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Abstract:

We consider a natural basis for the space of weakly holomorphic modular

forms for I'§ (3). We prove that for some of the basis elements, if z) in the fundamental domain
for T'j(3) is one of zeroes of the elements, then either z, is transcendental or is in

{L —14V2 —34+/3i —1+\/ﬁi}
V3’7 3 T 6 6
Key words:

1. Introduction and statement of a main
result. Since Rankin and Swinnerton-Dyer [9],
the zeros of weakly holomorphic modular forms
has been well-studied. In particular, Duke and
Jenkins [4] constructed a natural basis {Fjm},>_;
for the space of weakly holomorphic modular forms
of weight k for SLy(Z) and investigated the location
of the zeros of the basis elements. The basis
elements Fj,, have Fourier expansions of the form

(1) kaL(Z) = q_m + Z ak,’ﬂl(n)qnv
n>+1

where k =121+ K with ¥ €{0,4,6,8,10,14} and
m > —I. Along with the study of location of the
zeros of such forms, the transcendence and
algebraicity of the zeros has been investigated.
Jennings-Shaffer and Swisher [7] showed that for
each m > |l| — I, the zeros of F},, in the standard
fundamental domain for SLy(Z) are either tran-
scendental or contained in {i,e*"/3}. In the higher
level cases, Gun and Saha [5] studied the tran-
scendence of zeros of weakly holomorphic modular
forms for I'y(p) under a certain assumption on the
location of zeros. Also they studied the nature of the
zeros of Eisenstein series for I'j (p) with p = 2 or 3.
The author and Im [1] extended this result to basis
elements of the space of weakly holomorphic
modular forms for I'(2). Here I'j(p) is the group
generated by the Hecke congruence group Iy(p)

o . (0 =1/\yp
and the Fricke involution W), := (ﬁ 0 )
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weakly holomorphic modular form; transcendence.

In this paper we investigate the algebraicity and
transcendence of the zeros of natural basis elements
of the space of weakly holomorphic modular forms
for T'J(3). Also we remark that the zeros of these
basis elements don’t lie in the region described in
the assumption of the result [5, Theorem 4] of Gun
and Saha. So our consideration is not covered by
[5, Theorem 4].

We let F*(3) be the standard fundamental
domain for I'j (3) given in [8] by

Fr(3):={2€C:|z] >1/V3,-1/2 < Re(z) < 0}
U{z€C:|z] >1/V3,0 < Re(z) < 1/2}
and let

V= {\}ge” /2 <6< 57r/6}‘

For a given even integer k € 2Z, we can write
k=120 + ry,

where ¢, € Z, r, € {0,4,6,8,10,14}. For integer m
with m > —2l; — ¢, there exists a unique weakly
holomorphic modular form with the Fourier expan-
sion of the form

Fem(2) = ¢ 4 O+,

which they form a basis for the space of weakly
holomophic modular forms of weight k for T'j(3).
Here ¢ is 0 or 1 depending on 7y (see [2,6]).

In particular we have fem =
(AN Ag . Fr (j§), where Fj, (x) is the monic
polynomial in x of degree 2l + €, + m with integer
coefficients. Where
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n(z) =g [J(1—¢"),
n=1

Af(2) = (n(2)m(32))",

1
By (2) = B}y, (2) = {ognys (Bu(2) + 37E, (32),
12 12
() ) o (1(32)
J3 (2) = ( +12+3 ,
’ n(3z) n(2)
L, it 7y =0,
E.:r (2)7 lf T = 4,
EJ’ lf Tk = 67
L (B2 - B () TR
Ay (2) = 1795 1 2 s (2)); if ), =8,
61
133 BL B (9) = Bly(2),  if re =10,
—22427 ,
e (B (B () = Bfy(2), it vy = 14,
2k 0 2k o0 nk*lqn
E(z)=1—-— _ n—1-_"
{A) =1-F 3 o' =1-3 3 50
for ¢=e>™* op1(n)= Y, d*' and the kth

1<d|n

Bernoulli number By. In [6] Hanamoto and Kuga
showed that if m > 18]l;| + 23, then all of the zeros
in F"(3) of the forms f,, lie on the circle with
radius 1/v/3. In this paper we investigate the
algebraicity and transcendence of zeros in F*(3)
of fim. In particular, combining the main ideas
in [1,5,7] we prove the following result.

