejy,43 =
—272(mod 720). We establish 12-periodic property of Genocchi numbers modulo 45.
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1. Introduction. FEuler numbers are defined
as coefficients of Taylor series of the function

sech(z) + tanh(z) = Z E, x_'
n!

n>0

Euler numbers and higher-order Euler numbers
were studied in [4], [2]. Their congruences were
studied in [3], [5], [6]. Higher-order Euler numbers
are defined as coefficients of secant power

sech?z = Z(—l)”E

n>0

W &

;)

Here g might be any number, positive or negative.
One can understand ¢ as a formal parameter and
consider Eé%) as a polynomial of q. We set

Loa(q) = (—1)"ES,”.

For Euler secant numbers Stern established the

following congruences ([1,p. 124], [4])
E,, = 5(mod 60), n > 0,
E4n+2 = —1(H10d 60)7 n Z O

Later these congruences were re-discovered by
Ramanujan.

The main result of our paper is the following

Theorem 1.1. For any n >0 and for any
integer q the following congruences are valid

Lun(24g — 2) = Ly(24g — 2)(mod 720),
Lyn12(24q — 2) = Lg(24q — 2)(mod 720).
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Since Euler tangent numbers are particular
cases of higher-order FEuler numbers, FEs,.1 =
Lon(—2), we obtain the following consequence of
Theorem 1.1.

Theorem 1.2.
congruences hold

Ey 41 = 16(mod 720),
If

For any n > 0 the following

Eyn3 = —272(mod 720).

Ey 1 = Es(mod Ny),  Ey,y3 = Er(mod Nj),

for any n >0 with N1, N3 > 720, then N; = N3 =
720.

The Genocchi numbers G,, are a sequence of
integers defined by the generating function

n 2x

T
ZG”H:eI—i—l'

n>1

In particular, G; = 1 and G,, =0, ifn > 1is odd. All
Genocchi numbers Gy, are odd integers.
Combinatorial meaning of Genocchi numbers:
|Gap| counts the number of permutations o € Sy,_;
with descends after even numbers and ascends
after odd numbers. For example, if n =3 then
{42135,21435,34215} is a list of Genocchi permu-
tations, and |G3| = 3.
Euler tangent numbers are closely related to
Bernoulli numbers B,, and Genocchi numbers G,,,
2n
M EQTL—17
G, =2(1-2"B,,

Gop = —2°72"n By, _y.

BQn =

Application of Theorem 1.2 for Genocchi num-
bers gives us the following result.
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Theorem 1.3. For any n >0, Genocchi

numbers satisfy the following congruences
G12n = 3n(mod 45),
Gian+2 = —6n — 16(mod 45),
Gi2n+a = 3n + 1(mod 45),
Gi2n+6 = —6n — 3(mod 45),
Gionss = 3n + 17(mod 45),
G1an+10 = —6n + 25(mod 45).

Proof of theorem 1.1 is based on the following
property of polynomial Lo, (q).

n >0,

Theorem 1.4. The polynomials Ls,(q) can
be constructed by recurrence relation
(1) L?n(Q) =
n 2n —1 2n
1) - L n—i , > 07
;;((zi_l)(q+ ) <%>) 260-i) (0): 1
Lo(q) = 1.
Proof of Theorem 1.4. A function f: A — Q

where A ={1,2,...,2n}, Q ={1,2,...,q} is called
an even pre-image, if for any j € @) the pre-image
f71(j) € A has an even number of elements. Call for
any j € () pre-image set

By = 1) = {ilf() = J)
as j-th block. Then |B,| = p; is even. In particular,
p; might be 0.

Let us prove that Lo,(g) is a number of even
pre-image functions. Let A be partiton of n with
length k = I(A\) and A = 122 - .. ™ is a multiplicity
form of this partition, i.e., r; is a number of
components of A equal to i. Then

rid e =k
L7y +2ry + -+ + 0y = .

