Infinitely many non-uniqueness examples for Cauchy problems of the two-dimensional wave and Schrödinger equations

By Hiroshi TAKASE

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

(Communicated by Kenji FUKAYA, M.J.A., June 14, 2021)

Abstract: In 1963, Kumano-go presented one non-uniqueness example for the two-dimensional wave equation with a time-dependent potential. We construct infinitely many non-uniqueness examples with different wave numbers at infinity for Cauchy problems of the two-dimensional wave equation and Schrödinger equation as a generalization of the construction by Kumano-go.

Key words: Non-uniqueness for Cauchy problems; unique continuation; Cauchy problems for partial differential equations.

1. Introduction and main result. Let $B_r(0) \subset \mathbb{R}^2$ be an open ball centered at 0 with radius $r > 0$. Henceforth, all functions which appear in this paper take complex values. We consider the wave equation and Schrödinger equation with time-dependent potential V,

\begin{equation}
Lu + V(x, t)u = 0 \text{ in } \mathbb{R}^3,
\end{equation}

where L denotes $L = \Box := \partial_t^2 - \Delta$ or $L = -i\partial_t - \Delta$. We consider non-uniqueness examples for Cauchy problems with Cauchy data on a non-characteristic surface $\partial B_r(0) \times \mathbb{R}$. Due to the time dependence on the potential V, we have few hopes to guarantee uniqueness for Cauchy problems in general. Indeed, we construct infinitely many examples with different wave numbers at infinity which violate uniqueness based on Kumano-go [5].

There exist infinitely many smooth functions $u \in C^\infty(\mathbb{R}^3)$ and $V \in C^\infty(\mathbb{R}^3)$ which satisfy (1.1) and

\begin{align*}
\text{supp } u &= (\mathbb{R}^3 \setminus B_r(0)) \times \mathbb{R}, \\
\text{supp } V &= (B_2(0) \setminus B_1(0)) \times \mathbb{R}.
\end{align*}

Theorem 1.1 relates to the result by Kumano-go [5]. He constructed one example for non-uniqueness when $L = \Box$ in the two-dimensional case based on John’s construction [3] using Bessel functions.

We construct infinitely many examples with different wave numbers at infinity for both wave and Schrödinger equations by generalizing the result in [5]. We remark that, in our construction, the potential V is not real-valued but complex-valued function, whereas the coefficients are all real-valued with a damping term in Kumano-go’s construction [5].

2. Proof of the main result.

2.1. Preliminary. We prepare several lemmas regarding an asymptotic behavior of Bessel functions. Their proofs are all presented in section 3.

Lemma 2.1. Let $\delta \in (0, 1/2)$, $p \in (0, \frac{2(1-2\eta)}{5})$, $\lambda > 0$, and J_λ be a Bessel function of order λ. We then have the asymptotic formula uniformly for $

J_\lambda(\lambda a) = (2\eta \lambda \tanh \alpha)^{1/2} e^{\lambda(\tanh \alpha - 1)} (1 + O(\lambda^{-2}))$

as $\lambda \to \infty$, where $\alpha > 0$ is defined by $\cos \alpha = a^{-1}(> 1)$.

Let $\delta \in (0, 1/2)$ and $p \in (0, \frac{2(1-2\eta)}{5})$ be fixed. We...
consider the following assumptions on a positive sequence \(\{\lambda_m\}_{m \in \mathbb{N}} \) with \(\lambda_m > 0 \) for all \(m \in \mathbb{N} \).

\[
(2.1) \quad \forall m \in \mathbb{N}, \quad m^2 \leq \lambda_m^p.
\]

\[
(2.2) \quad \lambda_{m+1} = \lambda_m (1 + o(1)) \text{ as } m \to \infty.
\]

We can choose infinitely many positive sequences \(\{\lambda_m\}_{m \in \mathbb{N}} \) satisfying (2.1) and (2.2), for instance,

\[
\lambda_m = a_n m^n + \sum_{j=0}^{n-1} a_j m^j,
\]

where \(n \geq \frac{p}{2} \) is a positive integer, and \(a_n \geq 1 \) and \(a_j \geq 0 \) are constants for \(j = 0, \ldots, n - 1 \).