Theorem 1.1. Let k be an even integer and
write k = 120y, + ri, for a unique integer by, € Z and
a unique integer 1 € {0,4,6,8,10,14}. If m >
18|lx| + 23 and 2y is a zero in F*(3) of fim, then
either zy s in {ﬁ, 71+3\/§1: , ’32‘/52' , ’HG‘/E:} or zy i
transcendental.

This paper is organized as follows: In Sec-
tions 2 we prove Theorem 1.1.

2. The proof of Theorem 1.1. We start
with a well-known lemma. Let j be the j-invariant
defined by

Ba(2)®
Ey(2)’ - Es(2)*

If z€ H and j(z) is algebraic,
then either z is transcendental or z is imaginary
quadratic.

Proof. It follows from Schneider’s Theorem
in [10]. O

Let |, is the usual slash operator. The g-ex-
pansion principle, due to Deligne and Rapoport
([3, Theorem 3.9, p. 304]), implies that if an integral

j(z) :=1728

Lemma 2.1.

[Vol. 98(A),

weight modular form f has rational Fourier coef-
ficeients at the cusp infinity, then f has also rational
Fourier coefficients at all other cusps. By this fact
we have the following lemma.

Lemma 2.2. For a modular form f of weight
k onT§ (3) rational Fourier coefficients, the function

F(z):= H
vESLy(Z)/T(3)
which is a modular form of weight 4k for SLy(Z) has
also rational Fourier coefficients.

Now, we prove Theorem 1.1. Since A is a cusp
form of weight 12 on T'{ (3), (A})" fim is a modular
form on I'j (3) for some positive integer n. We have
from Lemma 2.2 that the modular form

(2) Fy = H ((AF)" frm) li2niiy

Y€ESLy(Z)/To(3)

f‘k')/

of weight 48n + 4k on SLy(Z) has a rational Fourier
expansion at the cusp infinity. Then since zj is a
zero of fi,.,, we have F),(29) = 0. From the property
of the forms Fj,, in (1) given by Duke and Jenkins
in [4], F,,, can be expressed as the product,

(3) Fu(2) = A(2) Ex (2) P (j(2)),

where 48n + 4k = 121 + k' for a unique integer | € Z
and a unique integer K € {0,4,6,8,10,14} and
P, (z) is a polynomial with rational coefficients.
Since Fy,(20) =0 and A(z) #0, we see that
Ey(2) =0 or P,(j(z2)) =0. Then we have the
following Lemma 2.3.
Lemma 2.3. If Eu(z) =0 for 29 € V, then
zZ0 — 73%\/32
Proof. If Ep(z) =0 then zy=~i or z =
z=7i €V, then 1/(2/3)<Im(z)=1/(C*+
D?) < 1/+/3, which implies C? + D> =2. So 1/3 =
120> = (A2 + B?)/2, but there no such integers A
and B. If zp=~(—3+ @) €V, then 1/(2v3) <
Im(z) = % <1/+/3, which implies C?+
D? —CD € {2,3}. Noticing that 1/3=|z|* =
64;1137;:% we have C2+ D?> - CD =3 and so z =
737%\/52" 0

7(—%—!—@) for some =

From Lemma 2.3 it is enough to consider the
case when P,,(j(z))=0. Since P,(x) is a poly-
nomial with rational coefficients, j(zy) is algebraic
and so by Lemma 2.1 z, is transcendental or z; is

imaginary quadratic. Suppose z; is imaginary
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quadratic and z is a root of a polynomial ax?® +
bz + ¢ with discriminant d = b — 4ac < 0, where
a>0 and ged(a,b,c) =1. We now consider the
point w € C defined by

iV —d

! 5 if d=0 (mod 4),
w =

14iv_d

%, if d=1 (mod 4).

