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Abstract: We show that the Brauer–Manin obstructions to the Hasse principle and weak

approximation for homogeneous spaces under connected reductive groups over global function

fields with connected reductive stabilizers are the only ones, extending some of Borovoi’s results

(and thus also proving a partial case of a conjecture of Colliot-Thélène) in this regard. Along the

way, we extend some perfect pairings and an important local-global exact sequence (an analog of

a Cassels–Tate’s exact sequence) proved by Sansuc for connected linear algebraic groups defined

over number fields, to the case of connected reductive groups over global function fields and

beyond.
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Introduction. Let k be a field, ks a separable

closure of k, and let � :¼ Galðks=kÞ be the absolute

Galois group of k, and for V the set of all places of k,

let kv be the completion of k at v 2 V . Let X be a

smooth, geometrically integral k-variety. We say

that X satisfies the Hasse principle with respect

to V , if XðkÞ 6¼ ; once we have
Q

v2V XðkvÞ 6¼ ;. We

say that X has the weak approximation property

with respect to a finite subset S � V if XðkÞ is dense

in the product
Q

v2S XðkvÞ via the diagonal embed-

ding and that X has the weak approximation

property over k if the above holds for any finite

set S � V .

As is well-known, the Brauer–Manin obstruc-

tions to various local-global relations between the

sets of rational points on varieties play an impor-

tant role in the arithmetic of algebraic varieties.

One of classical results in this direction was

obtained by Borovoi [Bo96], which states that over

number fields, the Brauer–Manin obstructions to

the Hasse principle (resp. weak approximation) of

homogeneous spaces under connected linear alge-

braic groups with connected stabilizers are the only

ones.

The aim of the present paper is to extend some

of Borovoi’s above results to the global function

field case, namely by showing that the Brauer–

Manin obstructions to the Hasse principle and weak

approximation in homogeneous spaces under con-

nected reductive groups with stabilizers, which are

either connected reductive or of some specific type

are the only ones. Besides, we extend some formulas

due to Borovoi which compute an obstruction to the

weak approximation in the case of non-connected

stabilizers. There are some intensive investigations

of Brauer–Manin obstructions for varieties over

global function fields (cf. e.g. [CV], [HV], [PV] and

references there). Notice that in the case of homo-

geneous spaces over fields of characteristic > 0, we

have to restrict to the case G is connected and

reductive.

It is necessarily also to restrict to stabilizers

which are connected or of specific type (see below).

To achieve this goal, first we need to extend

some of basic results of Sansuc (cf. [Sa, 8.9–8.14])

to the case of connected reductive groups defined

over global function fields. Then we apply them to

the Brauer–Manin obstructions to the Hasse prin-

ciple and weak approximation, first for principal

homogeneous spaces and then, following the ap-

proach by Borovoi, we establish that the Brauer–

Manin obstructions to the Hasse principle and weak

approximation are the only ones for homogeneous

spaces with connected reductive stabilizers. The

main tool we use is flasque and co-flasque resolu-
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tions for connected reductive groups constructed

in [CT08] combined with an embedding trick and

the fibration method used by Borovoi in order to

investigate the Brauer–Manin obstructions to the

Hasse principle and weak approximation for homo-

geneous spaces. The details of the proofs will appear

elsewhere.

1. Preliminaries. If X is a k-scheme, for a

field extension K=k we denote X �k K the base

change of X from k to K and if K ¼ ks;Xs ¼
X �k ks. Let BrðXÞ :¼ H2

etðX;GmÞ denote the

cohomological Brauer group of X. Then we

have natural homomorphisms BrðkÞ ! BrðXÞ !
BrðXsÞ, for which one may define Br1ðXÞ :¼
KerðBrðXÞ ! BrðXsÞÞ, Br0ðXÞ :¼ ImðBrðkÞ !
BrðXÞÞ, BraðXÞ :¼ Br1ðXÞ=Br0ðXÞ, and finally

BðXÞ :¼ fx 2 BraðXÞ j xv ¼ 0 for all v 2 V g, where

for x 2 BraðXÞ, we denote by xv the image of x

in BraðXvÞ. For a finite subset of places S � V ,

we denote BSðXÞ :¼ KerðBraðXÞ !
Q

v=2S BraðXvÞÞ,
then B!ðXÞ ¼

S
S BSðXÞ.