Lemma 2.2. Let \(\delta \in (0, \frac{1}{2}) \) and \(p \in \left(0, \frac{2(1-2\delta)}{3}\right) \) be constants. Let \(\{\lambda_m\}_{m \in \mathbb{N}} \) be a positive sequence satisfying (2.1) and (2.2). We set

\[
G_m(r) := J_{\lambda_m}(\lambda_m r), \quad r \in [0, 1 - m^{-2}].
\]

Assume (2.1). Then, for \(\ell \geq 1 \) and \(\tau := 1 - \ell m^{-2} \), we have the asymptotic formula,

\[
G_m(r) = (1 + o(1)) \frac{\sqrt{m}}{(2\pi^{\ell})^{\frac{1}{2}} \sqrt{\lambda_m}} e^{-(1+o(1)) \frac{2\sqrt{3} \lambda_m m^{-3}}{m}}
\]

as \(m \to \infty \).

Lemma 2.3. Let \(\delta \in (0, \frac{1}{2}) \) and \(p \in \left(0, \frac{2(1-2\delta)}{3}\right) \) be constants. Let \(\{\lambda_m\}_{m \in \mathbb{N}} \) be a positive sequence satisfying (2.1). We set

\[
F_m(r, s) := G_m(\frac{km}{\lambda_m} r), \quad m \in \mathbb{N},
\]

where \(\{k_m\}_{m \in \mathbb{N}} \) is a positive sequence satisfying

\[
(2.3) \quad \frac{k_m}{\lambda_m} = 1 - \frac{1}{m} + O(m^{-3}) \text{ as } m \to \infty,
\]

and \(r_m(s) := 1 + s - \frac{s}{m(m+1)} \) for \(s \in [0, 1] \). Then, \(F_m \) satisfies

\[
F_m(r, s) = \frac{\sqrt{me^{-(1+o(1)) \frac{2\sqrt{3} \lambda_m m^{-3}}{m}}}}{(2\pi^{\ell})^{\frac{1}{2}} \sqrt{\lambda_m}}
\]

as \(m \to \infty \). Furthermore, we define \(\gamma_{m+1} \) such that

\[
\gamma_{m+1} := \frac{F_m(r_{m+1}(2-1))}{F_{m+1}(r_{m+1}(2-1))}.
\]

If we assume (2.2), then there exists \(M \in \mathbb{N} \) such that

\[
\gamma_{m+1} \leq e^{-\lambda_m m^{-3}}
\]

holds for all \(m > M \) and there exist \(\mu > 0 \), \(C > 0 \), and \(M \in \mathbb{N} \) such that

\[
\begin{align*}
\gamma_m F_{m+1}(r_{m+1}(s)) & \leq Ce^{-\mu \lambda_m m^{-3}} F_m(r_{m+1}(s)) \\
& \text{if } s \in [0, \frac{1}{4}], \\
F_m(r_{m+1}(s)) & \leq Ce^{-\mu \lambda_m m^{-3}} \gamma_m F_{m+1}(r_{m+1}(s)) \\
& \text{if } s \in [\frac{3}{4}, 1]
\end{align*}
\]

holds for all \(m > M \).

2.2. Proof of Theorem 1.1.

Proof. Let \(\delta \in (0, \frac{1}{2}) \) and \(p \in \left(0, \frac{2(1-2\delta)}{3}\right) \) be constants. Let \(\{\lambda_m\}_{m \in \mathbb{N}} \) be a positive sequence satisfying (2.1) and (2.2). We remark that (2.2) implies

\[
\lambda_m \leq e^{o(m)} \text{ as } m \to \infty.
\]

Indeed, (2.2) implies there exists sufficiently large \(m_0 \in \mathbb{N} \) such that for all \(m > m_0 \),

\[
\log \lambda_m \leq \left| \log \lambda_{m_0} \right| + 1 \sum_{m=m_0}^{m-1} \left| \log(1 + r(j)) \right|
\]

holds, where \(r(j) \) satisfies \(\lim_{j \to \infty} |r(j)| = 0 \). Hence, (2.7) follows from the well-known argument. For \(r > 1 \), we set

\[
u_m(r, \theta, t) := \begin{cases} F_m(r)e^{i(\lambda_{m} \theta - k_m t)}, & L = \square, \\ F_m(r)e^{i(\lambda_{m} \theta - k_m t)}, & L = -i\partial_{\theta} - \Delta, \end{cases}
\]

where \(\{k_m\}_{m \in \mathbb{N}} \) is a positive sequence satisfying (2.3) and \((r, \theta)\) is the polar coordinate in \(\mathbb{R}^2 \). By (2.4), we obtain

\[
Lu_m = 0,
\]

because the Laplace operator \(\Delta \) is written by the polar coordinate,

\[
\Delta = \partial_r^2 + r^{-1} \partial_r + r^{-2} \partial_{\theta}^2.
\]

