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Contact loci, motivic Milnor fibers of nondegenerate singularities

By Quy Thuong L& and Tat Thang NGUYEN*"

(Communicated by Masaki KASHIWARA, M.J.A., Jan. 14, 2020)

Abstract:

Inspired by Denef-Loeser’s identity of the Euler characteristic with compact

supports of the contact loci with the Lefschetz numbers of a complex singularity, we study sheaf
cohomology groups of contact loci of complex nondegenerate singularities. Moreover, also for
these singularities, we obtain a motivic analogue of Lé Dung Trang’s work on a monodromy
relation of a complex singularity and its restriction to a generic hyperplane.
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1. Introduction. Recently, the study of arc
spaces and geometric motivic integration provides
several new ideas and methods to singularity
theorists. Indeed, the work [1] by Denef-Loeser
gives a breakthrough point of view from which the
motivic Milnor fiber is the motivic incarnation of
the classic Milnor fiber. Not only permitting to
recover known results but the motivic zeta function
is also one of the powerful tools for the exploration
of the monodromy conjecture.

In this note, we go back to the problem on the
contact loci of a singularity established by Denef-
Loeser [3] and the problem on the restriction of
Lé Ding Tréng [7]. Let f be a polynomial in
Clzy,...,z4] such that f(O) =0, where O is the
origin of C%. For n € N*, we define the n-iterated
contact locus of f at O to be a C-variety X, o(f)
consisting  of ¢ € (tC[t]/(t")?  with f(p) =
t" mod t"*!, which is endowed with the natural
action of the group of m-roots of unity given by
1 - p(t) := o(nt). Denef and Loeser proved in [3] that

Xc(Xn,O(f)) = A(Mn)a

where x. is the Euler characteristic with compact
supports, A(M™) is the Lefschetz number of M™",
and M is the monodromy of (f,0). According to
the recent work by McLean [9], one may expect that
the singular cohomology groups of X, o(f) are equal
to the Floer cohomology groups of M"™. This is a
very difficult problem. However, by the hypothesis
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of nondegeneracy of f we can compute in the
present note the cohomology groups of X, o(f) with
certain sheaves (Theorems 3.2 and 3.4).

The classes of the contact loci X, o(f) in the
Grothendieck ring of C-varieties endowed with a
good action of the group of roots of unity form the
coefficients of a formal series, which is the motivic
zeta function of f at O, whose limit is the opposite
of the motivic Milnor fiber of f at O. Lé Diing Trang
studied in [7] the relation between the monodromy
of (f,0) and that of the restriction of (f,0) to a
generic hyperplane. By supposing that the polyno-
mial f is nondegenerate with respect to its Newton
polyhedron we obtain here a motivic version of Lé
Diing Trang’s result concerning the motivic Milnor
fibers (Theorem 4.1).

The detailed version of the present note, which
is equipped with full proofs for its results, is given in
the manuscript [8] with the same authors.

2. Preliminaries.

2.1. Monodromic Grothendieck ring of va-
Let us consider the groups u, = p,(C) of
nth roots of umity, the maps n+— n*, for any
n,k € N*, and let {4 :=limpu,. Let Varc; be the
category of algebraic C-varieties endowed with
good  firaction.  The  Grothendieck  group
Ky(Varc;) is an abelian group generated by
symbols [X] for X in Varc, such that [X]=[Y]
whenever X is ji-equivariant isomorphic to Y,

(X]=[Y]+[X\Y]

rieties.

for Y ji-action Zariski closed in X and
[X x V] =[X x C
if V is an e-dimensional complex affine space with

any linear fi-action and the action on C¢ is trivial.
With the cartesian product Ky(Varcp) is a com-
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mutative ring with unity. We denote by L the class
[C] and by /\/l” the localization Ko(Varc)[L™!].

Let /\/l” ([T]] be the ring of formal series over
MY, and let ME[T)),, be the subset of ML[[T]]
consisting of polynomials in variables = LzT” w1th
(p,q) in Z x N*. There exists by [1] a unique
M’é—linear morphism

lim : ./\/l” [[T]]

T—o0
so that limy_, % = —1, for (p,q) in Z x N*.
2.2. Contact loci, motivic Milnor fibers.
Let f and g be polynomials in Clzy, ...,z with
f(O) = g(0) = 0, where O is the origin of C?. For
n € N*, the n-iterated contact locus X, o(f) of f at
O is the set of ¢ e (tC[t]/(t"1))? with f(p) =
t" mod t"*1. For n > m, the (n,m)-iterated contact
locus Xpmo(f,g) of the ordered pair (f,g) at O is
the set of ¢ e (tC[t]/(t"))? such that f(p) =
t" mod t"*! and ord;g() = m. These are C-vari-
eties, which are endowed with the natural u,-action
given by n-p(t) := ¢(nt). As proved in [1], the
formal series

nyo (T) =

— Mg

ST

S oo (fIL T

n>1
is in ME[[T]],,, and we call
810 =~ Jim Z;0(T)
in M’é the motivic Milnor fiber of f at O. The

rationality of the series

Z [Xn,m,O (f7 g)]L*ndTn

n>m>1

Zf .0 o(T) =

follows from [4, Théoreme 4.1.2] and [6, Section
2.9], up to the isomorphism of rings M’é ~ MS.
(see [5,Proposition 2.6]). Its rationality can be
also proved directly using [2, Lemma 3.4] with a
log-resolution. We call the limit quo
—limTHOOZng( ) in M” the motivic Milnor fiber of
the pair (f,g) at O.