For an affine algebraic k-group scheme G, let

Hi
fppfðk;GÞ :¼ Hi

fppfð�k=k;Gð�kÞÞ be the flat cohomol-

ogy in degree i (� 1 if G is non-commutative)

of G and let XiðGÞ :¼ Ker ðHi
fppfðk;GÞ !Q

v2V Hi
fppfðkv;GÞÞ, be the Tate–Shafarevich kernel

in degree i of G. One denotes by AðGÞ :¼Q
v2V GðkvÞ=GðkÞ (resp. AðS;GÞ :¼

Q
v2S GðkvÞ=

GðkÞ) the defect (or obstruction) to the weak

approximation property of G over k (resp. obstruc-

tion to weak approximation at S), where GðkÞ
denotes the closure of GðkÞ in the product of

GðkvÞ (resp. in
Q

v2S GðkvÞ).
For a connected reductive group G defined over

a field k, Gss denotes the derived subgroup of G

which is the semisimple part of G. Any homoge-

neous space X under a smooth affine group G is

understood as a left homogeneous space. Denote

by Y D ¼ HomðY ;Q=ZÞ, the Pontrjagin dual of an

abelian group Y . If M is a �-module, which is a free

Z-module of finite type, denote by M� the dual

module HomZðM;ZÞ. M is called a permutation

�-module if there is a Z-basis of M which is

permuted by �. M is called a flasque (resp. co-

flasque) �-module, if for every open subgroup

� � �, we have H1ð�;M�Þ ¼ 0 (resp. H1ð�;MÞ ¼
0).

For a k-torus T , we denote its character module

by T̂ :¼ X�ðT Þ and its co-character module by

X�ðT Þ. A k-torus T is called induced (resp. flasque,

co-flasque), if T̂ is a permutation (resp. flasque, co-

flasque) �-module. If H is a smooth affine algebraic

group, that is, a linear algebraic group, let H� be

the connected component of H, RuðHÞ the unipo-

tent radical of H, Hred :¼ H�=RuðHÞ the largest

reductive quotient, Hss :¼ Hred=½Hred ; Hred � the

semisimple part of Hred , Htor :¼ Hred=Hss the

maximal torus quotient of H� and let Hssu :¼
Ker ðH� ! HtorÞ. This last subgroup is normal in

both H and H� and one denotes the quotient

HðmÞ :¼ H=Hssu.

1.1. Flasque resolutions and special cover-

ings. Let H be a connected linear algebraic group

defined over a field k, supposed reductive if

char.k > 0. Then H is called quasi-trivial (after

Colliot-Thélène [CT08, Sec. 2]), if ks½H��=k�s is a

permutation �-module and the Picard group

PicðHksÞ ¼ 0, where ks½H� stands for the affine

algebra of H, and A� stands for the group of

invertible elements of the ring A. Then if Htor

denotes the toric quotient of H, P :¼ Htor is an

induced k-torus.

Then for any given connected linear algebraic

k-group G, supposed reductive if char.k > 0, there

exist a quasi-trivial k-group, supposed reductive

if char.k > 0, a flasque k-torus T and an exact

sequence of k-groups 1! F ! H ! G! 1. The

flasque torus F plays an important role in the

arithmetic and geometry of G, so it will be called

flasque kernel of G in the sequel. Though they are

not uniquely determined, but they are almost

uniquely, in the sense, that their character groups,

as Galois modules, are defined uniquely up to

similarity (see [CT08]).

Let G be a connected reductive k-group, ~G the

simply connected covering of Gss, all are defined

over k. Any central k-isogeny � : H1 ! G of con-

nected reductive groups, with H1 ’k ~G� P , where

P is an induced k-torus, is called a special covering

of G ([Sa, p. 14]). Such covering may not exist in

general, but for any connected reductive group G,

there exists a power of G, which has a special

covering (see [Sa, Lem. 1.10]). Notice that in [Sa],

several important arithmetic results have been

proved by reducing the computation of some

arithmetic invariants to that of kernels of the

isogenies appearing in special coverings. The qua-

si-trivial group H defined above enjoys many

(especially cohomological) nice properties over

local and global fields, as it was demonstrated
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in [CT08] and in [Th13]. For this reason, one may

think of H as a special kind of ‘‘universal covering’’

of G, and thus of F as a special kind of ‘‘funda-

mental group’’ of G.