We define closed intervals \(I_m \) and \(I_{m,j} \subset I_m \) for \(m \in \mathbb{N} \) and \(j = 1, 2, 3, 4 \) as

\[
I_m := \left[1 + \frac{1}{m+1}, 1 + \frac{1}{m} \right]
\]

and

\[
I_{m,j} := \left[1 + \frac{1}{m+1} - \frac{j}{4m(m+1)}, 1 + \frac{1}{m+1} - \frac{j-1}{4m(m+1)} \right].
\]

For sufficiently large \(M \in \mathbb{N} \) and \(m > M \), we define smooth functions

\[
A_M(r) := \begin{cases} 1, & r \geq 1 + \frac{1}{M+2} + \frac{1}{(M+1)(M+2)}, \\ 0, & 0 \leq r \leq 1 + \frac{1}{M+2}. \end{cases}
\]

and

\[
A_m(r) := \begin{cases} 1, & r \in (I_{m+1} \setminus I_{m+1,4}) \cup (I_m \setminus I_{m,1}), \\ 0, & r \in [0, 1 + \frac{1}{m+1}] \cup (1 + \frac{1}{m}, \infty). \end{cases}
\]

We define \(u = u(r, \theta, t) \) as
\[
\begin{align*}
u(r, \theta, t) := A_M(r)u_M \\
+ \sum_{m=M+1}^{\infty} \gamma_{M+1} \times \cdots \times \gamma_m A_m(r)u_m
\end{align*}
\]
and set
\[
K := [0, 1] \cup \left[1 + \frac{1}{M+1}, \infty \right) \cup \bigcup_{m=M+1}^{\infty} (I_{m,2} \cup I_{m,3})
\]
and
\[
V(r, \theta, t) := \left\{ \begin{array}{ll}
0, & r \in K, \\
-\frac{Lu}{u}, & r \in [0, \infty) \setminus K.
\end{array} \right.
\]
Using the chain rule, (2.5), and (2.7), we obtain
\[
\left| \frac{d^r}{dr^s} F_m(r) \right| = m^s (m+1)^f \left| \frac{d^r}{dr^s} F_m(r_m(s)) \right|
\leq C \frac{m^s (m+1)^f \lambda_m^s}{m^{3s}} (1 + o(1)) \frac{\sqrt{m}}{\sqrt{\lambda_m}}
\times e^{-(1+o(1)) \frac{1}{2} (1+s)^2 \lambda_m m^{-3}}
\leq C e^{o(m)} F_m(r_m(s))
\]
for \(r \in I_m, \ell \in Z_{\geq 0} \). Indeed, by (2.7), it follows that
\[
\frac{m^s (m+1)^f \lambda_m^s}{m^{3s}} \leq C e^{o(m)}.
\]
For \(r \in I_{m+1}, \) using \(r_{m+1}(s) = r_m(1+s + O(m^{-1})) \), we also have
\[
\left| \frac{d^r}{dr^s} F_m(r) \right| = (m+1)^f (m+2)^f \left| \frac{d^r}{dr^s} F_m(r_m(1+s + O(m^{-1}))) \right|
\leq C \frac{(m+1)^f (m+2)^f \lambda_m^s}{m^{3s}} (1 + o(1)) \frac{\sqrt{m}}{\sqrt{\lambda_m}}
\times e^{-(1+o(1)) \frac{1}{2} (2+s+O(m^{-1}))^2 \lambda_m m^{-3}}
\leq C e^{o(m)} F_m(r_m(1+s)).
\]
Hence, it follows that for \(r \in I_m \cup I_{m+1} \) and \(\ell \in Z_{\geq 0} \),
\[
\left| \frac{d^r}{dr^s} F_m(r) \right| \leq C e^{o(m)} F_m(r).
\]
On \(I_{m+1} \), using (2.8), (2.3), (2.7), and (2.1), we then have
\[
(2.9) \quad |\partial^\beta u(r, \theta, t)| := \sum_{|\beta| = \ell} (\partial_\theta \partial_{\theta})^\beta u(r, \theta, t)
\leq C e^{\gamma_{M+1} \times \cdots \times \gamma_m \lambda_m^2 e^{o(m)} (F_m + \gamma_m F_{m+1})}
\leq C e^{-\lambda_m m^{-3} e^{o(m)}}
\leq C e^{-m^2 (1+o(m^{-1}))}
\leq C e^{-\frac{t}{m^2}}
\]
\leq C e^{-\frac{t}{m^2}}
\]
where we used the estimate obtained by (2.1),
\[
(2.10) \quad \lambda_m m^{-3} \geq m^{3-2} > m^2.
\]
We thus proved \(u \) is smooth in \(R^3 \).

