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Abstract:

In 1963, Kumano-go presented one non-uniqueness example for the two-

dimensional wave equation with a time-dependent potential. We construct infinitely many non-
uniqueness examples with different wave numbers at infinity for Cauchy problems of the two-
dimensional wave equation and Schrédinger equation as a generalization of the construction by

Kumano-go.
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1. Introduction and main result. Let
B,(0) C R* be an open ball centered at 0 with
radius r > 0. Henceforth, all functions which appear
in this paper take complex values. We consider the
wave equation and Schrodinger equation with time-
dependent potential V,

(1.1) Lu+V(z,t)u =0 in R,

where L denotes L =0 := 87 — A or L = —id; — A.
We consider non-uniqueness examples for Cauchy
problems with Cauchy data on a non-characteristic
surface 0B;(0) x R. Due to the time dependence
on the potential V', we have few hopes to guarantee
uniqueness for Cauchy problems in general. Indeed,
we construct infinitely many examples with differ-
ent wave numbers at infinity which violate unique-
ness based on Kumano-go [5]. In regard to the
uniqueness theorems for the wave equation,
Schrodinger equation, and more general partial
differential equations with variable coefficients,
readers are referred to [7] and [6]. They proved
uniqueness results by assuming some analyticities
on coefficients partially. Readers are also referred
to [4, Chapter 2.5] and [2, Chapter 3]. Alinhac and
Baouendi [1] constructed non-uniqueness examples
for Cauchy problems of general partial differential
equations by using geometric optics. We state our
main result.

Theorem 1.1. Let L =0 or L = —i0; — A.
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There exist infinitely many smooth functions
u€ C®(R?) and V € C®(R?) which satisfy (1.1)
and

suppu = (R*\ B1(0)) x R,

suppV C (B2(0) \ B1(0)) x R.

Theorem 1.1 relates to the result by Kumano-
go [5]. He constructed one example for non-unique-
ness when L = [J in the two-dimensional case based
on John’s construction [3] using Bessel functions.
We construct infinitely many examples with differ-
ent wave numbers at infinity for both wave and
Schrodinger equations by generalizing the result
in [5]. We remark that, in our construction, the
potential V is not real-valued but complex-valued
function, whereas the coefficients are all real-valued
with a damping term in Kumano-go’s construc-
tion [5].

2. Proof of the main result.

2.1. Preliminary. We prepare several lem-
mas regarding an asymptotic behavior of Bessel
functions. Their proofs are all presented in sec-
tion 3.

Lemma 2.1. Let 6€(0,3), pe (O,M),
A >0, and Jy\ be a Bessel function of order A\. We
then have the asymptotic formula uniformly for
a€(0,1—\7],

Jy(Aa) = (2mA tanh o) “2AEmha=0) (1 1 O(A~%))
as A — oo, where a>0 is defined by cosha =
a”l(>1).

Let § € (0,1) and p € (0,252 be fixed. We
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consider the following assumptions on a positive
sequence {\,},,cn With A, > 0 for all m € N.

(21) VYmeN, m* <\
(2.2) Amt1 = An(1+0(1)) as m — oo.

We can choose infinitely many positive sequences
{Am}men satisfying (2.1) and (2.2), for instance,

n—1

n §
)\m =a,m" + a1
J=0

where n > % is a positive integer, and a, > 1
and a; > 0 are constants for j=0,...,n—1. ‘
Lemma 2.2. Leté € (0,3) andp € (0, “g%))

be constants and { Ay, },,en be a positive sequence.
Set

Gu(r) :== Jy,(Amr), r€[0,1 — m_Q].

Assume (2.1). Then, for{ > 1 andr :=1—¢m~2, we
have the asymptotic formula,

(14 0(1)) — Y™ o~ (rro) 2, m

G(r) = 1
(2m20)3V/ A

as m — oQ.

