Euler tangent numbers modulo 720 and Genocchi numbers modulo 45

By Askar DZHUMADIL'DAEV*) and Medet JUMADILDAYEV**)

(Communicated by Masaki Kashiwara, M.J.A., Sept. 12, 2022)

Abstract: We establish congruences for higher order Euler polynomials modulo 720. We apply this result for constructing analogues of Stern congruences for Euler secant numbers $E_{4n} \equiv 5 \pmod{60}$, $E_{4n+2} \equiv -1 \pmod{60}$ to Euler tangent numbers and Genocchi numbers. We prove that Euler tangent numbers satisfy the following congruences $E_{4n+1} \equiv 16 \pmod{720}$, and $E_{4n+3} \equiv -272 \pmod{720}$. We establish 12-periodic property of Genocchi numbers modulo 45.

Key words: Higher-order Euler numbers; secant numbers; tangent numbers; Genocchi numbers; Ramanujan congruences.

1. Introduction. Euler numbers are defined as coefficients of Taylor series of the function

$$\operatorname{sech}(x) + \tanh(x) = \sum_{n \ge 0} E_n \frac{x^n}{n!}.$$

Euler numbers and higher-order Euler numbers were studied in [4], [2]. Their congruences were studied in [3], [5], [6]. Higher-order Euler numbers are defined as coefficients of secant power

$$\operatorname{sech}^{q} x = \sum_{n \ge 0} (-1)^{n} E_{2n}^{(q)} \frac{x^{2n}}{(2n)!}.$$

Here q might be any number, positive or negative. One can understand q as a formal parameter and consider $E_{2n}^{(q)}$ as a polynomial of q. We set

$$L_{2n}(q) = (-1)^n E_{2n}^{(-q)}.$$

For Euler secant numbers Stern established the following congruences ([1, p. 124], [4])

$$E_{4n} \equiv 5 \pmod{60}, \ n > 0,$$

 $E_{4n+2} \equiv -1 \pmod{60}, \ n \ge 0.$

Later these congruences were re-discovered by Ramanujan.

The main result of our paper is the following **Theorem 1.1.** For any n > 0 and for any integer q the following congruences are valid

$$L_{4n}(24q-2) \equiv L_4(24q-2) \pmod{720},$$

 $L_{4n+2}(24q-2) \equiv L_6(24q-2) \pmod{720}.$

Since Euler tangent numbers are particular cases of higher-order Euler numbers, $E_{2n+1} = L_{2n}(-2)$, we obtain the following consequence of Theorem 1.1.

Theorem 1.2. For any n > 0 the following congruences hold

$$E_{4n+1} \equiv 16 \pmod{720}, \quad E_{4n+3} \equiv -272 \pmod{720}.$$
If

$$E_{4n+1} \equiv E_5 \pmod{N_1}, \quad E_{4n+3} \equiv E_7 \pmod{N_3},$$
 for any $n > 0$ with $N_1, N_3 \ge 720$, then $N_1 = N_3 = 720$.

The Genocchi numbers G_n are a sequence of integers defined by the generating function

$$\sum_{n\geq 1} G_n \frac{x^n}{n!} = \frac{2x}{e^x + 1}.$$

In particular, $G_1 = 1$ and $G_n = 0$, if n > 1 is odd. All Genocchi numbers G_{2n} are odd integers.

Combinatorial meaning of Genocchi numbers: $|G_{2n}|$ counts the number of permutations $\sigma \in S_{2n-1}$ with descends after even numbers and ascends after odd numbers. For example, if n=3 then $\{42135, 21435, 34215\}$ is a list of Genocchi permutations, and $|G_3|=3$.

Euler tangent numbers are closely related to Bernoulli numbers B_n and Genocchi numbers G_n ,

$$B_{2n} = \frac{2n}{4^{2n} - 2^{2n}} E_{2n-1},$$

$$G_n = 2(1 - 2^n) B_n,$$

$$G_{2n} = -2^{2-2n} n E_{2n-1}.$$

Application of Theorem 1.2 for Genocchi numbers gives us the following result.