On \(I_{m+1,1} \), since
\[
(2.11) \quad |u| \geq \gamma_{M+1} \times \cdots \times \gamma_m (|u_m| - \gamma_m |u_{m+1}|)
= \gamma_{M+1} \times \cdots \times \gamma_m (F_m(r_{m+1}(s)) - \gamma_m F_{m+1}(r_{m+1}(s)))
\geq \gamma_{M+1} \times \cdots \times \gamma_m (1 - C e^{-\mu \lambda_m m^{-3}})
\times F_m(r_{m+1}(s))
\geq \gamma_{M+1} \times \cdots \times \gamma_m (1 - C e^{-\mu m^2})
\times F_m(r_{m+1}(s)) > 0
\]
for \(s \in [0, \frac{1}{2}] \) by (2.6) and (2.10), \(|u| > 0 \) on \(I_{m+1,1} \).

Similarly, on \(I_{m+1,4} \), since
\[
(2.12) \quad |u| \geq \gamma_{M+1} \times \cdots \times \gamma_m (\gamma_m |u_m| - |u_m|)
= \gamma_{M+1} \times \cdots \times \gamma_m (\gamma_m F_{m+1}(r_{m+1}(s)) - F_m(r_{m+1}(s)))
\geq \gamma_{M+1} \times \cdots \times \gamma_m (1 - C e^{-\mu \lambda_m m^{-3}})
\times F_m(r_{m+1}(s))
\geq \gamma_{M+1} \times \cdots \times \gamma_m (1 - C e^{-\mu m^2})
\times F_m(r_{m+1}(s)) > 0
\]
for \(s \in [\frac{1}{2}, 1] \), we have \(|u| > 0 \) on \(I_{m+1,4} \). By the definition of \(u \), since \(Lu = 0 \) on \(I_{m+1,2} \cup I_{m+1,3} \), \(V \) is smooth when \(r \in (1, \infty) \).

Finally, we prove \(V \) is smooth at \(r = 1 \). On \(I_{m+1,1} \), since \(Lu = L[\gamma_{M+1} \times \cdots \times \gamma_m A_m u_m] \),
\[
(2.13) \quad |\partial^\beta L u| \leq C e^{\gamma_{M+1} \times \cdots \times \gamma_m 2^{\ell+1} e^{o(m)}}
\times \frac{F_m(r_{m+1}(s))}{F_m}
\]
holds for \(|\beta| = \ell \in Z_{\geq 0} \) by (2.8). We thus have
\[
|\partial^\beta V(r, \theta, t)| = |\partial^\beta (u^{-1} L u)|
\leq \sum_{|\beta| = \ell} \left(\frac{\beta!}{\beta_1!} \right) |\partial^\beta (u^{-1})\partial^{3-\beta_1} (L u)|
\leq C \left(\frac{\gamma_{m+1} F_{m+1}}{F_m} \right)^{\ell} \lambda_m^{\ell+1} e^{o(m)}\left(1 + \frac{\gamma_m F_{m+1}}{F_m}\right)^{\ell}
\leq C e^{-\mu \lambda_m m^{-3} + o(m)}
\leq C e^{-\frac{t}{m^2}}
\]
by (2.9), (2.11), (2.13), (2.6), (2.7), and (2.10) for \(|\beta| = \ell \in Z_{\geq 0} \). Similarly on \(I_{m+1,4} \), since \(Lu = L[\gamma_{M+1} \times \cdots \times \gamma_m A_m u_m] \),
holds for \(|\beta| = \ell \in \mathbb{Z}_{\geq 0} \) by (2.8). We thus have
\[
|\partial^3 V(r, \theta, t)| = |\partial^3 (u^{-1} L u)|
\]
\[
= \left| \sum_{|\beta| \leq \ell} \left(\frac{\beta}{\beta_1} \right) \partial^3 (u^{-1}) \partial^{3-\beta} (L u) \right|
\]
\[
\leq C \left(\frac{F_m}{\gamma_m + 1} \right) \lambda^{2(\ell+1)} e^{\alpha(m)} \left(1 + \frac{F_m}{\gamma_m + 1} \right)^{2-\ell} \cdot \frac{x}{\alpha}.
\]
\[
\leq C e^{-\frac{\pi m^2}{\alpha^2}}
\]
by (2.9), (2.12), (2.14), (2.6), (2.7), and (2.10) for \(|\beta| = \ell \in \mathbb{Z}_{\geq 0} \).