Lemma 2.3. “g%))

Let§ € (0,3) andp € (0,
be constants and let { Ny, },,en be a positive sequence
satisfying (2.1). We set

km
En(r) = Gm ()\

m

T), m € N,

where {kn},,cn 95 a positive sequence satisfying

K 1 5
(2.3) )\——1—*—1-0( %) as m — oo,
and 1, (8) == + o~ meen for s € [0,1]). Then, Fy,
satisfies

(2.4)  F'(r)+ % F (r)+ <kfn - Aj) F,(r)=0

and for s € [0,1],
(2:5)  Fu(rm(s))

\/mef(lﬂj( ))%_(lJra)Z)\mm :

(2m2(1 + 5)) 1/ A
as m — oco. Furthermore, we define v,,+1 such that
F‘m(rm+1(271))
En,+1 (meLl (271)) '

If we assume (2.2), then there exists M € N such
that

= (1+0(1))

el

Tm+1 =

Amm ™3

Ym+1 S e

[Vol. 97(A),

holds for all m > M and there exist p >0, C > 0,
and M € N such that

7m+1Fm+1 (r7n+1 (3)) S Ce—ﬂ)\m m Fm (TTIL+1 (3))
if s €[0,1],
Fm (Tm+1 (5)) S Ceiﬂ)\mmis'}/m-&-l FrrL+1 (Tm-H (3))
if se2,1]
holds for all m > M.

2.2. Proof of Theorem 1.1.

Proof. Let 6 € (0,3) and p € (0, <1 26) ) be con-

stants. Let {\n},en be a positive sequence satisfy-
ing (2.1) and (2.2). We remark that (2.2) implies

2.7)

(2.6)

Ay < €™ ags m — oo.

Indeed, (2.2) implies there exists sufficiently large
mgo € N such that for all m > mg,

Z|log1+r )|

Jmu

log A\, log )\mO

m

holds, where r(j) satisfies lim;_. |r(j)| = 0. Hence,
(2.7) follows from the well-known argument. For
r> 1, we set

E (r)e i()\m0+kmt)’ I = D,
U (1, 0,t) := m(r)

Fm(T) i( A 00— kmt)’ L = —Zat _
where {k,,},,cn 15 a positive sequence satisfying
(2.3) and (r,0) is the polar coordinate in R?. By
(2.4), we obtain

Lu, =0,
because the Laplace operator A is written by the
polar coordinate,

A= +r10,+r20;.
We define closed intervals I, and I, ; C I,,, for m €
Nand j=1,2,3,4 as
1 1
IL,=|14+——,14+—
m—+1 m
and
1 j 1 j—1
ILpi=|1+———~ 14— ——= |
7 { m  4dm(m+1)’ * m  4dm(m + 1)}

For sufficiently large M € N and m > M, we define
smooth functions

A -
m(r) = {07

and

1,
A (r) = 0

We define u = u(r, 6,t) as

1 1
r2 1+ s + mrory
0<r <1+,

7’E(erl\ImJﬁl4)U
rel0,1+ 1

m+2] (
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u(r, 0,t) := Ap(r)un

+ § YM+1 X X 'YmAm(T)Um
m=M+1

and set

1 o0
K :=[0,1]U [1 + ,oo) U |J (Tm2Ulns)
M + 1 m=M+1
and
0, re kK,

Lu

V.0, = o re0,00)\ K.

Using the chain rule, (2.5), and (2.7), we obtain

d' ‘ |
me(r) =m'(m+1) 2 Ep(rm(s))
mé m—+1 Z/\Z m
<o MY X ) gy V2
m )\’ITI,

o o (o) 22 (1s)Er,m

S Cleo(nwEn(Tm(s))
for r € I,,, £ € Z>g. Indeed, by (2.7), it follows that

¢ Uye
m (m + 1) )‘m < Czeo(m)'
m&[
For r € I,,.1, using rp,11(8) = 7 (1 + s+ O(m™1)),

we also have
dt dt
dart —— Fo(rms1(s))

Fr,
(r) 7

=(m+1) (m+2)

¢
d—Fm(rm(l + s+ O(m_l)))‘

dst
(m+1)"(m +2)'\! m

=(m+1)"(m+2)

<C "y = (1+0(1))
o o~ (o) 222t s+0(m1)EA,m

< Czeo(m)En (T7n+1 (5)) :

