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Abstract: This paper deals with the diophantine equation Fp
1 þ 2Fp

2 þ � � � þ kF
p
k ¼ Fq

n, an

equation on the weighted power terms of Fibonacci sequence. For the exponents p; q 2 f1; 2g the

problem has already been solved in ad hoc ways using the properties of the summatory identities

appear on the left-hand side of the equation. Here we suggest a uniform treatment for arbitrary

positive integers p and q which works, in practice, for small values. We obtained all the solutions

for p; q � 10 by testing the new approach.
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1. Introduction. As usual, fFmgm�0 de-

notes the sequence of Fibonacci numbers F0 ¼ 0,

F1 ¼ 1 and Fmþ2 ¼ Fmþ1 þ Fm for all m � 0. Its

companion sequence fLmgm�0 is the Lucas sequence

given by L0 ¼ 2, L1 ¼ 1 and Lmþ2 ¼ Lmþ1 þ Lm for

all m � 0. We assume that the reader is familiar

with their Binet formula.

In this paper, we determine the solutions to the

Diophantine equation

Fp
1 þ 2Fp

2 þ � � � þ kF
p
k ¼ Fq

nð1Þ

in positive integers ðp; q; k; nÞ where p and q are

small. This equation was first investigated by

Németh et al. in [5] for the four possibilities fp; qg �
f1; 2g, and all the solutions in these particular cases

were obtained in elementary ad hoc ways. The

purpose of this paper is to provide a uniform

treatment independently from the values of p and

q. As a particular case, we solve the above equation

for all values of p; q which do not exceed the upper

bound 10.

We consider

Fp
1 ¼ 1 ¼ Fq

1 ¼ F
q
2 ; and Fp

1 þ 2Fp
2 ¼ 3 ¼ F4

as trivial solutions to (1). The authors in [5] have

made the following

Conjecture 1. Equation (1) has only the

three non-trivial solutions

ðp; q; k; nÞ ¼ ð1; 1; 4; 8Þ; ð1; 2; 3; 4Þ; ð3; 3; 3; 4Þ:

The above conjecture says, in particular, that

there exist only finitely many solutions. Since the

equation is not a standard equation, the finiteness

of its number of solutions does not seem to follow in

an easy way. Note that the first two quadruples

were obtained in [5], while the last one is justified

here in the sense that our present work confirms the

conjecture by solving the equation for maxfp; qg �
10. The result is recorded in

Theorem 2. Conjecture 1 is true whenever

maxfp; qg � 10.

Problems having similar flavour appear in the

extensive literature of Fibonacci sequence. For

instance, the sum Fs
n þ Fs

nþ1 (n � 0) gives Fibonacci

numbers when s 2 f1; 2g. For larger exponents s,

Marques and Togbé [4] proved that if Fs
n þ Fs

nþ1 is a

Fibonacci number for all sufficiently large n, then

s ¼ 1 or 2. Afterwards, Luca and Oyono [2] com-

pleted the solution of the question by showing that

apart from Fs
1 þ Fs

2 ¼ F3 there is no solution s � 3

to the equation Fs
n þ Fs

nþ1 ¼ Fm.

A naturally arising question is what would

happen if we replace the Fibonacci numbers by

other linear recurrence? In the case of non degen-

erate binary recurrences with real roots it is likely

our approach works. On the other hand, we do not

think that the method extends to Tribonacci

numbers or to other recurrences of order higher
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than 2 although we have made no efforts in this

direction.

Now we collect some preliminary results we

will use in the proof of Theorem 2. In what follows,

logb denotes the logarithm to base b, where b > 1 is

any real number, while � :¼ ð1þ
ffiffiffi
5
p
Þ=2 is the

dominant root of the Fibonacci sequence. Since

the following three lemmata are widely known, we

present them without proof.

Lemma 3. For n � 1, we have �n�2 �
Fn � �n�1, and �n�1 � Ln.

Lemma 4. The inequality Fnþ1=Fn � 3=2

holds for n � 2.

Lemma 5. Assume that n is divisible by 4.

Then Fn � F4 ¼ Fðn�4Þ=2Lðnþ4Þ=2.

At some stage of the proof of the theorem we

will use the following estimates.

Lemma 6. Equation (1) implies

. ðk� 2Þp < ðn� 1Þq if k � 2, and

. ðn� 2Þq < ðk� 1Þpþ log�ð4kÞ if k � 3.

Proof. Combining Lemma 3 and Fp
k < Fq

n (pro-

vided by (1) and k � 2) leads immediately to the

first statement.