Thus, for all \(|\beta| = \ell \in \mathbb{Z}_{\geq 0} \) on \(\Gamma_{m+1} \),
\[
|\partial^3 V(r, \theta, t)| \leq C e^{-\frac{\pi m^2}{\alpha^2}} \leq C e^{-\frac{\pi x}{\alpha}}
\]
holds.

3. Proofs of the lemmas.
Proof of Lemma 2.1. We remark that
\[
1 \geq \tanh \alpha = \sqrt{1 - \alpha^2} \geq \lambda^{\frac{p}{q}} \tag{3.1}
\]
a \in (0, 1 - \lambda^{-p}].

We use the Schl"afli’s integral formula of a Bessel function,
\[
J_\alpha(\lambda \alpha) = \frac{1}{2\pi} \int_{\Gamma_0} e^{\lambda [-i \alpha \sin z + iz]} dz
\]
where \(\Gamma_0 \) consists of three sides of rectangle with vertexes at \(-\pi + i\alpha, -\pi, \pi + i\alpha, \) and \(-\pi + i\alpha \) is oriented from \(-\pi + i\alpha \) to \(\pi + i\alpha \). We set
\[
f(z) := -i \alpha \sin z + iz
\]
\[
f(z) := a \cos z \sin y - y + i(-x - a \sin x) \cos y
\]
where \(z = x + iy \). By the Cauchy’s integral theorem, we can deform \(\Gamma_0 \) into a curve defined by \(\Gamma \) on which \(x - a \sin x \cos y = 0 \). Hence, we obtain
\[
J_\alpha(\lambda \alpha) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{\lambda g(x)} dx
\]
where \(g \) is defined by
\[
g(x) := a \cos x \sinh y(x) - y(x)
\]
and \(y \) satisfies
\[
cosh y(x) = \frac{x}{a \sin x}
\]
\[
y(x) = \log \left(\frac{x}{a \sin x} + \frac{\sqrt{x^2 + a^2 \sin^2 x}}{1} \right)
\]
for \(x \in (-\pi, \pi) \), where \(y(0) = 0 \) is well-defined owing to \(a < 1 \).

