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Abstract: Inspired by Denef-Loeser’s identity of the Euler characteristic with compact

supports of the contact loci with the Lefschetz numbers of a complex singularity, we study sheaf

cohomology groups of contact loci of complex nondegenerate singularities. Moreover, also for

these singularities, we obtain a motivic analogue of Lê Dũng Tráng’s work on a monodromy

relation of a complex singularity and its restriction to a generic hyperplane.
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1. Introduction. Recently, the study of arc

spaces and geometric motivic integration provides

several new ideas and methods to singularity

theorists. Indeed, the work [1] by Denef-Loeser

gives a breakthrough point of view from which the

motivic Milnor fiber is the motivic incarnation of

the classic Milnor fiber. Not only permitting to

recover known results but the motivic zeta function

is also one of the powerful tools for the exploration

of the monodromy conjecture.

In this note, we go back to the problem on the

contact loci of a singularity established by Denef-

Loeser [3] and the problem on the restriction of

Lê Dũng Tráng [7]. Let f be a polynomial in

C½x1; . . . ; xd� such that fðOÞ ¼ 0, where O is the

origin of Cd. For n 2 N�, we define the n-iterated

contact locus of f at O to be a C-variety Xn;OðfÞ
consisting of ’ 2 ðtC½t�=ðtnþ1ÞÞd with fð’Þ ¼
tn mod tnþ1, which is endowed with the natural

action of the group of n-roots of unity given by

� � ’ðtÞ :¼ ’ð�tÞ. Denef and Loeser proved in [3] that

�cðXn;OðfÞÞ ¼ �ðMnÞ;

where �c is the Euler characteristic with compact

supports, �ðMnÞ is the Lefschetz number of Mn,

and M is the monodromy of ðf;OÞ. According to

the recent work by McLean [9], one may expect that

the singular cohomology groups of Xn;OðfÞ are equal

to the Floer cohomology groups of Mn. This is a

very difficult problem. However, by the hypothesis

of nondegeneracy of f we can compute in the

present note the cohomology groups of Xn;OðfÞ with

certain sheaves (Theorems 3.2 and 3.4).

The classes of the contact loci Xn;OðfÞ in the

Grothendieck ring of C-varieties endowed with a

good action of the group of roots of unity form the

coefficients of a formal series, which is the motivic

zeta function of f at O, whose limit is the opposite

of the motivic Milnor fiber of f at O. Lê Dũng Tráng

studied in [7] the relation between the monodromy

of ðf;OÞ and that of the restriction of ðf;OÞ to a

generic hyperplane. By supposing that the polyno-

mial f is nondegenerate with respect to its Newton

polyhedron we obtain here a motivic version of Lê

Dũng Tráng’s result concerning the motivic Milnor

fibers (Theorem 4.1).

The detailed version of the present note, which

is equipped with full proofs for its results, is given in

the manuscript [8] with the same authors.

2. Preliminaries.

2.1. Monodromic Grothendieck ring of va-

rieties. Let us consider the groups �n ¼ �nðCÞ of

nth roots of unity, the maps � 7! �k, for any

n; k 2 N�, and let �̂ :¼ lim � �n. Let VarC;�̂ be the

category of algebraic C-varieties endowed with

good �̂-action. The Grothendieck group

K0ðVarC;�̂Þ is an abelian group generated by

symbols ½X� for X in VarC;�̂ such that ½X� ¼ ½Y �
whenever X is �̂-equivariant isomorphic to Y ,

½X� ¼ ½Y � þ ½X n Y �

for Y �̂-action Zariski closed in X and

½X � V � ¼ ½X �Ce�

if V is an e-dimensional complex affine space with

any linear �̂-action and the action on Ce is trivial.

With the cartesian product K0ðVarC;�̂Þ is a com-
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mutative ring with unity. We denote by L the class

½C� and by M�̂
C the localization K0ðVarC;�̂Þ½L�1�.

Let M�̂
C½½T �� be the ring of formal series over

M�̂
C, and let M�̂

C½½T ��sr be the subset of M�̂
C½½T ��

consisting of polynomials in variables LpT q

ð1�LpT qÞ, with

ðp; qÞ in Z�N�. There exists by [1] a unique

M�̂
C-linear morphism

lim
T!1

:M�̂
C½½T ��sr !M

�̂
C

so that limT!1
LpT q

ð1�LpT qÞ ¼ �1, for ðp; qÞ in Z�N�.
2.2. Contact loci, motivic Milnor fibers.