Let k be a field. A surjective k-homomorphism

of connected reductive k-groups � : G1 ! G is

called a quasi-trivial covering of G if B :¼ Ker ð�Þ
is a central k-subgroup (which is necessary of

multiplicative type) of G1 and G1 is quasi-trivial.

We regard special coverings as a special kind of

quasi-trivial coverings, and the kernel B can be

regarded (though it may not be finite) as a special

kind of fundamental group, called later for short

quasi-fundamental group.

Let k be a global field, S a subset of V , and

let M be a commutative k-group scheme of

finite type. We consider the localization maps

fi;S : Hi
fppfðk;MÞ !

Q
v2S H1

fppfðkv;MÞ; fi :¼ fi;V
and set Xi

SðMÞ :¼ Ker ðfi;V nSÞ. Denote QiðMÞ :¼
Coker ðfiÞ, Qi

SðMÞ :¼ Coker ðfi;SÞ, and finally de-

note Xi
!ðMÞ :¼ lim�! S

Xi
SðMÞ and Qi

!ðMÞ :¼
lim � S
ðCoker ðfi;SÞ where S runs over finite subsets

of V .

1.2. Quasi-fundamental groups versus flas-

que kernels. We show below some interesting

arithmetic analogies between the quasi-fundamen-

tal groups and flasque kernels (cf. [CT08], [Th13])

which shows that for computing some arithmetic

invariants of connected reductive algebraic groups,

the methods of using either the quasi-fundamental

groups or the flasque kernels, a priori, agree with

each other.

1.3. Proposition (Cf. [Sa, Thm. 3.3], [CT08,

Thm. 9.4 (i)], [Th13, Thm. 2.3]). Let k be a global

field, S a finite set of places of k and let G be a

connected reductive k-group having a quasi-trivial

covering with quasi-fundamental group B.

(1) There is a bijection of finite abelian groups

AðS;GÞ ’ Q1
SðBÞ.

(2) There is a bijection of finite abelian groups

AðGÞ ’ Q1
!ðBÞ.

Notice that the assertion that Q1
SðBÞ, Q1

!ðBÞ
are finite abelian groups do not, a priori, follow from

the proof given in char. 0 case, since in the case of a

global function field k, the abelian groups

H1
fppfðk;BÞ, H1

fppfðkv; BÞ may be infinite. We have

the following

1.4. Proposition (Cf. [Sa, Thm. 4.3], [CT08,

Thm. 9.4 (ii)], [Th13, Thm. 3.6 (1)]). Let k be a

global field and let the connected reductive k-group G

have a quasi-trivial covering with quasi-fundamental

group B. Then we have an isomorphism of finite

abelian groups X1ðGÞ ’X2ðBÞ.
1.5. Theorem (Cf. [Sa, Thm. 5.1, Corol. 7.4],

[CT08, Thm. 7.2], [Th13, Thm. 3.8], [BSch, Thm.

5.1] for number field case). Let k be a global field, G

a quasi-trivial reductive k-group, and let B be a k-

subgroup of G such that B� is reductive, BðmÞ is of

multiplicative type and let X :¼ G=B.

(1) (Cf. [BSch, Thm. 5.1]) We have the following

isomorphisms of finite abelian groups X1
SðB̂Þ ’

BSðXÞ, X1
!ðB̂Þ ’ B!ðXÞ, X1ðB̂Þ ’ BðXÞ.

(2) (Cf. [BSch, Thm. 0.4]) We have a perfect duality

of finite abelian groups between the pairs Q1
SðBÞ and

X1
SðB̂Þ=X1ðB̂Þ and Q1

!ðBÞ and X1
!ðB̂Þ=X1ðB̂Þ.

The proof of Theorem 1.5 uses the flasque

resolution in essential way.