First, we evaluate \(g \) in an interval \([-\lambda^{-q}, \lambda^{-q}]\), where \(q \) satisfying
\[
0 < q < \frac{2 - p}{4}
\]
is determined later. Since there exists a constant \(C > 0 \) such that
\[
|y'(x)| = \left| \frac{1}{\sinh y} \frac{d}{dx} \left(\frac{x}{a \sin x} \right) \right| \leq \frac{C}{\sqrt{\frac{2}{1 - \alpha^2}} - 1} \frac{|x|}{\alpha}
\]
by (3.1), we have for \(x \in [-\lambda^{-q}, \lambda^{-q}] \),
\[
|y(x) - \alpha| = |y(x) - y(0)| \leq C \lambda^{-q} \frac{|x|}{\alpha} \leq C \lambda^{-2q}.
\]
Hence, the Taylor’s theorem yields
\[
g(x) = f(x + iy(x)) = f(x + iy(y - \alpha) + i\alpha)
\]
\[
= f(x) + (x + i(y - \alpha)) (f'(x) + i f''(x) + \frac{(x + i(y - \alpha))^3}{2} f'''(x) + \frac{(x + i(y - \alpha))^3}{2} f''''(x))\]
\[
\times f''(x + iy(y - \alpha)) dx + O(\lambda^{2 - q})
\]
since \(f'(x) = 0 \), \(|f''(x + iy(y - \alpha))| \leq C \) for some \(C > 0 \), and
\[
q := \frac{1}{3} \left(1 + \delta + \frac{p}{2} \right).
\]
We remark that (3.2) is equivalent to \(p < 2(1 - 3\delta) \). Consequently, we have
\[
\int_{-\lambda^{-q}}^{\lambda^{-q}} e^{\lambda g(x)} dx = e^{\lambda \tanh \alpha} \int_{-\lambda^{-q}}^{\lambda^{-q}} e^{\frac{x}{2 \sinh^2 \frac{1}{\lambda} \tanh \alpha \tanh \lambda}} dx \cdot e^{O(\lambda^{-q})}
\]
\[
eq \frac{e^{\lambda \tanh \alpha}}{\sqrt{\lambda \tanh \alpha}} \left(\int_{-\lambda^{-q}}^{\lambda^{-q}} e^{\frac{x^2}{2 \sinh^2 \frac{1}{\lambda} \tanh \alpha \tanh \lambda}} dx \right) \times \left(1 + O(\lambda^{-q}) \right)
\]
\[
= \frac{\sqrt{2\pi} e^{\lambda \tanh \alpha}}{\sqrt{\lambda \tanh \alpha}} \left(1 + O(\lambda^{-q}) \right)
\]
since \(\lambda^{\frac{1}{2 + q}} \sqrt{\tanh \alpha} \geq \lambda^{\frac{1}{2 + q}} \geq \lambda^{\frac{1}{2 + q} - q} \) by (3.1) and
\[
\lambda^{\frac{1}{2 + q} - q} \frac{x^2}{2 \sinh^2 \frac{1}{\lambda} \tanh \alpha \tanh \lambda} \rightarrow 0
\]
by (3.2). Hence, we have
\[
\frac{1}{2\pi} \int_{-\lambda^{-q}}^{\lambda^{-q}} e^{\lambda g(x)} dx = \frac{e^{\lambda \tanh \alpha}}{\sqrt{2\pi \lambda \tanh \alpha}} \left(1 + O(\lambda^{-q}) \right)
\]
Second, we evaluate \(g \) in \((-\pi, \pi) \setminus [-\lambda^{-q}, \lambda^{-q}] \).
Because \(\mp g'(x) \geq 0 \) when \(0 \leq \mp x < \pi \), it follows from (3.3) and (3.1),
\[\frac{1}{2\pi} \left(\int_{-\pi}^{-\lambda^{-q}} + \int_{\lambda^{-q}}^{\pi} \right) e^{\lambda g(x)} dx = O(\lambda^{-\delta}) \frac{e^{\lambda(\tanh \alpha - \alpha)}}{\sqrt{2\pi \lambda \tanh \alpha}}. \]

In fact, by our assumption (3.1) and (3.2),
\[
\lambda^\delta \left| \frac{1}{2\pi} \left(\int_{-\pi}^{-\lambda^{-q}} + \int_{\lambda^{-q}}^{\pi} \right) e^{\lambda g(x)} dx \right| \leq \sqrt{\frac{\tanh \alpha}{2\pi}} \lambda^{\delta + \frac{1}{2} - \frac{1}{2} \lambda^{-q}} e^{\lambda(\tanh \alpha)} \leq \sqrt{2\pi \lambda^{\delta + \frac{1}{2}} e^{-\frac{1}{2} \lambda^{-q}}} e^{O(\lambda^{-q})} \lambda^{\lambda - \infty} = 0.
\]

holds. We complete the proof. \(\square\)

Proof of Lemma 2.2. In Lemma 2.1, taking \(a = r = 1 - \ell m^{-2}\) for \(\ell \geq 1\), which is done by our assumption (2.1), yields
\[
G_m(r) = \frac{h(r)}{\sqrt{2\pi(1 - r^2)^{\frac{1}{2}}} \sqrt{\lambda_m}} (1 + o(1)) \text{ as } m \to \infty,
\]
where
\[
h(r) := \frac{r e^{\sqrt{1 - r^2}}}{1 + \sqrt{1 - r^2}},
\]
since \(e^{-\alpha} = \frac{r}{1 + \sqrt{1 - r^2}}\) for \(\alpha > 0\). Because simple calculations yield
\[
h'(r) = \frac{1 - \sqrt{1 - r^2}}{r^2} \sqrt{1 - e^{2\sqrt{1 - r^2}}} = (1 + o(1)) \sqrt{2\sqrt{1 - r}} \text{ as } r \not\to 1,
\]
we have
\[
h(r) = h(1) - \int_r^1 h'(s) ds = 1 - (1 + o(1)) \frac{2\sqrt{2}}{3} (1 - r)^{\frac{3}{2}}\text{ as } r \not\to 1.
\]