²⁰²⁰ Mathematics Subject Classification. Primary 11B68.

*) Kazakh-British Technical University, Tole bi 59, Almaty, 050000, Kazakhstan.

^{**)} Nazarbayev Intellectual School of Physics and Mathematics, 145 Zhamakayev Street, Almaty, 050000, Kazakhstan.

Theorem 1.3. For any $n \ge 0$, Genocchi numbers satisfy the following congruences

$$G_{12n} \equiv 3n \pmod{45},$$

$$G_{12n+2} \equiv -6n - 16 \pmod{45}, \quad n > 0,$$

$$G_{12n+4} \equiv 3n + 1 \pmod{45},$$

$$G_{12n+6} \equiv -6n - 3 \pmod{45},$$

$$G_{12n+8} \equiv 3n + 17 \pmod{45},$$

$$G_{12n+10} \equiv -6n + 25 \pmod{45}.$$

Proof of theorem 1.1 is based on the following property of polynomial $L_{2n}(q)$.

Theorem 1.4. The polynomials $L_{2n}(q)$ can be constructed by recurrence relation

(1)
$$L_{2n}(q) =$$

$$\sum_{i=1}^{n} \left(\binom{2n-1}{2i-1} (q+1) - \binom{2n}{2i} \right) L_{2(n-i)}(q), n > 0,$$

$$L_{0}(q) = 1.$$

Proof of Theorem 1.4. A function $f: A \to Q$ where $A = \{1, 2, ..., 2n\}$, $Q = \{1, 2, ..., q\}$ is called an *even pre-image*, if for any $j \in Q$ the pre-image $f^{-1}(j) \subseteq A$ has an even number of elements. Call for any $j \in Q$ pre-image set

$$B_i = f^{-1}(j) = \{i | f(i) = j\}$$

as j-th block. Then $|B_j| = p_j$ is even. In particular, p_j might be 0.

Let us prove that $L_{2n}(q)$ is a number of even pre-image functions. Let λ be partition of n with length $k = l(\lambda)$ and $\lambda = 1^{r_1}2^{r_2}\cdots n^{r_n}$ is a multiplicity form of this partition, i.e., r_i is a number of components of λ equal to i. Then

$$r_1 + \dots + r_n = k,$$

$$1r_1 + 2r_2 + \dots + nr_n = n.$$

Say that even pre-image function $f: A \to Q$ has partition type 2λ if f has k non-empty blocks B_{j_1}, \ldots, B_{j_k} , and their lengths generate partition 2λ . Let us calculate the number of even pre-image functions with partition type $2^{r_1}4^{r_2}\cdots(2n)^{r_n}$. Blocks B_{j_i} with $|B_{j_i}|=2\lambda_i$ can be selected in

$$\frac{(2n)!}{\prod_{i=1}^{k} (2\lambda_i)!} = \frac{(2n)!}{\prod_{i=1}^{n} (2i)!^{r_i}}$$

ways. Since blocks with equal size can be permuted, number of block selections is equal to

$$\frac{1}{r_1!r_2!\cdots r_n!} \frac{(2n)!}{\prod_{i=1}^n (2i)!^{r_i}}.$$

First block might be a pre-image of q elements, second block might be a pre-image of q-1 elements, etc. So, the number of pre-image possibilities is equal to falling factorial

$$q_k = q(q-1)\cdots(q-k+1).$$

Therefore, the number of even pre-image functions is

$$L_{2n}(q) = \sum_{\substack{\lambda \vdash n \\ 2! r_1 4! r_2 \cdots (2n)! r_n r_1! r_2! \cdots r_n!}} \frac{(2n)!}{q_{l(\lambda)}}.$$

Taylor series of hyperbolic cosine is

$$\cosh x = \sum_{k > 0} \frac{x^{2k}}{(2k)!}.$$

Therefore,

$$\cosh^q x = \sum_{n \ge 0} \sum_{k_1 + \dots + k_q = n} \frac{(2n)!}{(2k_1)! \cdots (2k_q)!} \frac{x^{2n}}{(2n)!}.$$

Hence the coefficient of $\cosh^q x$ at $\frac{x^n}{n!}$ is $L_{2n}(q)$. This means that one can interpret higher-order Euler polynomial $L_n(q)$ for integer q as a number of even pre-image functions $f: A \to Q$.