Hence, it follows that for r € I, U ;1 and £ € Z,
0
(2.8) ‘

F,(r)| < Cge"(””)Fnl(r).

o
On I,,41, using (2.8), (2.3), (2.7), and (2.1), we then
have

(2.9) 0%u(r, 0,1)] == > _ (8,050, u(r, 0, 1)
|B]=¢

< Cryarr X - X Y A2l ™ (Fy + Y1 Frus)
< C[e—)\mm’3 eo(m)
< Czefm2(1+o(m’l))

12
< Cge_Zm

Infinitely many non-uniqueness examples for Cauchy problems 47

< Cpealr072? L

where we used the estimate obtained by (2.1),

(2.10) 2

Apm 3 > m%3 > m-.
We thus proved u is smooth in R?.
On Ip41,1, since
(2.11)  Jul = v X X Y (] = Yt | Umea])
=YM41 X -+ X 'Ym(Fm(rm+1(S))
= Yms1Fnt1(rms1(s)))
> Auan X X (1 — C’e*“’)‘"'mi&)
X F(rss(5))
> Y X X (1= Ceiﬂmz)
X Fp(rmi1(8)) >0
for s €[0,4] by (2.6) and (2.10), |u| > 0 on Ip1,1.
Similarly, on Ip,11.4, since
(212)  Jul = yarsn X X Y (e [ | = [m)
=TM+1 X -+ X 'Ym('Ym+1En+1(7"m+1 (5))
= Fu(rmi(s)))
> Yargr X X Ympr (1 — 067#)\””{3)
X Fr1(rm+1(8))
> Yarer X X Ympr (1 — Oeiﬂmz)
X Fp1(rims1(s)) >0

for s € [3,1], we have |u| >0 on Ip414. By the
definition of u, since Lu = 0 on 412 U Ipy13, V is
smooth when r € (1, 00).

Finally, we prove V is smooth at r=1. On

Iyi11, since Lu = Llyarg1 X -+ X Y1 A1 U],
(213)  |0°Lu| < Cryarn X - Xy A2 2em
X Fy1(r)
holds for |8] = ¢ € Zx( by (2.8). We thus have
10°V (r,0,t)] = |0°(u ' Lu)|

) %(xi)aﬁ(“l)@“l (L)

14
< C[ <’Vm+lEn+1) )\%k+l)eo(771) (1 + 7m+}17En+1)

< C[efu/\m m=3 +o(m)

S Cle*%’!”z
by (2.9), (2.11), (2.13), (2.6), (2.7), and (2.10) for
|8l =€ € Zsy. Similarly on I,,414, since Lu=
LhM+1 X X "YmAmumL
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(214) |8ﬂLu| S CZ’Y]\/IJrl X X '77n)\%+260(m)l7m(7ﬂ)

holds for |8] = ¢ € Zx( by (2.8). We thus have
07V (r,6,t)| = 0°(u" Lu)

) I%K , )aﬂ(u_l)aﬁ_al (Ler)

1

¢
< C/( En ))\,2<[+1)60(m) (1 + Fm )
T\t F) " Ym+1Fme1

< Ozefu/\mm’;’wLo(m)

< Cgeigmz
by (2.9), (2.12), (2.14), (2.6), (2.7), and (2.10) for
‘ﬂ| ={e ZZO‘
Thus, for all || =£¢ € Zx>g on I,
07V (r,0,8)] < Cre " < Cpe 502" T g

holds. 0
3. Proofs of the lemmas.
Proof of Lemma 2.1. We remark that

(3.1) 1>tanha=Vv1—a®> )\—'2-)’ ae(0,1—\7].

We use the Schléfli’s integral formula of a Bessel
function,

2w
where I'y consists of three sides of rectangle with
vertexes at —m+ioco, —m, m and 7+ ioo and is
oriented from —m + 400 to ™+ ico. We set

1 o
J)\()\a) = _/ e)\(—zabszrLz)dZ,
Ty

f(z) := —tasinz + iz
= acoszsinhy —y + i(x — asinx coshy),
where z =z 4 1y. By the Cauchy’s integral theo-
rem, we can deform I'y into a curve defined by I" on
which  — asinx coshy = 0. Hence, we obtain

1 ™
Jra(Aa) = %/ M@ dy,

™

where g is defined by
g(z) := acoszsinhy(z) — y(x)

and y satisfies

coshy(z) = P

z x?
< y(zr) = log — 1\ 5o 1
asinz a’sin’ x

for z € (—m, ), where y(0) = a is well-defined owing
toa < 1.