Hence, for \(\ell \geq 1\) and \(r = 1 - \ell m^{-2}\), we obtain
\[
G_m(r) = (1 + o(1)) \frac{(1 - (1 + o(1)) \frac{2\sqrt{2}}{3} (1 - \ell m^{-2})^{\frac{3}{2}} \lambda_m}{(2\pi)^{\frac{1}{2}}} \sqrt{\lambda_m} \left(1 - (1 - \ell m^{-2})^2 \right)^{\frac{3}{2}} = (1 + o(1)) \frac{\sqrt{m}}{(2\pi^2)^{\frac{1}{2}}} e^{-\frac{1}{2}(1 + o(1)) \frac{2\sqrt{2}}{3} \lambda_m m^{-3}} \text{ as } m \to \infty.
\]

As \(m \to \infty\). The last equality comes from
\[
\frac{(1 - (1 + o(1)) \frac{2\sqrt{2}}{3} (1 - \ell m^{-2})^{\frac{3}{2}} \lambda_m}{(2\pi)^{\frac{1}{2}}} \sqrt{\lambda_m} \left(1 - (1 - \ell m^{-2})^2 \right)^{\frac{3}{2}} = \frac{\sqrt{m}}{(2\pi^2)^{\frac{1}{2}}} e^{-\frac{1}{2}(1 + o(1)) \frac{2\sqrt{2}}{3} \lambda_m m^{-3}} \text{ as } m \to \infty.
\]

since (2.1) implies
\[
\lambda m m^{-3} \geq m^{\frac{3}{2} - 3} > m^2 \to \infty.
\]

Proof of Lemma 2.3. (2.4) is obtained by the definition. Since
\[
k_m r_m(s) = 1 - \frac{1}{1 + s + O(m^{-1})} \to m \to \infty
\]
by our assumption (2.3), we obtain
\[
F_m r_m(s) = G_m \left(\frac{k_m r_m(s)}{\lambda m} \right) = \frac{1 + s + O(m^{-1})}{m^2} = \frac{(1 + o(1)) \sqrt{m} e^{-\frac{1}{2}(1 + o(1)) \frac{2\sqrt{2}}{3} (1 + s + O(m^{-1})) \lambda m m^{-3}}}{(2\pi^2 (1 + s + O(m^{-1}))^{\frac{1}{2}} \sqrt{\lambda m}}
\]
\[
\text{as } m \to \infty. \text{ The last equality comes from } \frac{(2\pi^2 (1 + s + O(m^{-1}))^{\frac{1}{2}} \sqrt{\lambda m}}{\sqrt{m} e^{-\frac{1}{2}(1 + o(1)) \frac{2\sqrt{2}}{3} (1 + s + O(m^{-1})) \lambda m m^{-3}} = \frac{(2\pi^2 (1 + s))^{\frac{1}{2}} \sqrt{\lambda m}}{(2\pi^2 (1 + s))^{\frac{1}{2}} \sqrt{\lambda m}} \text{ as } m \to \infty.
\]

Furthermore, since \(r_{m+1}(s) = r_m(1 + s + O(m^{-1}))\)
\[
as m \to \infty,
\]
\[
\gamma_{m+1} = \frac{F_m r_m(s)}{F_m r_m(1 + s)} = (1 + o(1)) \left(\frac{\frac{1}{2} + O(m^{-1})}{1 + \frac{1}{m}} \right)^{\frac{1}{2}} \sqrt{\lambda_{m+1} m m^{-3}} = (1 + o(1)) \left(\frac{\frac{1}{2} + O(m^{-1})}{1 + \frac{1}{m}} \right)^{\frac{1}{2}} \sqrt{\lambda_{m+1} m m^{-3}}
\]
\[
\leq e^{-\frac{1}{2}(1 + o(1)) \frac{2\sqrt{2}}{3} \lambda m m^{-3}} \leq e^{-\frac{1}{2}(1 + o(1)) \frac{2\sqrt{2}}{3} \lambda m m^{-3}}
\]

where we use our assumption (2.2) and the mean value theorem such that \(x^2 - y^2 = \frac{\theta}{2} \sqrt{\theta(x - y)}\) for \(0 \leq y \leq \theta \leq x\), holds. Hence, we have, by the above estimate,
\[
\gamma_{m+1} \leq e^{-\frac{1}{2}(1 + o(1)) \frac{2\sqrt{2}}{3} \lambda m m^{-3}} \leq e^{-\frac{1}{2}(1 + o(1)) \frac{2\sqrt{2}}{3} \lambda m m^{-3}}
\]
for sufficiently large \(m \in \mathbb{N}\).