Say that even pre-image function f: A — @ has
partition type 2\ if f has k non-empty blocks
Bj,, ..., Bj,, and their lengths generate partition 2.
Let us calculate the number of even pre-image
functions with partition type 214" - .- (2n)". Blocks
Bj, with |B;,| = 2); can be selected in

(2n)! _ (2n)!
T, en) Th (20!

ways. Since blocks with equal size can be permuted,
number of block selections is equal to
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1 (2n)!
rilrle ol [T (20)0
First block might be a pre-image of ¢ elements,
second block might be a pre-image of ¢ — 1 ele-

ments, etc. So, the number of pre-image possibilities
is equal to falling factorial

ar=q(g—1) - (g—k+1).

Therefore,
functions is

the number of even pre-image

(2n)!

L n - .
2n (@) ;bmwux%wﬁmwwuﬁ”
Taylor series of hyperbolic cosine is

22k
coshx = .
2 o
Therefore,
(2n)! x?n

cosh?z = Z

n>0 ki+--+k,=n

k)l (2ky)! (2n)

Hence the coefficient of cosh?z at Z; is Ly, (g). This
means that one can interpret higher-order Euler
polynomial L, (q) for integer ¢ as a number of even
pre-image functions f: A — Q.

Now we will show how to obtain formula (1).
To do that, we will calculate the number of even
pre-image functions in two ways.

First way. Suppose that f: A — @ is an even
pre-image function, 1 € A belongs to block Bj,, and
|Bj,| = 2s. Then, j; can be selected in ¢ ways, and
other elements of block Bj, except 1, can be
selected in (3::11) ways. The number of even pre-
image functions g: A\ B — Q\ {1} is
Lon—2s(q¢ — 1). Therefore,

@ L= a(5 )il
~ s—1

Second way. We study pre-image possibilities
for 1€ Q. If f~1(1) =0, then the number of such
even pre-image functions is Lo,(q — 1). If [f71(1)| =
2s # 0, then the elements of block B; can be
selected in (3’) ways. The number of even pre-
image functions h: A\ By — Q \ {1} is Ly—s(q —
1). Therefore,

I A S (4 LU

pare 2s

By (2) and (3) we obtain
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Lo,(g—1) = 5n1 (q @: B i > - (ZZ)) Logu-5(q —1).

All that remains is to change ¢ — 1 to ¢ to obtain

(1).
Sketch of the Proof of Theorem 1.1.
have

Li(q) = 3¢° — 2q,
Therefore,
Ly(24q — 2) = 16 — 336¢ + 17284,
Ls(24q — 2) = —272 + 7584¢ — 691204 + 207360¢°.

We

Lg(q) = 15¢° — 30¢° + 164.

Hence Theorem 1.1 can be formulated as follows:
Ly, (24q — 2) = 16 + 3844 + 288¢*(mod 720),
Lyyi2(24q — 2) = 448 + 384¢g(mod 720).
Since 720 = 2*.3%.5, by the Chinese remainder

theorem these congruences are equivalent to the
following congruences

(4) Loy (24g — 2) = 0(mod 16), n > 1,

(5)  Lon(24g —2) =6 — 2(mod 9), n >0,

(6)  Lyn(24g—2) =1+ 4q+3¢*(mod 5), n >0,
(7)  Lapt+2(24q —2) = 4¢ — 2(mod 5), n > 0.

Proof of congruence (4). We proceed by

induction on n > 0. If n = 2, then
Li(24q — 2) = 3(24¢ — 2)* — 2(24q — 2) =
=16(—1+9¢)(—1+ 12¢).
Therefore, relation (4) is true for n = 2. Suppose

that this relation is valid for n —1 > 2. Then by
Theorem 1.4 we have

Lon(24q —2) = X1 + X5 + X3,
o = ((24¢ — 1) — 1)Lo(24q — 2) = 24q — 2,
- (( 1) ®0= ()
Ly(24q — 2),
(G- C)

L2(n72)(24q - 2)
By the inductive hypothesis we have
Lyn—i)(24g —2) = 0(mod 16), 1<i<n-—2.
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Hence

n—2
xo=3(Gon)en - (i)
Ly(—(24q — 2) = 0(mod 16).