Following the arguments in [1,5,7], we obtain that
j(z0) and j(w) are conjugate and so we take an
automorphism o of Q(vd)(j(z)) such that
0(j(20)) = j(w). Then since o fixes P,,, we have
that 0 = 0(Pa(j(20))) = Pul0(i(20))) = Palji(w)).
As a coset decomposition of SLy(Z) in T'¢(3), we
may choose the 4 elements I, S, ST, and ST?, where

1 0 0 1 1 1
I—(O 1),5—(_1 0),and T_<O 1)6

SLy(Z). Recalling (2) and (3), we have that 0 =
Fm(w) = (A;(w)nfk.,m(w))((A?J,r)nfk,m)|12n+k5(w)
(A" frm) han kST (W) (A" frm) 1201 ST (w).

So we see

Jrm(w) =0 or fr,(Sw)=0or
fkﬁm(ST’lU) =0or fk,m(ST2w) =0

because Aj has no zeros on the upper half plane.
We now let for a positive integer n

J —4n, if d=0 (mod 4),
|l -4n+1, ifd=1 (mod 4),
so we have

ivn, if d =0 (mod 4),
w=1< _14ivan -1
an, if d=1 (mod 4).
Since weFT(3)—V, we see from [6] that

frm(w) # 0. Now suppose that
Jem(Sw) =0 or fi,(STw) =0 or fk,m(STQw) =0.

We note the following lemma that is important to
prove Proposition 2.5.

Lemma 2.4. Let zy € V be a root of a poly-
nomial ax®+bx +c with discriminant d=b* —
dac < 0, where a > 0 and ged(a,b,c) = 1 Then
(1) ifd = —12 (so w = i\/3), then z is \/3 or ?’Jg‘/gi,

(2) if d = —8 (s0 w =iV/2), then 2z = 71+\/'z

(3) ifd=—4n+1 (sow—ﬂ) forne {1,3},
3EJ§7 1+6 i ith

then zy =
n=3.

with n=1 or z =
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Proof. Since zy € V, the following properties
are satisfied:

—b+1iv—d
pn=——"——¢€V
2a
and
1 vV—d 1
a>b>0, —<Imz = < —,
23 2a ~ /3
P—d 1
and =—
4a? 3

If d = —12 then 3 < a < 6 and b* + 12 = 4a?/3.

%O (\%b) € {(3,0),(6,6)} which say z = ﬁ or zp =
o
Ifd = —8thena =3 and b*> + 8 = 44?/3. Soa =
3 and b = 2 which say z) = 1+fl
Ifcl:—Z’)thena:2or3amdb2 3 =4a’/3. So

a = 3 and b = 3 which say z = 3*‘/'2

If d=—-11 then a€{3 4 5} and b* +11 =
4a?/3. So a =3 and b= 1 which say z = 1*‘/_2

O

We complete the proof of Theorem 1.1 by
proving Proposition 2.5 explicitly. Note that if
frm(u) =0 then yu €€V or YWisu € V for some
A F0(3>

Proposition 2.5. If fi,,(Sw) =0 then we
get the following (1)-(4), and if fim(STw) =0 then
we get the following (5)~(8), and if frm(ST*w) = 0
then we get the following (9)—(12).