First, we evaluate g in an interval [-A\"9 A79],
where ¢ satisfying

[Vol. 97(A),

2—p
0<qg< ——
=7y
is determined later. Since there exists a constant

C > 0 such that

(3.2)

, 1 d x C ||
@) == — < : —
sinhy dxr \asinz 2 1@
(asinz)?
< Gl op-ad

S Aas
by (3.1), we have for € [-A\"9, A1,

[y(@) — af = ly(z) = y(0)] < OX "] < ON 2175,
Hence, the Taylor’s theorem yields
(33) gz

V=) i)
(z+ily—a)® ! 2
+ f/{] (1-10)
x f"(ia+0(z +i(y — a)))d
=tanha — a — tanh o >+ O\

since f'(ia) =0, |f"(ia +0(x+i(y — a)))| < C for
some C > 0, and

1 P
=—|14+6+=].
q 3 ( +0+ 2)
(1-25)

We remark that (3.2) is equivalent to p < QT
Consequently, we have

AT A atamn
- _Atanha o )
/ e)\g(m)dm — e)\(tanha a)/ e 2 - e()()\ )
—\ ¢ —\"¢

e)\(tanh a—aq) o0 @ p . o .
= — T2dE—2 7

v Atanh a {/00 € ¢ /Al’,}”\/m € 5]

x (1+0(7)
— ﬁw (1 + O()\*é))

V ann o«
1-2¢ 2-p
since A2 vtanha > A7 77 by (3.1) and

o0 2 2-p
3 _& /T 1L\ S Ao
XS/H e 2d£:)\‘5\/;e mr TR0
AT ¢

by (3.2). Hence, we have

1 A4 e)\(tanhafa)

V2mAtanh o

Second, we evaluate g in (—m,m) \ [-A"4, A7)
Because +¢/(z) >0 when 0 < Fz <, it follows
from (3.3) and (3.1),

M@ dy = (1+0(\?).

27T e
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)\(tanh a—a)

([ )= onn e

In fact, by our assumption (3.1) and (3.2),

5 (2 + ) da
A

eAtanha—a)
V2rAtanh «
27
tanh a)\“' 2r— )\_q)e_%ATp—zq 00
- 2
s+d LB g6y Aooo
< V2r\T2e72 00T %
holds. We complete the proof. O

Proof of Lemma 2.2. In Lemma 2.1, taking
a=r=1—4¢m~? for £> 1, which is done by our
assumption (2.1), yields

h(r)™

G (r) = (1+0(1)) as m — oo,
V2r(1 — 7‘2)% Am
where
reVi-r
h(r) = ————,
(r) 1+vV1—12
since e~

— T 1 -
. =i for a > 0. Because simple cal
culations yield

1- VI —
W(r) = ———— DA eV
r

=(14o1)V2Vl—rasr /1,

— /Tl h'(s)ds

2V/2
3

we have

1 (1+0(1) 21— )2

as r /' 1. Hence, for £>1 and r=1—/¢m=2, we
obtain

(1= (1+0(1)) 22 frm—5)™
(202 A (1= (1 — tm~2) )i
Jm
(2m20)T /A,
as m — oo. The last equality comes from
(1 (14 0(1)) 22 GEm5)™
(2#)%\/)\,_,”(1 — (1= tm2)?)

