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Abstract: For a simply connected complex algebraic variety X, by the mixed Hodge

structures ðW�; F �Þ and ð ~W�; ~F �Þ of the homology group H�ðX; QÞ and the homotopy groups

��ðXÞ �Q respectively, we have the following mixed Hodge polynomials

MHXðt; u; vÞ :¼
X
k;p;q

dimðGr pF�GrW�pþqHkðX; CÞÞtku�pv�q;

MH�
Xðt; u; vÞ :¼

X
k;p;q

dimðGr p~F�
Gr

~W�
pþqð�kðXÞ �CÞÞtku�pv�q;

which are respectively called the homological mixed Hodge polynomial and the homotopical mixed

Hodge polynomial. In this paper we discuss some inequalities concerning these two mixed Hodge

polynomials.
Key words: mixed Hodge structures; mixed Hodge polynomials; Hilali conjecture;

rational homotopy theory.

1. Introduction. For a complex algebraic

variety X there exists a mixed Hodge structure

ðW�; F �Þ on the homology group H�ðX; QÞ([2,3]).

In [10] J. W. Morgan first put mixed Hodge

structures on the rational homotopy groups in the

smooth case. Then, Morgan’s results were extended

to singular varieties by R. M. Hain [6] (cf. [5]) and

V. Navarro-Aznar [11] independently (e.g., see

[12, p. 234, Historical Remarks]). Then as defined

in the abstract we can define the following poly-

nomials of three variables t; u; v (see Remark 1.1

below):

MHXðt; u; vÞ
:¼
X
k;p;q

dimðGrpF�GrW�pþqHkðX; CÞÞtku�pv�q;

MH�
Xðt; u; vÞ

:¼
X
k;p;q

dimðGrp~F�
Gr

~W�
pþqð�kðXÞ �CÞÞtku�pv�q:

Remark 1.1. In this paper we consider the

rational homology groups HkðX; QÞ instead of the

cohomology groups HkðX; QÞ ¼� HomðHkðX; QÞ;QÞ

(by the universal coefficient theorem), thus the

mixed Hodge structures have both p; q negative,

thus negative weights. Therefore in defining the

mixed Hodge polynomial MHXðt; u; vÞ we consider

u�pv�q instead of upvq (cf. [12, p. 35]). It is the same

for the homotopical mixed Hodge polynomial

MH�
Xðt; u; vÞ. In other words, the above two poly-

nomials can be also defined respectively using the

cohomology groups HkðX; CÞ and the dual ð�kðXÞ �
CÞ_ ¼ Homð�kðXÞ �C; CÞ of the homotopy group

�kðXÞ �C by

MHXðt; u; vÞ
:¼
X
k;p;q

dimðGrpF�GrW�pþqH
kðX; CÞÞtkupvq;

MH�
Xðt; u; vÞ

:¼
X
k;p;q

dimðGrp~F�
Gr

~W�
pþqðð�kðXÞ �CÞ_ÞÞtkupvq:

Remark 1.2. In order to get the mixed

Hodge structure on the homotopy groups, in fact

it suffices that the algebraic variety is nilpotent in

the sense that �1 is nilpotent and acting nilpotently

on higher homotopy groups (e.g., see [12, Remark

8.12]). Simply connected is then a particular case.

The first polynomial is well-known, usually

called the mixed Hodge polynomial and has been
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studied very well. The second one is a homotopical

analogue, defined by the mixed Hodge structure on

the homotopy groups ��ðXÞ. So, we call these two

polynomials respectively the homological mixed

Hodge polynomial and the homotopical mixed Hodge

polynomial.

Here we observe the following for the special

values ðu; vÞ ¼ ð1; 1Þ:
PXðtÞ ¼ MHXðt; 1; 1Þ ¼

X
k=0

dimHkðX; CÞtk

¼ 1þ
X
k=1

dimHkðX; CÞtk;

P�
XðtÞ ¼ MH�

Xðt; 1; 1Þ ¼
X
k=2

dimð�kðXÞ �CÞtk

¼
X
k=2

dimð�kðXÞ �QÞtk:

The first polynomial is the usual Poincaré

polynomial and the second one is its homotopical

analogue, called the homotopical Poincaré polyno-

mial.