2. Extension of some perfect pairings and

some exact sequences of Sansuc to global

function fields. We extend some perfect pairings

considered in [Sa, Sec. 8] and an exact sequence of

Sansuc [Sa, Corol. 8.15]) to the global function field

case for connected reductive groups. Here we show

the existence of a perfect duality mentioned above,

thus the functoriality of the whole exact sequence

above (consisting of objects which are functorial in

G). Remark that the proof given in [Sa] (namely

that of Lemma 8.11) does not seem to be extended

to the case of char.k > 0. Moreover, the proof we

give is also valid for any global field.

2.1. Theorem ([Sa. Thm. 8.12, Corol. 8.14]

for number fields). Let k be a global field, S a finite

set of places of k, and let G be a connected reductive

k-group.

(1) There exists a perfect duality of finite abelian

groups between AðGÞ and B!ðGÞ=BðGÞ and be-

tween AðS;GÞ and BSðGÞ=BðGÞ, which induce

natural (functorial in G) isomorphisms of finite

abelian groups AðGÞ ’ ðB!ðGÞ=BðGÞÞD, AðS;GÞ ’
ðBSðGÞ=BðGÞÞD.

(2) We have the following exact sequence of finite

abelian groups

1! AðGÞ ! B!ðGÞD !X1ðGÞ ! 1;ðSÞ
1! AðS;GÞ ! BSðGÞD !X1ðGÞ ! 1;ðS0Þ

which, as sequences depending on G, are additive

and functorial in G.

Notice that the exact sequence (S) is crucial in

the proof of the validity of the Sansuc–Voskresen-
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skii exact sequence (S-V) (see Theorem 2.4

below).

If one would attempt to prove the existence of

the exact sequence (S-V) also in the case of function

field, then naturally there would be raised a

problem of constructing a smooth k-compactifica-

tion G for any given connected reductive k-group

G which might be depending on the resolution of

singularities in characteristic p > 0. A milder solu-

tion has been proposed in [Th13, Theorem 3.7, (2)],

which is based on the existence of a smooth

compactification for any k-torus.

The following theorem complements Theorem

1.5 and gives a connection between the pairings

between AðGÞ and B!ðGÞ (or B!ðGÞ=BðGÞ),
AðS;GÞ and BSðGÞ (or BSðGÞ=BðGÞ), Q1

!ðBÞ and

X1
!ðB̂Þ (or X1

!ðB̂Þ=X1ðB̂Þ) and between Q1
SðBÞ

and X1
SðB̂Þ (or X1

SðB̂Þ=X1ðB̂Þ) (compare [Sa,

8.10–8.14] for number field case).

2.2. Theorem. Let k be a global field, S a

finite set of places of k, G a connected reductive

k-group, and let 1! B! H ! G! 1 be a quasi-

trivial covering of G. We have the following dia-

grams which are anti-commutative, where the rows

are perfect pairings

AðGÞ � ðB!ðGÞ=BðGÞÞ ! Q=Z

# � " �0 l¼

Q1
!ðBÞ � ðX1

!ðB̂Þ=XðB̂ÞÞ ! Q=Z

AðS;GÞ � BSðGÞ=BðGÞ ! Q=Z

# � " �0 l¼

Q1
SðBÞ � X1

SðB̂Þ=X1ðB̂Þ ! Q=Z:

2.3. Extension of Sansuc–Voskresenskii ex-

act sequence to global function fields. In this

section we give an analog of Sansuc–Voskresenski

theorem for connected reductive groups defined

over a global function field k. We have

2.4. Theorem. Let k be a global function field,

G a connected reductive k-group. Then

(a) (Cf. [Sa, Lem. 6.1, Lem. 6.3, Corol. 9.4 and

Prop. 9.8] for number fields) For any smooth k-

compactification G of G, we have B!ðGÞ ’ B!ðG Þ ’
H1ðk; PicðG sÞÞ, BðGÞ ’ BðG Þ. The finite abelian

groups B!ðGÞ;BðGÞ are stably birational invariants

of G in the class of connected reductive k-groups.

(b) (Cf. [Sa, Thm. 9.5(ii)], [BKG04, Corol. 8.12(ii),

Thm. 8.16(ii)] for number fields) The finite abelian

groups AðGÞ and X1ðGÞ are k-stably birational

invariants of the k-group G in the class of con-

nected reductive k-groups having a smooth k-com-

pactification.