. Vm
er0iVA,

Gn(r) = (1+0(1))

_ (1 + 0(1)) 67(1+o(1))%§€%/\mm’3

S,

—(1+0(1))%§f%/\mm’3

e as m — o0
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since (2.1) implies

. 2_ m—o00
)\mﬂf‘g > mp S m? 7%
U
Proof of Lemma 2.8. (2.4) is obtained by the

definition. Since

Em 1+s+0(m™)
/\—mrm(s) =1 B — as m — 0o
by our assumption (2.3), we obtain
K,
En(rm(tS)) = Gm ()\_ Tm(S)>
m2
2V2 3 -3
—(1+o0(1 )) (1+9+O “)2N,m
— (1 o)) Y2 :
@221+ s+ O(m=1))) v,
2\/_(1+s)2)\,,,m 3

me~ (o)
(2m2(1 + s))l\/)\_m
as m — oo. The last equality comes from
e (Lol 2

2m2(14+ s+ O(m

= (1+0(1))

(1+o 1+s+0(m™! )b\,,,m 3

= as m — OoQ.

Furthermore, since 7,41(s) = r(1+ s+ O0(m™1))

F(ra(3 +0(m™")))
Fm+l(rm+1(2_1))

Ym+1 =

3
5 Ams1 1
% + O(m_l) Am 1+ E
5 3 3\ 5
7(1+0(1))¥§ (§+O(7rfl))§ %7 "';l m’il }/\mm :

)% A m-?

NV2ZVOA,m ™

<e —(14o(1
where we use our assumptlon (2 2) and the mean
value theorem such that z? — yz =3 \/—(x —y) for
0 <y <6<z, holds. Hence, we have by the above
estimate,

Yl <e (1+o(1 \/_)\,,,m < ef)\mm’3

for sufficiently large m € N.
Finally, we have by the definition of 7,1,
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Fr(rmar(s)) by (2.2). There then exists p > 0 such that
’Ym-«—lFm—O—l (Tm-H (S)) Frn(rm-ﬁ-l (3))
_ Fulraa(9))  Fupi(rma(27)) Vn1F i1 (Tim+1(s))
C Fu(rmn (7)) Fua(rmga(s)) < Cem o)) 5+0(m ) -2)(s=y)Anm
Fu(rm(1+s+0(m™")) Fu(rma(27)) VErom 2,
= 3 . < C@ 1+{)(1))+)\mﬂl
En('ﬁn(i + O(mil))) Fa (Terl (3>> .
< Qe tAnm
as m — oo. When 0 < s < %, there exist constants o
C>0 and 0 satisfying 2+s+0(m™') <9 <3+ for sufficiently large m € N. O
O(m~") such that Acknowledgment. The author would like
_ to thank Prof. Takafumi Mase (The University of
Fo(rm(1 O(m™
m (T —;S i (ﬁ ) Tokyo), Prof. Masahiko Kanai (The University of
Fn(rm (5 + O(m1)) Tokyo), and Prof. Masahiro Yamamoto (The Uni-
> Ce(1+0(1>)\/5\/5(%*@/\771"’73 versity of Tokyo) for many valuable discussions and
A comments. Special thanks are due to Dr. Susumu

> Ce(1+0(1)) 4+O(m*1)(2
Furthermore, there exists 6 satisfying 1 +s <60 < %
such that
Enﬁ-l("ﬂm+l(271))
Fm+1 (T7n+1 (5))
> Ce™ (140(1 )\/_\/.

> C’e (140 1))\/3(%75‘))\”1771,’3

m+1 "L+1>

by (2.2). There then exists p > 0 such that
Fn(rms(s))

Y41 Fm11(Tm41(8))
> Cel+o()(/4+0(m ) =VB)(g=s)Anm™

VIO
1

-3
mm

> Cel+o1)
> Cetrnm™

for sufficiently large m € N. Moreover, when s &€
[2,1], there exist constants C' > 0 and 6 satisfying
24+0(m™) <0 <245+ 0(m ™) such that

Fu(rm(1+s+0(m™)))

Fm(rm( ( )))
< Ce 1+o \/_\/_ sfl mm 3

(1+0(1)) 5+O(m*')(37%))\mm’3'

<Ce

Furthermore, there exists 6 satisfying %
such that

Foi1(rms1 (271))

Fr1(rim+1(s))
< Cell+oM)VEVB(s—) A (m+1)™

0<1+s

< Ce(lJro(l))?(sf%))\mm’i}

Miura (NISSAN Motor Co., Ltd.) for providing an
opportunity to discuss this topic and the careful
referee whose comments helped to improve the
exposition.
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