In this note we discuss some inequalities

concerning these two mixed Hodge polynomials

MHXðt; u; vÞ and MH�
Xðt; u; vÞ. More details will

appear elsewhere.

2. Homological mixed Hodge polynomial

and homotopical mixed Hodge polyno-

mial. The most important and fundamental topo-

logical invariant in geometry and topology is the

Euler–Poincaré characteristic �ðXÞ, which is de-

fined to be the alternating sum of the Betti numbers

�iðXÞ :¼ dimQ HiðX; QÞ ¼ dimC HiðX; CÞ:

�ðXÞ :¼
X
i=0

ð�1Þi�iðXÞ;

provided that each �iðXÞ and �ðXÞ are both finite.

Similarly, for a topological space whose fundamen-

tal group is an Abelian group one can define the

homotopical Betti number ��i ðXÞ :¼ dimð�iðXÞ�QÞ
where i = 1 and the homotopical Euler–Poincaré

characteristic:

��ðXÞ :¼
X
i=1

ð�1Þi��i ðXÞ;

provided that each ��i ðXÞ and ��ðXÞ are both finite.

The Euler–Poincaré characteristic is the special

value of the Poincaré polynomial PXðtÞ at t ¼ �1

and the homotopical Euler–Poincaré characteristic

is the special value of the homotopical Poincaré

polynomial P�
XðtÞ at t ¼ �1:

PXðtÞ :¼
X
i=0

ti�iðXÞ; �ðXÞ ¼ PXð�1Þ;

P �
XðtÞ :¼

X
i=1

ti��i ðXÞ; ��ðXÞ ¼ P�
Xð�1Þ:

The Poincaré polynomial PXðtÞ is multiplica-

tive in the following sense:

PX�Y ðtÞ ¼ PXðtÞ � PY ðtÞ;

which follows from the Künneth Formula:

HnðX � Y ; QÞ ¼
X
iþj¼n

HiðX; QÞ �HjðY ; QÞ:

The homotopical Poincaré polynomial P�
XðtÞ is

additive in the following sense:

P�
X�Y ðtÞ ¼ P�

XðtÞ þ P�
Y ðtÞ;

which follows from

�iðX � Y Þ ¼ �iðXÞ � �iðY Þ ¼ �iðXÞ � �iðY Þ

and ðA� BÞ �Q ¼ ðA�QÞ � ðB�QÞ.
Here we note that

PXðtÞ ¼ MHXðt; 1; 1Þ; P �
XðtÞ ¼ MH�

Xðt; 1; 1Þ:

In fact the homological mixed Hodge polyno-

mial is also multiplicative just like the Poincaré

polynomial PXðtÞ
MHX�Y ðt; u; vÞ ¼ MHXðt; u; vÞ �MHY ðt; u; vÞð1Þ

which follows from the fact that the mixed Hodge

structure is compatible with the tensor product

(e.g., see [12, §3.1, Examples 3.2].) As to the

homotopical mixed Hodge polynomial, it is additive

just like the homotopical Poincaré polynomial P�
XðtÞ

MH�
X�Y ðt; u; vÞ ¼ MH�

Xðt; u; vÞ þMH�
Y ðt; u; vÞð2Þ

since ��ðX � Y Þ ¼ ��ðXÞ � ��ðY Þ and the category

of mixed Hodge structures is abelian and the direct

sum of a mixed Hodge structure is also a mixed

Hodge structure.

3. Local comparisons of these two mixed

Hodge polynomials. By the above definition,

we have 0 ¼ P�
Xð0Þ ¼ MH�

Xð0; 1; 1Þ<MHXð0; 1; 1Þ ¼
PXð0Þ ¼ 1. Hence we get the following strict in-

equality, because given two real-valued polynomial

(therefore, continuous) functions fðx; y; zÞ and

gðx; y; zÞ, a strict inequality fða; b; cÞ < gða; b; cÞ at

a special value ða; b; cÞ implies a local strict inequal-

ity fðx; y; zÞ < gðx; y; zÞ for jx� aj 	 1; jy� bj 	
1; jz� cj 	 1:
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Corollary 3.1.