Finally, we have by the definition of \(\gamma_{m+1}\),
as \(m \to \infty \). When \(0 \leq s \leq \frac{1}{2} \), there exist constants \(C > 0 \) and \(\theta \) satisfying \(2 + s + O(m^{-1}) \leq \theta \leq \frac{3}{2} + O(m^{-1}) \) such that

\[
\frac{F_m(r_m(1 + s + O(m^{-1})))}{F_m\left(r_m\left(\frac{3}{2} + O(m^{-1}) \right) \right)} \\
\geq C e^{(1+o(1))\sqrt{4+O(m^{-1})}\sqrt{1-s}\lambda_m m^{-3}} \\
\geq C e^{-3(1+o(1))\sqrt{1+O(m^{-1})}\sqrt{1-s}\lambda_m m^{-3}}.
\]

Furthermore, there exists \(\theta \) satisfying \(1 + s \leq \theta \leq \frac{3}{2} \) such that

\[
\frac{F_{m+1}(r_{m+1}(2^{-1}))}{F_{m+1}(r_{m+1}(1))} \\
\geq C e^{-(1+o(1))\sqrt{1+O(m^{-1})}\sqrt{1-s}\lambda_m (m+1)^{-3}} \\
\geq C e^{-(1+o(1))\sqrt{1+O(m^{-1})}\sqrt{1-s}\lambda_m m^{-3}}.
\]

by (2.2). There then exists \(\mu > 0 \) such that

\[
\frac{F_m(r_m(1))}{\gamma_{m+1}F_m(r_m(1))} \\
\leq C e^{-(1+o(1))\sqrt{3+O(m^{-1})}\sqrt{1-s}\lambda_m m^{-3}} \\
\leq C e^{-(1+o(1))\sqrt{3+O(m^{-1})}\sqrt{1-s}\lambda_m m^{-3}}.
\]

for sufficiently large \(m \in \mathbb{N} \). Moreover, when \(s \in \left[\frac{3}{2}, 1\right] \), there exist constants \(C > 0 \) and \(\theta \) satisfying \(\frac{5}{2} + O(m^{-1}) \) \(\leq \theta \leq 2 + s + O(m^{-1}) \) such that

\[
\frac{F_m(r_m(1 + s + O(m^{-1})))}{F_m\left(r_m\left(\frac{5}{2} + O(m^{-1}) \right) \right)} \\
\leq C e^{-(1+o(1))\sqrt{5+O(m^{-1})}\sqrt{1-s}\lambda_m m^{-3}} \\
\leq C e^{-(1+o(1))\sqrt{5+O(m^{-1})}\sqrt{1-s}\lambda_m m^{-3}}.
\]

Furthermore, there exists \(\theta \) satisfying \(\frac{3}{2} \leq \theta \leq 1 + s \) such that

\[
\frac{F_{m+1}(r_{m+1}(2^{-1}))}{F_{m+1}(r_{m+1}(1))} \\
\leq C e^{(1+o(1))\sqrt{5+O(m^{-1})}\sqrt{1-s}\lambda_m (m+1)^{-3}} \\
\leq C e^{(1+o(1))\sqrt{5+O(m^{-1})}\sqrt{1-s}\lambda_m m^{-3}}.
\]

\[\Box\]

Acknowledgment. The author would like to thank Prof. Takafumi Mase (The University of Tokyo), Prof. Masahiko Kanai (The University of Tokyo), and Prof. Masahiro Yamamoto (The University of Tokyo) for many valuable discussions and comments. Special thanks are due to Dr. Susumu Miura (NISSAN Motor Co., Ltd.) for providing an opportunity to discuss this topic and the careful referee whose comments helped to improve the exposition.

This work was supported by Leading Graduate Course for Frontiers of Mathematical Sciences (FMSP) and JSPS KAKENHI Grant Number JP20J11497.

References