Now we will show how to obtain formula (1). To do that, we will calculate the number of even pre-image functions in two ways.

First way. Suppose that $f: A \to Q$ is an even pre-image function, $1 \in A$ belongs to block B_{j_1} , and $|B_{j_1}| = 2s$. Then, j_1 can be selected in q ways, and other elements of block B_{j_1} , except 1, can be selected in $\binom{2n-1}{2s-1}$ ways. The number of even pre-image functions $g: A \setminus B_{j_1} \to Q \setminus \{j_1\}$ is $L_{2n-2s}(q-1)$. Therefore,

(2)
$$L_{2n}(q) = \sum_{s=1}^{n} q \binom{2n-1}{2s-1} L_{2(n-s)}(q-1).$$

Second way. We study pre-image possibilities for $1 \in Q$. If $f^{-1}(1) = \emptyset$, then the number of such even pre-image functions is $L_{2n}(q-1)$. If $|f^{-1}(1)| = 2s \neq 0$, then the elements of block B_1 can be selected in $\binom{2n}{2s}$ ways. The number of even pre-image functions $h: A \setminus B_1 \to Q \setminus \{1\}$ is $L_{2(n-s)}(q-1)$. Therefore,

(3)
$$L_{2n}(q) = \sum_{s=0}^{n} {2n \choose 2s} L_{2(n-s)}(q-1).$$

By (2) and (3) we obtain

$$L_{2n}(q-1) = \sum_{s=1}^{n} \left(q \binom{2n-1}{2s-1} - \binom{2n}{2s} \right) L_{2(n-s)}(q-1).$$

All that remains is to change q-1 to q to obtain (1).

Sketch of the Proof of Theorem 1.1. We have

$$L_4(q) = 3q^2 - 2q$$
, $L_6(q) = 15q^3 - 30q^2 + 16q$.

Therefore.

$$L_4(24q - 2) = 16 - 336q + 1728q^2,$$

$$L_6(24q - 2) = -272 + 7584q - 69120q^2 + 207360q^3.$$

Hence Theorem 1.1 can be formulated as follows:

$$L_{4n}(24q - 2) \equiv 16 + 384q + 288q^2 \pmod{720},$$

 $L_{4n+2}(24q - 2) \equiv 448 + 384q \pmod{720}.$

Since $720 = 2^4 \cdot 3^2 \cdot 5$, by the Chinese remainder theorem these congruences are equivalent to the following congruences

- (4) $L_{2n}(24q-2) \equiv 0 \pmod{16}, \quad n > 1,$
- (5) $L_{2n}(24q-2) \equiv 6q 2 \pmod{9}, \quad n > 0,$
- (6) $L_{4n}(24q-2) \equiv 1 + 4q + 3q^2 \pmod{5}, \quad n > 0,$
- (7) $L_{4n+2}(24q-2) \equiv 4q 2 \pmod{5}, \quad n > 0.$

Proof of congruence (4). We proceed by induction on $n \ge 0$. If n = 2, then

$$L_4(24q - 2) = 3(24q - 2)^2 - 2(24q - 2) =$$

= 16(-1 + 9q)(-1 + 12q).