(1) If w = iy/n andySw € V for somey € I'y(3),

then n = 3 and 20 = L?, or zy = _S‘E\/gi'

(2) If w=1iy/n and YW3Sw € V' for some v €
T'y(3), then n =3 and zy = #3 or zy = _3+T\/§1

(3) Ifw= %4"—_1 and ySw € V' for some v €
[y(3), thenn =3 and 2y = ’”T‘/l_h

4) If w= % and YW3Sw € V' for some
v€To(3), thenn=1 and zp = 73“/?_”, orn=3 and

20 = 71+\/ﬁz

(5) Ifw—\/_z and vSTw €V for some vy €
To(3), thenn =2 and z = lg\@
6) If w=+/ni and YW3STw € V for some ~y €

(
To(3), thenn =2 and z = _1‘5\/5‘
(7) If w= 7_1“‘2/‘T and vSTw €V for some
v €Ty(3), thenn =1 and z = 3%‘@, orn =23 and
20 = 71+\/—7

8) Ifw = =ivnl gnd yW3STw € V for some
v €T4(3), thenn =1 and z = ’3+,\/§i, orn =3 and
20 = 71+\/_z

9) Ifw—\/_z and yST?w € V for some v €
To(3), then n =2 and zy = 1‘5\/5‘

/—\
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(10) If w = /ni and YW38T*w € V for some
v €T0(3), thenn =2 and z) = 71%\@

(11) If w = ’”me and yST?w € V for some
v€Ty(3), thenn =1 and z = _3+T*/§”

(12) If w= %‘m and AWsST*w eV for
some v € Ty(3), thenn =1 and z = ’HT‘/‘;”

Proof. Let v = <é1, g) € T'y(3). Then for u
in the upper half plane, yu € V satisfies the follow-
ing

(a) AD— BC =1 and 3|C, so AD # 0.
(b) —1/2 < Re(yu) < 0.
(¢) 1/(2v/3) < Im(yu) < 1/V/3.
(d) [yul* = 1/3.
For convenience we give the following list:
-B A -B —B+A
VS = ( ) VST = ( )
-D C -D -D+C
- —2B+ A
a4 2)
-D -2D+C
1/vV/3 0
W3S = V3 ,
0 V3
1/vV3 1/V3
W5 ST = V3 V3 ,
0 V3
1/vV3 2/v3
W3ST? = /Y3 23 :
0 V3

For (1), if w=+/ni and vSw = :g{%ié €V, then
the condition (c) gives

02
V3 < —+ D*/n <23,
NG

which says D? =1 and 1 <n < 12. There is no
non-zero integer C' satisfying

V3n<C?+n<2V3n and 3|C.

Thus C' =0. By (a) we have that AD =1 and
vSw = xB+1i/y/n € V which implies n = 3. So by
Lemma 2.4 zy = —= or 2y = _3?@:.

For (2), if w= /i and YW3Sw = AVL/3HE o

Cy/ni/3+D
V, then the condition (c) gives
D2 2
Vn/3

which says C? < 6/ < 6v/3. So by (a) we have
that C =0 or C? =9. If C? =9 then

<2V3,

[Vol. 98(A),

D*+nC?*/9  3D?

vn 773 7 +3vn<2V3
gives n =1 and so 3D?> +3 < 24/3. This is a contra-
diction. Thus C' =0 and AD = 1. Moreover, 1/3 =
IyWsSw|* = |\/ni/3 £ B|* gives that n =3 and by

Lemma 2.4 zy = \/L_ or 2z = =3+V3i
i VT
For (3), if w:—lﬂ% and  ySw =

(B—BVIn—1i)/2+A

(D-DVin 20 © V, then the condition (¢) is equiv-

alent to
2(C+D/2)* D>*/in—1
(4) V3 < ( /2,
Vian —1 2
2CD + 2C? + 2nD?
_ + +2n §2\/§,
Vin —1
which implies that —““;‘1 <2v3, 1<n<12 and
D? <4 4%1§4. So D?>=1. For each nc¢
{1,2,---,12}, the inequality (4) which says

V12n —3 < 20D +2C? +2n < 2y/12n — 3 and the
condition (a) give C' = 0. By condition (d) we have
1/3 = |ySwl = (1/(2n) £ B)® + (4n — 1)/(4n?),
which gives 3(1 & 2nB)* = 4n? — 12n + 3 implying
that B=0 and n =3. By Lemma 2.4 we obtain

— 14Vl
zZ0 = G .