For the second statement, Lemma 4 yields

Fk

Fk�i
¼
Yi�1

j¼0

Fk�j

Fk�j�1

� �
� 3

2

� �i�1

for all i ¼ 1; 2; . . . ; k� 1, where k � 3. Note that the

lower bound could be improved to ð3=2Þi if i � k� 2

because we avoid the quotient F2=F1 ¼ 1. Put � :¼
2=3. Recalling Lemma 3, observe that

�ðn�2Þq < Fq
n ¼ kF

p
k

Xk�1

j¼0

k� j
k

Fk�j

Fk

� �p
ð2Þ

< kFp
k ð1þ 1þ � þ �2 þ � � � þ �k�2Þ

< 4k�ðk�1Þp:

Then the statement follows by taking logarithms.

�

Lemma 7. Suppose that k and n are positive

integers. Then 5kkFn if and only if 5kkn.

Proof. See Lemma 1 in [1]. �

Lemma 8. Assume that k, p and q are posi-

tive integers, p is odd. If

Lpk
2 þ ðLp � 2Þk� 1 ¼ �5p�qL2

p

holds, then ðp; q; kÞ ¼ ð1; 1; 1Þ; ð1; 1; 2Þ.
Proof. Since Lp is never a multiple of 5, and

5p�qL2
p is an integer, it follows that q � p. Put

r ¼ p� q. If p ¼ 1, then k2 � k� 1 ¼ �1 gives the

two solutions above. The condition p � 3 entails

that the left-hand side is positive so the sign in the

right-hand side must be +. Suppose now that p ¼ 3

or p ¼ 5. The left-hand side is a quadratic poly-

nomial in k with leading coefficient Lp 6¼ 0. A

verification with q 2 f1; . . . ; pg provides no more

solutions.

In the sequel, we may assume p � 7. We will

show that this assertion contradicts the equality in

the lemma. Reducing

Lpk
2 þ ðLp � 2Þk� 1 ¼ 5rL2

pð3Þ

modulo Lp, it leads to Lp j 2kþ 1. Thus, Lp is odd,

so p is not a multiple of 3. Moreover 2kþ 1 ¼ aLp
holds for some odd integer a. Thus, k ¼ ðaLp � 1Þ=2.

Substituting this into (3), after some manipulations

we obtain

a2L2
p � ð4aþ 1Þ ¼ 4 � 5rLp:ð4Þ

On one hand, this gives Lp j 4aþ 1, therefore a �
ðLp � 1Þ=4 � 7. On the other hand, since Lp � 29,

we have 4aþ 1 < 5a < a2L2
p=2. Consequently

4 � 5rLp ¼ a2L2
p � ð4aþ 1Þ >

a2L2
p

2
;

therefore

a <
23=2 � 5r=2

L
1=2
p

:

This implies

ðLp � 1ÞL1=2
p < 27=2 � 5r=2:ð5Þ

On the other hand, rewriting (4) as

ðL2
pÞa2 � 4a� ð4 � 5rLp þ 1Þ ¼ 0;

and treating it as a quadratic in a, its discriminant

is a perfect square. Subsequently,

4þ L2
pð4 � 5rLp þ 1Þ ¼ y2

holds for some positive integer y. So, 4 � 5rL3
p þ

ðL2
p þ 4Þ ¼ y2. Since L2

p þ 4 ¼ 5F 2
p (because p is

odd), we get

4 � 5rL3
p þ 5F 2

p ¼ y2:

Let c; d be such that 5ckFp and 5dky. Then Fp ¼ 5cu,

y ¼ 5dv for some integers u; v with gcdðuv; 5Þ ¼ 1
and

4 � 5rL3
p þ 52cþ1u2 ¼ 52dv2:

Since 5 - Lp, 5r is the exact power of 5 in the
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factorisation of 4 � 5rL3
p. From the above equation,

we have that since 2cþ 1 6¼ 2d, either r ¼ 2cþ 1, or

r ¼ 2d, and in the last case r � 2cþ 1. Clearly, in

both cases r � 2cþ 1 � 2 log5 pþ 1, where in the

second inequality we used Lemma 7. Thus, 5r �
5p2. Returning to (5), we obtain

L1=2
p ðLp � 1Þ � 27=2 � 5r=2 � 27=2 � 51=2 � p;

and since Lp � �p�1 (see Lemma 3), we conclude

�ðp�1Þ=2ð�p�1 � 1Þ � 27=2 � 51=2 � p;

an inequality false for any p � 6. �

2. Proof of the theorem. Because we al-

ready accounted for the trivial solutions, we may

assume k � 3. First we handle the case k ¼ 3

separately. In fact we will exploit k � 4 only in

(12), but without this assumption, one has more

difficulties in our argument after (11). With k ¼ 3

we find Fq
n ¼ F

p
1 þ 2Fp

2 þ 3Fp
3 ¼ 3ð1þ 2pÞ, so 3 j Fn

and Fn is odd, so 4 j n and 3 - n. If q ¼ 1, then 3 �
2p ¼ Fn � 3 ¼ Fn � F4 ¼ Fðn�4Þ=2Lðnþ4Þ=2 by Lemma