Therefore, relation (4) is true for n = 2. Suppose that this relation is valid for $n - 1 \ge 2$. Then by Theorem 1.4 we have

$$L_{2n}(24q-2) = X_1 + X_2 + X_3$$

where

$$X_{1} = ((24q - 1) - 1)L_{0}(24q - 2) = 24q - 2,$$

$$X_{2} = \left(\binom{2n - 1}{2(n - 1) - 1} (24q - 1) - \binom{2n}{2(n - 1)} \right).$$

$$L_{2}(24q - 2),$$

$$X_{3} = \sum_{i=1}^{n-2} \left(\binom{2n - 1}{2i - 1} (24q - 1) - \binom{2n}{2i} \right).$$

$$L_{2(n-i)}(24q - 2).$$

By the inductive hypothesis we have

$$L_{2(n-i)}(24q-2) \equiv 0 \pmod{16}, \quad 1 \le i \le n-2.$$

Hence

$$X_3 = \sum_{i=1}^{n-2} \left(\binom{2n-1}{2i-1} (24q-1) - \binom{2n}{2i} \right).$$

$$L_{2(n-i)}(24q-2) \equiv 0 \pmod{16}.$$

Therefore.

$$L_{2n}(24q - 2) \equiv X_1 + X_2$$

$$\equiv 24q - 2 + (2n - 1)((n - 1)(24q - 1) - n)(24q - 2)$$

$$\equiv 8(-1 + 12q)X \pmod{16},$$

where

$$X = (n-1)(-n-6q+12nq).$$

Note that X is even for any n: if n is odd, then (n-1) is even, and if n is even, (-n-6q+12nq) is even. Hence, we have

$$L_{2n}(24q-2) \equiv 0 \pmod{16},$$

and the congruence (4) is proved.

Proof of the congruence (5). For n = 0 our statement is evident. Suppose that it is true for n-1. Then by Theorem 1.4

$$L_{2n}(24q-2) = ((24q-1)-1)L_0(24q-2) + Y,$$

where

$$Y = \sum_{i=1}^{n-1} \left(\binom{2n-1}{2i-1} (24q-1) - \binom{2n}{2i} \right) \cdot L_{2(n-i)}(24q-2).$$

By induction hypothesis

$$L_{2(n-i)}(24q-2) \equiv 6q - 2 \pmod{9}, \quad 1 < i < n-1.$$

Further,

$$\sum_{i=1}^{n-1} \binom{2n-1}{2i-1} = 4^{n-1} - 1, \text{ if } n > 1,$$
$$\sum_{i=1}^{n-1} \binom{2n}{2i} = 2^{2n-1} - 2, \text{ if } n > 0.$$

Therefore, we have the following modulo 9

$$Y \equiv \sum_{i=1}^{n-1} {\binom{2n-1}{2i-1}} (24q-1) - {\binom{2n}{2i}} (6q-2)$$

$$\equiv (6q-2)(24q-1) \sum_{i=1}^{n-1} {\binom{2n-1}{2i-1}}$$

$$- (6q-2) \sum_{i=1}^{n-1} {\binom{2n}{2i}}$$

$$\equiv (6q-2)\{(24q-1)(4^{n-1}-1)-(2^{2n-1}-2)\}$$

$$\equiv 3(4^{n-1}-1)(6q-2)(8q-1).$$

Since $3(4^{n-1} - 1) \equiv 0 \pmod{9}$, we obtain

$$Y \equiv 0 \pmod{9}$$
.

Therefore,

$$L_{2n}(24q - 2) = ((24q - 1) - 1)L_0(24q - 2) + Y$$

$$\equiv 24q - 2 \equiv 6q - 2 \pmod{9},$$

and the congruence (5) is proved completely.

Similar arguments show that (6) and (7) are valid as well.