MH�
Xðt; u; vÞ < MHXðt; u; vÞ

for jtj 	 1; ju� 1j 	 1; jv� 1j 	 1.

When t ¼ �1, MHXð�1; 1; 1Þ ¼ PXð�1Þ ¼
�ðXÞ is the Euler–Poincaré characteristic and

MH�
Xð�1; 1; 1Þ ¼ P�

Xð�1Þ ¼ ��ðXÞ is the homotop-

ical Euler–Poincaré characteristic. In this case

we do have the following theorem due to Félix–

Halperin–Thomas [4, Proposition 32.16]:

Theorem 3.2. We have ��ðXÞ < �ðXÞ,
namely MH�

Xð�1; 1; 1Þ < MHXð�1; 1; 1Þ.
Hence we get the following strict inequality:

Corollary 3.3.

MH�
Xðt; u; vÞ < MHXðt; u; vÞ

for jtþ 1j 	 1; ju� 1j 	 1; jv� 1j 	 1.

As to the case when ðt; u; vÞ ¼ ð1; 1; 1Þ, we

have

MHXð1; 1; 1Þ ¼ PXð1Þ ¼
X
k=0

dimHkðX; CÞ

¼ 1þ
X
k=1

dimHkðX; CÞ;

MH�
Xð1; 1; 1Þ ¼ P�

Xð1Þ ¼
X
k=2

dimð�kðXÞ �CÞ:

For these integers we do have the following Hilali

conjecture [7], which has been solved affirmatively

for many spaces such as smooth complex projective

varieties and symplectic manifolds (e.g. see [1,8,9]),

but still open:

Conjecture 3.4 (Hilali conjecture).

P�
Xð1Þ 5 PXð1Þ;

i.e., MH�
Xð1; 1; 1Þ 5 MHXð1; 1; 1Þ.

Remark 3.5. The inequality 5 in the Hilali

conjecture cannot be replaced by the strict in-

equality <. It follows from the minimal model of

the de Rham algebra of Pn that we have (see

[12, Example 9.9])

�kðPnÞ �Q ¼
0 k 6¼ 2; 2nþ 1

Q k ¼ 2; 2nþ 1.

�

In particular, in the case when n ¼ 1, we have

MH�
P1ðt; u; vÞ ¼ t2uvþ t3u2v2;

MHP1ðt; u; vÞ ¼ 1þ t2uv:
So we have that MH�

Xð1; 1; 1Þ ¼ MHXð1; 1; 1Þ ¼ 2,

i.e. P�
Xð1Þ ¼ PXð1Þ ¼ 2. We also remark that in

the case of (non-strict) inequality MH�
Xð1; 1; 1Þ 5

MHXð1; 1; 1Þ, unlike Corollary 3.1 and Corollary 3.3

we cannot expect the following local inequality

MH�
Xðt; u; vÞ 5 MHXðt; u; vÞ

for jt� 1j 	 1; ju� 1j 	 1; jv� 1j 	 1. Indeed,

clearly the following does not hold:

MH�
P1ðt; 1; 1Þ ¼ t2 þ t3 5 1þ t2 ¼ MHP1ðt; 1; 1Þ

for jt� 1j 	 1.