5. Thus Fðn�4Þ=2 has its largest prime factor at

most 3. The Primitive Divisor Theorem implies

ðn� 4Þ=2 � 12, so n � 28 and the remaining possi-

bilities can be verified by hand. If q ¼ 2, we have

3ð1þ 2pÞ ¼ �. Thus, 2p þ 1 ¼ 3�. Distinguishing

between p 	 0; 1; 2 (mod 3Þ, we get the equation

3y2 ¼ 1þ 2rx3, where r 2 f0; 1; 2g, which one can

solve with MAGMA [3]. If q ¼ 3, we handle

similarly the equation 1þ 2p ¼ 9y3. Distinguishing

between p even and odd one has 9y3 ¼ 1þ 2rx2,

r 2 f0; 1g, and all integer solutions ðx; yÞ to these

equations can again be computed with MAGMA [3].

Assume now that q � 4. Then 34 j Fq
n. Hence,

33 j 1þ 2p, so p is odd and 9 j p. In particular,

19 j 29 þ 1 j 2p þ 1 j Fq
n, so 19 j Fn. Thus 18 j n, con-

sequently 3 j n, a contradiction.

So, from now on k � 4. Let the integer p � 1 be

fixed (not necessarily in f1; 2; . . . ; 10g), and consider

the term Fp
j with j � 1. Since we have Fj ¼ ð�j �

�jÞ=
ffiffiffi
5
p

, where � ¼ ð1�
ffiffiffi
5
p
Þ=2, it follows that

Fp
j ¼
ð�j � �jÞp

5p=2
¼
�jp

5p=2
þ �p;j;

where

j�p;jj <
2p�ðp�1Þj

5p=2
< �jðp�1Þ:

Thus,

Xk
j¼1

jFp
j ¼

1

5p=2

Xk
j¼1

j�jp

 !
þR1;

where jR1j <
Pk

j¼1 j�
jðp�1Þ < k2�kðp�1Þ. The inner

sum is

Xk
j¼1

jxj ¼ x
d

dx

Xk
j¼1

xj

 !
¼ x

d

dx
x
xk � 1

x� 1

� �

¼
kxkþ2 � ðkþ 1Þxkþ1 þ x

ðx� 1Þ2

with x :¼ �p. Thus,

Xk
j¼1

jFp
j ¼

k�p � ðkþ 1Þ
5p=2ð�p � 1Þ2

�pðkþ1Þ

þ
�p

5p=2ð�p � 1Þ2
þ R1:

Let q be a positive integer. Writing also

Fq
n ¼

�nq

5q=2
þ R2;

where

jR2j �
2

51=2

� �q
�nðq�1Þ < �nðq�1Þ;

the above formulas lead to

5ðq�pÞ=2ðk�p � ðkþ 1ÞÞ
ð�p � 1Þ2

�pðkþ1Þ � �qnð6Þ

¼ 5q=2R2 � 5q=2R1 �
5ðq�pÞ=2�p

ð�p � 1Þ2
:

Thus, in the right-hand side of (6) we see that

5q=2jR1j � 5q=2k2�kp�k;ð7Þ

and

5ðq�pÞ=2�p

ð�p � 1Þ2
� 5q=2�3 � 5q=2�kp�kþ3:ð8Þ

In the latter case, we used the facts that �p � 1 �
�p=2 for all p � 2, and �=ð�� 1Þ2 ¼ �3 (to include

the case p ¼ 1). Bounding 5q=2R2 takes a bit longer.

Clearly, in the exponent of the upper bound on jR2j
we have nðq � 1Þ ¼ ðn� 2Þq þ 2q � n and further

5q=2�2q ¼ ð
ffiffiffi
5
p

�2Þq < 6q. Combining these and (2),

we obtain

5q=2jR2j < 5q=2�nðq�1Þð9Þ
< 5q=2 � 4k�ðk�1Þpþ2q�n

< 6qþ1k�ðk�1Þp�n:
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If k � n, then the last term is not larger then

6qþ1k�ðk�1Þp�k. Assume now k > n. Obviously, p � q
leads to Fq

n < Fp
k , which contradicts (1). Hence,

p < q. Put b ¼ maxfp; qg ¼ q. The first statement of

Lemma 6 provides

n > ðk� 2Þ
p

q
þ 1 � k� 2

b
þ 1;

which together with (9) implies

5q=2jR2j < 6qþ1k�ðk�1Þp�ðk�2Þ=b�1

< 6qþ1k�kp�k=b:

Comparing it with the estimate obtained for k � n,

we get a general upper bound on 5q=2jR2j. Obvious-

ly, in (7) and in (8) we can replace �k in the

exponents by �k=b to unify the two upper bounds

obtained for the cases k � n and k > n, respectively.