All that remains is to use Chinese remainder theorem to get that

$$E_{4n+1} \equiv E_5 \pmod{720}, \quad E_{4n+3} \equiv E_7 \pmod{720},$$

for any n > 0. Suppose that for some integers $N_1 \ge 720$ and $N_3 \ge 720$ the following congruences are valid

$$E_{4n+1} \equiv E_5 \pmod{N_1}, \quad E_{4n+3} \equiv E_7 \pmod{N_3},$$

for any n > 0. In particular, they are valid for n = 2, 3. We have

$$E_5 = 16, E_7 = -272, E_9 = 7936,$$

 $E_{11} = -353792, E_{13} = 22368256,$
 $E_{15} = -1903757312,$

and.

$$GCD(E_9 - E_5, E_{13} - E_5) = 720,$$

 $GCD(E_7 - E_{11}, E_7 - E_{15}) = 720.$

Therefore,

$$N_1 = 720, \quad N_3 = 720.$$

So, the number 720 as a base of congruence in Theorem 1.1 is optimal.

Sketch of the proof of Theorem 1.3. The proof is based on the following four facts. First, by Theorem 1.2 $E_{4n+1} \equiv 16 \pmod{45}$, $E_{4n+3} \equiv -272 \pmod{45}$. Second, we use the following connection between Genocchi numbers and tangent numbers $G_{2n} = -2^{2-2n} n E_{2n-1}$. Third, Genocchi numbers are odd. Fourth, $16^n \pmod{45} \equiv 1, 16, 31$, if $n \equiv 0, 1, 2 \pmod{3}$ respectively.

Let us give the proof of congruences for G_{12n} , G_{12n+2} , G_{12n+4} , G_{12n+6} . Other congruences mentioned in Theorem 1.3 can be established by similar arguments.

We have

$$G_{12n} = -2^{2-12n} \cdot 6n \cdot E_{12n-1} = -16^{-3n} \cdot 3n \cdot 2^3 E_{12n-1},$$

$$2^3 E_{12n-1} \equiv -2^3 \cdot 272 \pmod{45} \equiv -16 \pmod{45}.$$

Therefore,

$$G_{12n} \equiv 1 \cdot 48n \pmod{45} \equiv 3n \pmod{45}$$
.

Further

$$G_{12n+2} = -2^{-12n} \cdot (6n+1) \cdot E_{12n+1}$$

= $-16^{-3n} (6n+1) E_{12n+1}$,
 $E_{12n+1} \equiv 16 \pmod{45}$,

and.

$$G_{12n+2} \equiv -16^{-3n} \cdot 16(6n+1) \pmod{45}$$

 $\equiv -6n - 16 \pmod{45}$.

We have

$$G_{12n+4} = -2^{2-12n-4}(6n+2)E_{12n+3}$$

= -16⁻³ⁿ2⁻¹(3n+1)E_{12n+3},
$$2^{-1}E_{12n+3} \equiv -1 \pmod{45}.$$

Hence,

$$G_{12n+4} \equiv 3n + 1 \pmod{45}$$
.

Further,

$$G_{12n+6} = -2^{2-12n-6}(6n+3)E_{12n+5}$$

= $-16^{-3n}(6n+3)16^{-1}E_{12n+5},$
 $16^{-1}E_{12n+5} \equiv 1 \pmod{45}.$

Therefore.

$$G_{12n+6} \equiv -16^{-3n}(6n+3) \equiv -6n-3 \pmod{45}$$
.

Acknowledgments. The work was supported by grant AP08855944 of the Ministry of Education and Science of the Republic of Kazakhstan.

References

- [1] B. C. Berndt, Ramanujan's notebooks. Part I, Springer-Verlag, New York, 1985.
- L. Carlitz and R. Scoville, Enumeration of updown permutations by upper records, Monatsh. Math. 79 (1975), 3–12.
- [3] G. Liu, Congruences for higher-order Euler numbers, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 3, 30–33.
- [4] N. Nielsen, Traité Elémentaire des Nombres de Bernoulli, Gauthier-Villars, Paris, 1923.
- [5] P. Yuan, A conjecture on Euler numbers, Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), no. 9, 180–181.
- W. Zhang, Some identities involving the Euler and the central factorial numbers, Fibonacci Quart. 36 (1998), no. 2, 154-157.