Let f and g be polynomials in C½x1; . . . ; xd� with

fðOÞ ¼ gðOÞ ¼ 0, where O is the origin of Cd. For

n 2 N�, the n-iterated contact locus Xn;OðfÞ of f at

O is the set of ’ 2 ðtC½t�=ðtnþ1ÞÞd with fð’Þ ¼
tn mod tnþ1. For n � m, the ðn;mÞ-iterated contact

locus Xn;m;Oðf; gÞ of the ordered pair ðf; gÞ at O is

the set of ’ 2 ðtC½t�=ðtnþ1ÞÞd such that fð’Þ ¼
tn mod tnþ1 and ordtgð’Þ ¼ m. These are C-vari-

eties, which are endowed with the natural �n-action

given by � � ’ðtÞ :¼ ’ð�tÞ. As proved in [1], the

formal series

Zf;OðT Þ :¼
X
n�1

½Xn;OðfÞ�L�ndTn

is in M�̂
C½½T ��sr, and we call

Sf;O :¼ � lim
T!1

Zf;OðT Þ

in M�̂
C the motivic Milnor fiber of f at O. The

rationality of the series

Z�
f;g;OðT Þ :¼

X
n�m�1

½Xn;m;Oðf; gÞ�L�ndTn

follows from [4, Théorème 4.1.2] and [6, Section

2.9], up to the isomorphism of rings M�̂
C ¼�M

C�

C�

(see [5, Proposition 2.6]). Its rationality can be

also proved directly using [2, Lemma 3.4] with a

log-resolution. We call the limit S�
f;g;O ¼

�limT!1Z
�
f;gðT Þ in M�̂

C the motivic Milnor fiber of

the pair ðf; gÞ at O.

3. Cohomology groups of contact loci of

nondegenerate singularities.

3.1. Nondegeneracy. Let fðxÞ ¼
P

� c�x
� be

in C½x� ¼ C½x1; . . . ; xd� with fðOÞ ¼ 0. Denote by �

be the Newton polyhedron of f, and by �c the set

of all the compact faces of �. For � 2 �c, the �-face

function of f is f�ðxÞ ¼
P

�2� c�x
�. We call f

nondegenerate with respect to � if for all � 2 �c,

f� are smooth on ðC�Þd. Let ‘� : Rd
�0 ! R be the

function defined by ‘�ðaÞ ¼ infb2�ha; bi, using the

standard inner product in Rd. For a 2 Rd
�0, denote

by �a the face of � on which the restriction of the

function ha; 	i to � gets its minimum. In other

words, b 2 � is in �a if and only if ha; bi ¼ ‘�ðaÞ.
Note that �a is in �c if and only if a is in Rd

>0.

In fact, when � runs over �c, the relatively open

sets

�� :¼ fa 2 Rd
>0 j � ¼ �agð1Þ

form a partition of Rd
>0 and the restriction of ‘� to

each �� is linear.

For d 2 N� we write ½d� for f1; . . . ; dg, and for

J 
 ½d�, A 
 C, write AJ for the set

fðx1; . . . ; xdÞ j xj 2 A 8j 2 J; xi ¼ 0 8i =2 Jg:

The cardinal of a finite set S is denoted by jSj.
Let f be in C½x1; . . . ; xd� which is nondegener-

ate with respect to � with fðOÞ ¼ 0. Then for J 

½d�, fJ :¼ f jCJ is also nondegenerate with respect to

its Newton polyhedron �ðfJÞ. If � is a compact face

of �ðfJÞ, we can define �J� 
 RJ
>0 similarly as in (1).