For (4),
(~A+AVAn—T1i)+6B
(—C+CV4n—1i)+6D
alent to
6D —C)* C*in -1

(5) V3< ( S

6v4n — 1 6

6D — C)* + C%(4n — 1

6v4an —1

which implies that C?v/4n — 1 < 12v/3. So by (a) we
have C? =0or C? =9. If C?> = 9 then n = 1 and by
Lemma 2.4 we obtain z = _?’J’T\@ If C?> =0 then
the inequality (5) is equivalent to v/12n —3 <6 <
2v/12n — 3, which says 1 < n < 3. By condition (d)
we have 1/3 = |yWsSw|* = ((6B+1)*+4n—1)/
36. So B=0 and n = 3. By Lemma 2.4 we obtain

Hnnel - and  yWiSw =

€ V, then the condition (c) is equiv-

if w=

20 = 71+6\/H7:.
For (5), if w=+mi and ~STw=
YW3(W3STw) € V, then 1<n<2 Indeed, if

n>2, then W3STw=1/3+4+/ni/3 lies in the
interior of F*(3) and so vSTw¢ V since yWs €
If(3). If n =1 then z = =4 € V. But there are
no integers a, b satisfying the conditions (¢) and (d).

Thus n =2 and by Lemma 2.4 we obtain zj =
—1+v/2i
T
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For (6), if w = y/ni and yW3STw € V, then as
in the proof of (5), if n > 2, then W3S5Tw lies in the
interior of F'(3) and so YW3S5Tw¢ V since v €
I';(3). Thus n =2 and by Lemma 2.4 we obtain

—1+v/2i

20 = —+ .

For (7), if w= %4”—_1 and ySTw =
W3 (W3S5Tw) € V, then 1<n<3. Indeed, if
n > 3, then W3STw = 1/6 + v4n — 1i/6 lies in the
interior of F™(3) and so vSTw ¢ V since yW3 €
L(3). If n =2 then 2y = %@\/’n € V. But there are
no integers a, b satisfying the conditions (c) and (d).
Thus by Lemma 2.4, if n = 1 then zy = _3%\@ and
if n =3 then z) = ’HTJHZ

For (8), if w= % and YW3STw € V|
then as in the proof of (7), if n = 1 then z; = ’HT\/E"’
and if n = 3 then 2y = _1+Tm

For (9), if w=+mi and ST?w=
AWsT(T*W3ST?w) € V, then 1< n <2. Indeed,
if n > 2, then T-'W3ST?*w = —1/3 + \/ni/3 lies in
the interior of F'(3) and so ySTw &V since
YW5T €T (3). If n=1 then z = =32 € V. But
there are no integers a,b satisfying the conditions
(¢c) and (d). Thus n =2 and by Lemma 2.4 we
obtain zy = _1+T‘/§‘

For (10), if w=+/mi and AW38T?w =
YT (T 'W3ST?w) € V, then as in the proof of (9)
we obtain n = 2 and zy = ’”T‘/i’

For (11), if w= % and yST?w =
AWsT(T*W3ST?*w) € V, then n=1. Indeed, if
n > 1, then T-'W3ST*w = —1/2 + v/4n — 1i/6 lies
on the left vertical boundary of F*(3) and so
vSTw ¢ V since yW3T € T'J(3). Thus n=1 and
— —3%\/57:_

For (12), if w = ~B1=1 and AW ST w e V,
then as in the proof of (11) we obtain n =1 and
20 = 73+T\/§Z O

Remark 2.6. Let F'(p) be the standard
fundamental domain for T'J (p). For a prime p such
that the genus of I'f (p) is zero, the space of weakly
holomorphic modular forms for I'j (p) has a natural
basis [2]. If all the zeros in F*(p) of elements fy,, of
the basis lie on the lower boundary of the funda-
mental domain, then we can generalize our results
to the case I'j (p). For a further research, we would

20
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like to find the location of the zeros of fi,, and
investigate the algebracity and transcendence of
them by a unified method.
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