Therefore,

Lon(24g— 2) = X1 + X»
=24¢—-24+(2n—1)(n—-1)(24¢—1) — n)(24qg — 2)
= 8(—1+ 12¢) X (mod 16),

where

X =(n—-1)(—n—6g+ 12ng).

Note that X is even for any n: if n is odd, then
(n—1) is even, and if n is even, (—n — 6¢ 4+ 12nq) is
even. Hence, we have

L, (24q — 2) = 0(mod 16),
and the congruence (4) is proved.
Proof of the congruence (5). For n =0 our

statement is evident. Suppose that it is true for
n — 1. Then by Theorem 1.4

Lon(249 —2) = ((24¢ —1) = 1)Lo(24¢ — 2) + Y,
where

(e ()

L2(n7i)(24q -2).
By induction hypothesis

Lyn-i)(24¢—2) =6g—2(mod 9), 1<i<n-—1
Further,
S 2n -1 . _
. =4"" -1, if n>1,
—\2i—1

n—1

2
) < 7) — 921 _9 ifpn >0
= \2

Therefore, we have the following modulo 9

o I o
E(6q—2><24q—1)2<227;_11>
— (6g—2) ni @Z)

i=1
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= (6g —2){(24¢ - D" = 1) — (2" - 2)}
=3(4""' - 1)(6g —2)(8g — 1).
Since 3(4"! — 1) = 0(mod 9), we obtain
Y = 0(mod 9).

Therefore,
Lon(24q = 2) = (24— 1) = 1)Lo(24¢ - 2) + Y
= 24q — 2 = 6q — 2(mod 9),

and the congruence (5) is proved completely.
Similar arguments show that (6) and (7) are
valid as well.
All that remains is to use Chinese remainder
theorem to get that

By = E5(m0d 720)7 Eipys = E?(mOd 720)7

for any n > 0. Suppose that for some integers N >
720 and N3 > 720 the following congruences are
valid

Ey 1 = Es(mod Ny), Eyy3 = Er(mod Ny),

for any n > 0. In particular, they are valid for
n = 2,3. We have

Es = 16, E; = —272, By = 7936,
By = —353792, B3 = 22368256,
Eys = —1903757312,

and,
GCD(Ey — E5, Ey3 — E5) = 720,
GCD(E; — Ev1, Er — Eq5) = 720.

Therefore,

Ny =720, N3 ="720.

So, the number 720 as a base of congruence in
Theorem 1.1 is optimal.

Sketch of the proof of Theorem 1.3. The
proof is based on the following four facts. First,
by Theorem 1.2 Ey,1 = 16(mod 45),
—272(mod 45). Second, we use the following con-
nection between Genocchi numbers and tangent
numbers Gs, = —2272"n E,,_;. Third, Genocchi
numbers are odd. Fourth, 16" (mod 45) = 1, 16, 31,
if n=0,1,2(mod 3) respectively.

Let us give the proof of congruences for
Gian, Giong2, Gionsa, Giangs.  Other  congruences
mentioned in Theorem 1.3 can be established by
similar arguments.

We have

E4n+3 =
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Giop = =22 6n - Bigpq = =167 - 3n - 22 Eya,,
2)Ey9, 1 = —2% - 272(mod 45) = —16(mod 45).
Therefore,
G12n = 1 - 48n(mod 45) = 3n(mod 45).
Further,
Giongz = =271 (6n 4 1) - Eigppn
= —167%"(6n + 1)E19,41,
Ej9,+1 = 16(mod 45),
and,
Gionso = —1673" - 16(6n + 1)(mod 45)
= —6n — 16(mod 45).
We have
Giania = =274 (6n + 2) E19013
=—16""2"1(3n + 1) E12,13,
27 19,13 = —1(mod 45).
Hence,
G1an+a = 3n + 1(mod 45).
Further,
Glonss = —2°72"7%(6n + 3) Eionts
= —16"""(6n + 3)16 "' E19,+5,
16" Ei2,.5 = 1(mod 45).
Therefore,

Giapie = —1679"(6n + 3) = —6n — 3(mod 45).
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