For n 2 N� and k 2 N, we denote by �
ðn;kÞ
J the set

of a 2 ½n�J such that ‘JðaÞ þ k ¼ n, where ‘J stands

for ‘�ðfJ Þ. For J 
 ½d� and a 2 �
ðn;kÞ
J , denote by XJ;a

the subvariety of Xn;OðfÞ consisting of ’ such that

ordtxjð’Þ ¼ aj for all j 2 J and that xið’Þ � 0 for all

i =2 J. It is obviously invariant by the �n-action on

Xn;OðfÞ. Let Pn be the index set consisting of all

such pairs ðJ; aÞ such that

Xn;OðfÞ ¼
G

ðJ;aÞ2Pn
XJ;a:ð2Þ

Note that for every � 2 �c, there exists a J 
 ½d�
such that � is contained in the hyperplanes xj ¼ 0
for all j =2 J and not contained in other coordinate

hyperplanes. This set J is unique for each � 2 �c,

so we shall denote it by J�. It is a fact that the

index set Pn in (2) is the set of ðJ�; aÞ such that

� 2 �c, ‘J� ðaÞ � n and a 2 �
ðn;n�‘J� ðaÞÞ
J�

. For � 2 �c,

we consider the C-varieties

X�;J� ð1Þ :¼ fx 2 ðC�ÞJ� j f�ðxÞ ¼ 1g

and

X�;J� ð0Þ :¼ fx 2 ðC�ÞJ� j f�ðxÞ ¼ 0g:

Note that the variety X�a;J�a ð1Þ admits a natural

�‘J�a ðaÞ-action as follows:

e2�ir=‘J�a ðaÞ � ðxjÞj2J�a :¼ ðe2�iraj=‘J�a ðaÞxjÞj2J�a ;
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for r 2 ½‘J�a ðaÞ�. We consider the trivial action of �̂

on the variety X�a;J�a ð0Þ. Let s denote the sum

function: sðaÞ ¼
P

j2J aj for a ¼ ðajÞj2J 2 RJ .

Theorem 3.1. Let � 2 �c. If a 2 �J�� \�
ðn;0Þ
J�

,

then there is naturally a �̂-equivariant isomorphism

of C-varieties

	 : XJ�;a ! X�;J� ð1Þ �CjJ� j‘J� ðaÞ�sðaÞ:

If k 2 N�, a 2 �J�� \�
ðn;kÞ
J�

, there is a Zariski locally

trivial fibration with fiber CjJ� jð‘J� ðaÞþkÞ�sðaÞ�k:

� : XJ�;a ! X�;J� ð0Þ:

3.2. Sheaf cohomology groups of contact

loci. Let f be in C½x1; . . . ; xd� nondegenerate with

respect to � such that fðOÞ ¼ 0, and let n 2 N�. As

in (2) we have Xn;OðfÞ ¼
F
ðJ;aÞ2Pn XJ;a. We now

consider the function

� : Pn ! Z

defined by �ðJ; aÞ ¼ dimC XJ;a. Then we have the

following result on sheaf cohomology of contact

locus Xn;OðfÞ. Let F be an arbitrary sheaf of abelian

groups on Xn;OðfÞ.
Theorem 3.2. With the previous hypothesis

and notation, there is a spectral sequence

Ep;q
1 ¼

M
ðJ;aÞ2Pn
�ðJ;aÞ¼p

Hpþq
c ðXJ;a;FÞ ) Hpþq

c ðXn;OðfÞ;F Þ:

To obtain this spectral sequence, we define an

ordering in Pn and we consider a filtration of

Xn;OðfÞ by closed subsets in the usual topology

Sp :¼
G

�ðJ;aÞ�p
XJ;a;

for p 2 N. We also find a filtration of F as

F ¼ F 0ðF Þ 
 F 1ðFÞ 
 � � �

in such a way that

FpðFÞ=Fpþ1ðFÞ ¼� ip�F p;

where F p is the direct image with compact support

along the inclusion

jp : S�p :¼ Sp n Sp�1 ,! Sp

of F jS�p , and ip is the inclusion of Sp in Xn;OðfÞ. This

gives rise to the spectral sequence

Ep;q
1 ¼ Hpþq

c ðXn;OðfÞ; ip�F pÞ ) Hpþq
c ðXn;OðfÞ;FÞ;

and the theorem then follows thanks to the below

isomorphisms, for any m in Z,

Hm
c ðXn;OðfÞ; ip�F pÞ ¼ Hm

c ðSp;F pÞ
¼ Hm

c ðSp; jp!F jS�p Þ

¼ Hm
c ðS�p;F jS�p Þ:

Further, we can construct a class of special

sheaves on the contact loci such that when F
belongs to the class, the previous spectral sequence

is degenerate at the first page E1. Indeed, we first

rewrite X�ð0Þ :¼ X�;½d�ð0Þ and X�ð1Þ :¼ X�;½d�ð1Þ for

short. Putting r ¼ dim �, we can find out a toric

change of coordinates


 : ðC�Þr � ðC�Þd�r ! ðC�Þd

so that the Laurent polynomial f�ð
ðzÞÞ depends

only on the first r variables. Then we get

X�ð0Þ ¼� fz 2 ðC�Þr j f�ð
ðzÞÞ ¼ 0g � ðC�Þd�r:

By [10, Proposition 5.1], f�ð
ðzÞÞ is a nondegenerate

Laurent polynomial since f� is. Let L�;0 be the

pullback via the above isomorphism of the local

system

E� � T
�ðd�rÞ;

where � is the external tensor product, E� is an

arbitrary nonconstant rank one local system on

ðC�Þr and T is an arbitrary nonconstant rank one

local system on C�. Similarly, if r1 is the dimension

of the convex hull of � [ f0g, we can find out a toric

change of coordinates so that the polynomial f� � 1

involves only first r1 variables. We also define a

sheaf L�;1 in the same way as previous.

Let F a be the pullback of the sheaf L_�;1 � Ca
via the isomorphism 	 in Theorem 3.1 (for J ¼ ½d�),
where Ca is the C-constant sheaf on Cd‘�ðaÞ�sðaÞ. For

k 2 N� and a 2 �
ðn;kÞ
½d� , we denote by F a;k the sheaf

ð��1L�;0Þ_ on X ½d�;a which is the dual of the pullback

of L�;0 via � in Theorem 3.1 (for J ¼ ½d�). For k 2 N

and a 2 �
ðn;kÞ
½d� , denote by ia;k the inclusion of X ½d�;a

into Xn;OðfÞ. Then the sheaf

F :¼
M
�2�c

M
a2��\�

ðn;0Þ
½d�

ðia;0Þ!F að3Þ

�
M

�2�c;k�1

M
a2��\�

ðn;kÞ
½d�

ðia;kÞ!F a;k

on Xn;OðfÞ is exactly a sheaf that we expect,

namely, it yields that the spectral sequence in

Theorem 3.2 is degenerate at E1. For � 2 �c, k 2 N

and p 2 Z, we denote by D�;k;p be the set of all a 2
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�� \�
ðn;kÞ
½d� such that d� 1þ dn� sðaÞ � k ¼ p. By

the above construction, we have the following

Lemma 3.3. Let f be as above, F as in (3).

For m 2 Z with mþ d� 1 odd,

Hm
c ðXn;OðfÞ;FÞ ¼ 0;

otherwise, putting p :¼ 1
2 ðmþ d� 1Þ 2 Z, we have

Hm
c ðXn;OðfÞ;F Þ ¼

M
�2�c

M
a2D�;0;p

Hm
c ðX ½d�;a;F aÞ

�
M

�2�c;k�1

M
a2D�;k;p

Hm
c ðX ½d�;a;F a;kÞ:

Consider the case p :¼ 1
2 ðmþ d� 1Þ 2 Z. Using

the morphisms 	 and � in Theorem 3.1, the

Kunnëth formula, the Poincare duality and compu-

tations on spectral sequences we get, for a 2 D�;0;p,

Hm
c ðX ½d�;a;F aÞ ¼� Hd�1ðX�ð1Þ;L�;1Þ_

¼� Hd�1ðX�ð1Þ;L�;1Þ
and, for k 2 N� and a 2 D�;k;p,

Hm
c ðX ½d�;a;F a;kÞ ¼� Hd�1ðX�ð0Þ;L�;0Þ_

¼� Hd�1ðX�ð0Þ;L�;0Þ:
This together with the previous lemma gives us

the following theorem. Remark that for every k � n,

the k-summand in the direct sum in the theorem

vanishes, hence the direct sum on the right hand

side is finite.

Theorem 3.4. Let f be as above, F as in (3).