(c) (Cf. [Sa, Thm. 9.5(iii)], [CT08, Thm. 9.4] for

number fields) For any smooth compactification G
of G, we have the following exact sequence

1! AðGÞ ! H1ðk; PicðG sÞÞD !X1ðGÞ ! 1;ðS-VÞ

called Sansuc–Voskresenskii sequence.

The proof of Theorem 2.1 follows from the

proof of Theorem 1.5, while Theorems 2.2 and 2.4

follow from Theorem 2.1.

3. Brauer–Manin obstructions to the

Hasse principle and weak approximation for

homogeneous spaces with connected stabiliz-

ers over global function fields.

3.1. Brauer–Manin pairing (Cf. [Sk, Chap.

V]). Let X be an irreducible, smooth, geometri-

cally integral variety defined over a global field k,

and assume that
Q

v XðkvÞ 6¼ ;. Consider the follow-

ing Brauer–Manin pairing
Q

v XðkvÞ �B!ðXÞ !
Q=Z, hðxvÞ; bi :¼

P
v invvðbvðxvÞÞ (cf. [Sa, Lem. 6.2])

and write ðxvÞ ? b if hðxvÞ; bi ¼ 0. Define the

Brauer–Manin set ð
Q

v XðkvÞÞ
B!ðXÞ as the set fðxvÞ 2Q

v XðkvÞ j ðxvÞ ? B!ðXÞg. Then one defines a nat-

ural homomorphism mHðXÞ : BðXÞ ! Q=Z, b 7!
hðxvÞ; bi which does not depend on the choice of

ðxvÞ, so it defines an element mHðXÞ 2 BðXÞD. If

XðkÞ 6¼ ; and x is a k-point of X, then an exact

sequence of global class field theory shows thatP
v invvðbvðxÞÞ ¼ 0 for all such x, so mHðXÞ is trivial

and we have

XðkÞ �
Y
v

XðkvÞ
 !B!ðXÞ

:ð3.1.1Þ

The map mHðXÞ is regarded as Brauer–Manin

obstruction to the Hasse principle and we say that

the Brauer–Manin osbtruction to the Hasse princi-

ple is the only one if we have XðkÞ 6¼ ; once we have

ð
Q

v XðkvÞÞ
B!ðXÞ 6¼ ;.

Now assume that XðkÞ 6¼ ; and let x 2 XðkÞ.
Then for each finite set S of places of k, the pair-

ing
Q

v2S XðkvÞ �BSðXÞ ! Q=Z, hðxvÞv2S; biS :¼P
v2SðinvvðbvðxvÞÞ � invvðbvðxÞÞ, where b 2 BSðXÞ

induces a map
Q

v2S XðkvÞ � ðBSðXÞ=BðXÞÞ !
Q=Z, thus also a map mW;SðXÞ :

Q
v2S XðkvÞ !

ðBSðXÞ=BðXÞÞD, which is continuous with respect

to the topology on
Q

v2S XðkvÞ due to the continuity

of the pairing. If x 2 XðkÞ, then mW;SðXÞðxÞ ¼ 0,

thus if XðkÞ is dense in
Q

v2S XðkvÞ, then mW;S is
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identically zero due to the continuity, thus it can be

regarded as an obstruction, called Brauer–Manin

obstruction to the weak approximation of X in S.

For the weak approximation over k, assume that

XðkÞ 6¼ ;. Then it follows from the continuity of the

natural pairing
Q

v XðkvÞ �B!ðXÞ ! Q=Z that if

XðkÞ is dense in
Q

v XðkvÞ, then for all ðxvÞ 2Q
v XðkvÞ, we have ðxvÞ ? B!ðXÞ, thus mW;SðXÞ is

trivial for all S. We then have

XðkÞ 	
Y
v2S

XðkvÞ
 !BSðXÞ

;ð3.1.2Þ

XðkÞ 	
Y
v

XðkvÞ
 !B!ðXÞ

:ð3.1.3Þ

If the equality holds in (3.1.2) (resp. (3.1.3)), then

we say that the Brauer–Manin obstruction to the

weak approximation in S (resp. over k) is the only

one.

3.2. Brauer–Manin obstructions. From

results of Sections 1, 2 we derive the following

analogs of [Sa, 8.7, 8.13] for the case of global

function fields.