However, using the multiplicativity of the

Poincaré polynomial PXðtÞ and the additivity of

the homotopical Poincaré polynomial P�
XðtÞ, we can

get the following theorem, which kind of says that

the Hilali conjecture holds ‘‘modulo product’’ [13]:

Theorem 3.6. There exists a positive inte-

ger n0 such that for 8n = n0 the following strict

inequality holds:

P�
Xnð1Þ < PXnð1Þ:

Hence, since P�
Xnð1Þ < PXnð1Þ means

MH�
Xnð1; 1; 1Þ < MHXnð1; 1; 1Þ, we have that

MH�
Xnð1; 1; 1Þ < MHXnð1; 1; 1Þ for 8n = n0:ð3Þ

In fact we can get the following strict inequality,

which, should be noted, does not follow straight-

forwardly from the above strict inequality (3) and

requires a bit of work:

Corollary 3.7. There exists a positive inte-

ger n0 such that for 8n = n0

MH�
Xnðt; u; vÞ < MHXnðt; u; vÞ

for jt� 1j 	 1; ju� 1j 	 1; jv� 1j 	 1.

In fact, in a similar way, using the multi-

plicativity of the mixed Hodge polynomial, i.e., (1)

and the additivity of the homotopical mixed Hodge

polynomial, i.e., (2), we can show the following

theorem. Let R>0 be the set of positive real

numbers.

Theorem 3.8. Let ðs; a; bÞ 2 ðR>0Þ3. Then

there exists a positive integer nðs;a;bÞ such that for

8n = nðs;a;bÞ the following strict inequality holds

MH�
Xnðt; u; vÞ < MHXnðt; u; vÞ:

for jt� sj 	 1; ju� aj 	 1; jv� bj 	 1.

The following theorem follows from the above

theorem and the compactness of the following

compact cube C ";r.

Theorem 3.9. Let "; r be positive real num-

bers such that 0 < "	 1 and " < r and C ";r :¼
½"; r
 � ½"; r
 � ½"; r
 � ðR>0Þ3 be a cube. Then there

30 S. YOKURA [Vol. 96(A),



exists a positive integer n";r such that for 8n = n";r
the following strict inequality holds

MH�
Xnðt; u; vÞ < MHXnðt; u; vÞ

for 8ðt; u; vÞ 2 C ";r.

We would like to pose the following conjecture:

Conjecture 3.10. Let " be a positive real

number such that 0 < "	 1. There exist a positive

integer n0 such that for 8n = n0 the following strict

inequality holds

MH�
Xnðt; u; vÞ < MHXnðt; u; vÞ

for 8ðt; u; vÞ 2 ½";1Þ3 � ðR>0Þ3.

In the case when u ¼ v ¼ 1, i.e., in the case of

P�
XðtÞ and PXðtÞ, we do have the following ‘‘half-

global’’ version of Theorem 3.6:

Theorem 3.11. Let " be a positive real

number such that 0 < "	 1. There exists a positive

integer n0 such that for 8n = n0 the following strict

inequality holds:

P�
XnðtÞ < PXnðtÞ ð8t 2 ½";1ÞÞ:
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Études Sci. Publ. Math. 44 (1974), 5–77.

[ 4 ] Y. Félix, S. Halperin and J.-C. Thomas, Rational
homotopy theory, Graduate Texts in Mathe-
matics, 205, Springer-Verlag, New York, 2001.

[ 5 ] R. M. Hain, The de Rham homotopy theory of
complex algebraic varieties. I, K-Theory 1
(1987), no. 3, 271–324.

[ 6 ] R. M. Hain, The de Rham homotopy theory of
complex algebraic varieties. II, K-Theory 1
(1987), no. 5, 481–497.

[ 7 ] M. R. Hilali, Action du tore Tn sur les espaces
simplement connexes, Ph.D. thesis, Universite
catholique de Louvain (1980).

[ 8 ] M. R. Hilali and M. I. Mamouni, A conjectured
lower bound for the cohomological dimension
of elliptic spaces, J. Homotopy Relat. Struct. 3
(2008), no. 1, 379–384.

[ 9 ] M. R. Hilali and M. I. Mamouni, A lower bound
of cohomologic dimension for an elliptic space,
Topology Appl. 156 (2008), no. 2, 274–283.

[ 10 ] J. W. Morgan, The algebraic topology of smooth
algebraic varieties, Inst. Hautes Études Sci.
Publ. Math. 48 (1978), 137–204.

[ 11 ] V. Navarro-Aznar, Sur la théorie de Hodge-
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