For m 2 Z with mþ d� 1 odd,

Hm
c ðXn;OðfÞ;FÞ ¼ 0;

otherwise, with p ¼ 1
2 ðmþ d� 1Þ, we have

Hm
c ðXn;OðfÞ;FÞ ¼�

M
�2�c

Hd�1ðX�ð1Þ;L�;1ÞjD�;0;pj

�
M

�2�c;k�1

Hd�1ðX�ð0Þ;L�;0ÞjD�;k;pj:

4. A motivic analogue of a monodromy

relation of Lê Dũng Tráng. We again use the

notation in Section 3.1. Let f be in C½x� vanishing

at O and nondegenerate with respect to �. Since the

function ‘J� is linear and strictly positive on �
J�
� and

dim�
J�
� ¼ jJ�j � dimð�Þ, thus using Theorem 3.1

and [4, Lemme 2.1.5] we get

Sf;O ¼
X
�2�c

ð�1ÞjJ� jþ1�dimð�ÞX�;J� ;ð4Þ

where

X�;J� :¼ ½X�;J� ð1Þ� � ½X�;J� ð0Þ�:

This formula covers Guibert’s formula in [4],

Sf;O ¼
X
�2�c

ð�1Þdþ1�dimð�Þð½X�ð1Þ� � ½X�ð0Þ�Þ;

where Guibert requires f to contain whole d

variables at each of its monomials (in this case, J� ¼
½d� for all � 2 �c), while we do not. Note that in

Guibert’s formula in [4, Proposition 2.1.6], the fac-

tor L� 1 after X�ð0Þ should be deleted. Further-

more, the formula (4) can be also interchanged to

that of Saito (see [11, Theorem 3.3]), in which, for

each � 2 �c, Saito uses the minimal affine subspace

of Rd containing � while we use the minimal

coordinate subspace of Rd containing �.

Denote by eO the origin of Cd�1, and by ef the

polynomial fðx1; . . . ; xd�1; 0Þ. A main result of this

note is stated as follows, which may be considered

as a motivic analogue (in the context of nondegen-

erate singularities) of Lê Dũng Tráng’s work on a

monodromy relation of a complex singularity and

its restriction to a hyperplane general to f (see [7]).

Theorem 4.1. With the previous hypothesis

and notation, the identity Sf;O ¼ Sef;eO þ S
�
f;xd;O

holds

in M�̂
C.

Here is the sketch of proof of this theorem. By

definition of ðn;mÞ-iterated contact loci, we have

Xn;m;Oðf; xdÞ ¼
G

ðJ�;aÞ2Pn;ad¼m
XJ�;a:

Thus Z�
f;xd;O

ðT Þ ¼
P

�2�c
ðZ0

� þ Zþ� Þ, where Z0
� is

X
a2�J�� \�

ð‘J� ðaÞ;0Þ
J�

‘J� ðaÞ�ad

½XJ�;a�L�d‘J� ðaÞT‘J� ðaÞ

and Zþ� is
X

a2�J�� \�
ð‘J� ðaÞþk;kÞ
J�

‘J� ðaÞþk�ad;k�1

½XJ�;a�L�dð‘J� ðaÞþkÞT‘J� ðaÞþk:

We are now in position to apply Theorem 3.1. Note

that if d 2 J�, then ‘J� ðaÞ þ k � ad automatically for

any k 2 N. If d =2 J�, the inequality ‘J� ðaÞ þ k � ad
is in the situation of [5, Lemma 2.10], in which the

corresponding series has the limit zero. Thus we get

S�
f;xd;O

¼
X

�2�c;d2J�
ð�1ÞjJ� jþ1�dimð�ÞX�;J� :

It follows from this and from (4) that
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Sf;O ¼
X

�2�c;d=2J�
ð�1ÞjJ� jþ1�dimð�ÞX�;J� þ S�

f;xd;O
:

The condition d =2 J� means that J� 
 ½d� 1�, hence

the first sum
P

�2�c;d=2J� in the above decomposition

of Sf;O is nothing else than Sef;eO.

Remark 4.2. In fact, we also obtain similar

results on the motivic nearby cycles in the relative

version of (4) and Theorem 4.1 for nondegenerate

polynomials. An important corollary of the relative

version of Theorem 4.1 is a proof of the integral

identity conjecture for nondegenerate polynomials.
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