3.3. Theorem (Cf. [Sa, 8.7, 8.13], for torsors

and [Bo96, Thms. 2.2 and 2.4] for homogeneous

spaces over number fields). Let k be a global

field with no real places and let X be a homogeneous

space under a connected reductive k-group G with a

connected reductive stabilizer H. Then the Brauer–

Manin obstruction to the Hasse principle and weak

approximation with respect to S and over k for X are

the only ones.

The method of the proof follows that of Borovoi

and also makes use of a method and some of our

previous results from [NT14], [NT16].

4. Formulas for obstruction to weak ap-

proximation. Let G be a connected reductive

group defined over a global field k, X ¼ G=H where

H is a smooth connected k-subgroup of G. In

[Bo90]–[Bo99], Borovoi gave various formulas to

compute an obstruction to the weak approximation

for X in cohomological terms. To study the Brauer–

Manin obstruction to the weak approximation we

need some extensions of such results to the case of

global function fields. Recall that (cf. [La], [Th19]) a

smooth affine k-group G is called quasi-connected if

there is an exact sequence 1! G! G1 ! T ! 1,

where G1 is a connected reductive k-group and

T is a k-torus. For a quasi-connected k-group H,

we may define the group Hi
ab;fppfð:; HÞ which is

the abelianized (fppf) cohomology of H (see

[Bo98], [La], [Th19]). If k is a global field and

S is a finite set of places of k, denote

�S : H1
ab;fppfðk;HÞ !

Q
v2S H1

ab;fppfðkv;HÞ, Q1
ab;SðHÞ ¼

Coker ð�SÞ, �! : H1
ab;fppfðk;HÞ !

Q
v H1

ab;fppfðkv;HÞ,
Q1
ab;!ðHÞ ¼ Coker ð�!Þ.

Then we have the following

4.1. Theorem (Cf. [Bo99, Thm. 1.3, 1.11] for

number fields). Let k be a global field with no

real places, S a finite set of places of k, and let X ¼
G=H be a homogeneous space under a connected

reductive k-group G with a quasi-connected k-

stabilizer H.

(1) If G is quasi-trivial, and either ðaÞ H is

connected and reductive or ðbÞ H is quasi-connected,

reductive, then there is an exact sequence of pointed

sets (here the closure is taken in
Q

v2S XðkvÞ)

1! XðkÞ !
Y
v2S

XðkvÞ ! Q1
ab;SðHðmÞÞ ! 1;

(2) Assume that either (a) H is a connected

reductive k-group, or (b) G is quasi-trivial and H is

a quasi-connected reductive k-group such that HðmÞ

is of multiplicative type. Then there is an exact

sequence of pointed sets where the closure is taken inQ
v2S XðkvÞ

1! XðkÞ !
Y
v2S

XðkvÞ ! ðBSðXÞ=BðXÞÞD ! 1:

In particular, the Brauer–Manin obstructions to

the weak approximation in S and over k are the

only ones. In the case H is connected, there

are isomorphisms Q1
SðHðmÞÞ ’ ðBSðXÞ=BðXÞÞD,

Q1
!ðHðmÞÞ ’ ðB!ðXÞ=BðXÞÞD.

To prove Theorem 4.1, beside the results

obtained above, we need also a function field

version of a main result of [BSch] (see Theorem

1.5).

5. Brauer–Manin obstructions for homo-

geneous spaces with non-connected stabiliz-

ers over global function fields. One of our

main results of this paper is to extend Borovoi’s

result [Bo96, Corol. 2.5] to the case of global

function fields. The following is the main result of

this section.

5.1. Theorem (Cf. [Bo96, Thms. 2.2 and

2.4]). Let k be a global field with no real places, X

a k-homogeneous space under a connected reductive

group G having simply connected semisimple part
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and with a group H as a stabilizer such that H� is

reductive and HðmÞ is of multiplicaticative type.

Then the Brauer–Manin obstructions to the Hasse

principle and weak approximation for X are the only

ones.

For the proof, we reduce Theorem 5.1, by using

an embedding trick due to Borovoi, to the simpler

cases and then use the fibration method.
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No. 257 (1999).

[ NT14 ] N. T. Ngoan and N. Q. Thắng, On some Hasse
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