Let �p :¼ ð�p � 1Þ2, and

zqðkÞ :¼ 5q=2�3 þ 6qþ1kþ 5q=2k2:

Putting all the above estimates together, we get

that

5ðq�pÞ=2ðk�p � k� 1Þ
�p

� �qn�pðkþ1Þ
����

���� < zqðkÞ
�k=bþp

:ð10Þ

The next goal is to analyse the exponent � :¼
qn� pðkþ 1Þ. We distinguish two situations. Sup-

pose first that

�� �
5ðq�pÞ=2

3�p

:ð11Þ

Here observe that for k � 3 and p � 1

5ðq�pÞ=2

�p

ðk�p � k� 1Þ � ��ð12Þ

�
5ðq�pÞ=2

�p

ðkð�p � 1Þ � 1� 1=3Þ >
5ðq�pÞ=2

�p

:

It now follows from (10) and (12), that

�k=bþp < 5ðp�qÞ=2�pzqðkÞ;ð13Þ

which gives us an upper bound on k for fixed p; q.

Later, we will see that the other branch provides

also a bound which is larger.

In the sequel, we suppose that the opposite of

(11) is true. First consider the case when the left-

hand side in (10) is zero. After rearranging the

corresponding relation, we take the norms in Q½
ffiffiffi
5
p



and get to

k2ð��Þp � ðkþ 1Þkð�p þ �pÞ þ ðkþ 1Þ2

¼ 5p�qð��Þqn�pðkþ1ÞNQ
ffiffi
5
p ð�pÞ:

By �� ¼ �1, �p þ �p ¼ Lp, and

NQ½
ffiffi
5
p

ð�pÞ ¼ ðð�1Þp � Lp þ 1Þ2

the previous equality simplifies

ðð�1Þp � Lp þ 1Þk2 þ ð2� LpÞkþ 1

¼ �5p�qðð�1Þp � Lp þ 1Þ2:
If p is even, the corresponding equation is

ðLp � 2Þk2 þ ðLp � 2Þk� 1 ¼ �5p�qðLp � 2Þ2:

Hence, ðLp � 2Þ j 1, leading to Lp ¼ 3, so p ¼ 2. Now

k2 þ k� 1 ¼ �52�q; where the eligible values for q is

1 or 2. Each case leads to a trivial solution.

If p is odd, then Lemma 8 handles the

equation

Lpk
2 þ ðLp � 2Þk� 1 ¼ �5p�qL2

p

and provides only ðp; q; kÞ ¼ ð1; 1; 1Þ; ð1; 1; 2Þ, deriv-

ing trivial solutions to (1).

Assume now that the left-hand side in (10) is

nonzero. We then have

jk�p � ðkþ 1Þ � ��5ðp�qÞ=2�pjð14Þ

<
5ðp�qÞ=2�pzqðkÞ

�k=bþp
:

Changing � to � in the left above we get an amount

jk�p � ðkþ 1Þ � ��5ðp�qÞ=2�ð�pÞjð15Þ
< ð2kþ 1Þ þ 9 � 5p�q�p;

where �ð�pÞ ¼ ð�p � 1Þ2 < 3. We also used the fact

that the opposite of (11) is true, therefore

j�j� ¼ ��� < 3 � 5ðp�qÞ=2�p:

The product of the left-hand sides of (14) and (15) is

the norm of a nonzero algebraic integer in K so it is

� 1. We thus get that

�k=bþp < 5ðp�qÞ=2�pzqðkÞðð2kþ 1Þ þ 9 � 5p�q�pÞ:ð16Þ

Note that (13) is weaker in (16), which therefore

gives a general bound for k irregardless of whether

(11) holds or not.

Taking maxfp; qg � 10, (16) gives k � 1104.

Now one can easily check when

Xk
j¼1

jF p
j

 !1=q

is a Fibonacci number for positive integer variables

p; q 2 f1; . . . ; 10g and k � 1104 getting only the
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solutions from the statement of the theorem. The

proof is complete.
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