3. Cohomology groups of contact loci of
nondegenerate singularities.

3.1. Nondegeneracy. Let f(z) =", coz® be
in Clz] = Clzy, ..., x4 with f(O) = 0. Denote by T’
be the Newton polyhedron of f, and by I'. the set
of all the compact faces of I'. For v € T, the ~-face
function of f is f,(z) =3 ,c, car®. We call f
nondegenerate with respect to I' if for all v € T',
fy are smooth on (C. Let fr : RZ, — R be the
function defined by fr(a) = infyer(a,b), using the

[Vol. 96(A),

standard inner product in R?. For a € Rio, denote
by 7, the face of I' on which the restriction of the
function (a,e) to I' gets its minimum. In other
words, b €T is in ~, if and only if (a,b) = fr(a).
Note that ~, is in I'. if and only if a is in R‘io.
In fact, when 7 runs over I';, the relatively open
sets

(1) o, ={ac€ Rio |7 ="}

form a partition of Rio and the restriction of /1 to
each o, is linear.

For d € N* we write [d] for {1,...,
J C [d], A C C, write A7 for the set

{(@1,...,2q) |2z € AVj e J,x; =0 Vi ¢ J}.

The cardinal of a finite set S is denoted by |S].

Let f be in Clxy,...,z4] which is nondegener-
ate with respect to I’ with f(O) = 0. Then for J C
[d], f/ := f|o is also nondegenerate with respect to
its Newton polyhedron I'(f”). If 7 is a compact face
of I'(f”), we can define 0'] CR/, snmlarly asin (1).
For n € N* and k € N, We denote by A "M the set
of a € [n]” such that €;(a) 4+ k = n, Where £y stands
for £p(ss). For J C [d] and a € Agn'k), denote by X,
the subvariety of X, o(f) consisting of ¢ such that
ord,z;(¢) = aj for all j € J and that z;(¢) = 0 for all
i ¢ J. It is obviously invariant by the u,-action on
Xno(f). Let P, be the index set consisting of all
such pairs (J,a) such that

(2) Xn,O(f) =

d}, and for

Note that for every v € T, there exists a J C [d]
such that v is contained in the hyperplanes z; = 0
for all j¢ J and not contained in other coordinate
hyperplanes. This set J is unique for each v € ',
so we shall denote it by J,. It is a fact that the
index set P, in (2) is the set of (J,,a) such that
(n,n—Ly, (a))

7€F<:7£J()<nanda€A . For yeT,
we consider the C-varieties

Xy, (1) = {z € (C)" | fy(z) =1}
and

X,,(0) = {z € (C)" | fy(z) = 0}.

Note that the variety X,
e, (a)-action as follows:

iras /0
. (mj)je,l,," = (627””1«// Ty (a>xj)j€e]»,”7

..J,, (1) admits a natural

e?m’r/f,ﬁm (a)
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for r € [¢;, (a)]. We consider the trivial action of /i
on the variety X, s (0). Let s denote the sum
function: s(a) = Zje] aj for a = (aj);c; € RJ

Theorem 3.1. LetyeTl,. Ifa € Uv N A (.0)
then there is naturally a fi-equivariant zsomorphzsm
of C-varieties

T X0 — X (1) x G,

IfkeN*, a€ U7 N A k) , there is a Zariski locally

trivial fibration with ﬁber C'I |62, (a)+k)=s(a) =k,
Vs (0)

3.2. Sheaf cohomology groups of contact
loci. Let f be in Clzy,...,x4] nondegenerate with
respect to I' such that f(O) =0, and let n € N*. As
in (2) we have X, 0(f) =L nep, X70- We now
consider the function

oc:P,—7Z

T:Xy . —

defined by o(J,a) = dimc Xj,. Then we have the
following result on sheaf cohomology of contact
locus X, 0(f). Let F be an arbitrary sheaf of abelian

groups on X, o(f).
Theorem 3.2. With the previous hypothesis
and notation, there is a spectral sequence

B = P HUXy., F) = H (X, 0(f), F).
(J,a)eP,
o(J,a)=p

To obtain this spectral sequence, we define an
ordering in P, and we consider a filtration of
Xno(f) by closed subsets in the usual topology

Sy 1= |_| XJas
o(J,a)<p
for p € N. We also find a filtration of F as
F=F(F)2F(F)2
in such a way that
FP(F) /PP (F)

where F, is the direct image with compact support
along the inclusion

p Sy =Sy \ Sp-1 = 5

= i Fp,

of ]-'\S , and 4, is the inclusion of S, in &), o(f). This
gives rise to the spectral sequence

Byt = HM (X 0(f)sipeFp) = HT (X0 (f), F),

and the theorem then follows thanks to the below
isomorphisms, for any m in Z,
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H:;n(Xn,O(f)aip*}—p) = H;"’(Sp,fp)

= Hm(Spajp!]:|S;)

c

= H'(S5, Fl).

Further, we can construct a class of special
sheaves on the contact loci such that when F
belongs to the class, the previous spectral sequence
is degenerate at the first page E;. Indeed, we first
rewrite X, (0) := X, 4(0) and X, (1) := X 4(1) for
short. Putting r = dim~, we can find out a toric
change of coordinates

v (C*)r % (C*)d—r _ (C*)d
so that the Laurent polynomial f,(v(2)) depends
only on the first r variables. Then we get

X,(0) = {z € (C) | f,(v(2) = 0} x (C")"

By [10, Proposition 5.1], f,(v(2)) is a nondegenerate
Laurent polynomial since f, is. Let L,, be the
pullback via the above isomorphism of the local
system

E’Y X T&(dfr)7

where X is the external tensor product, E, is an
arbitrary nonconstant rank one local system on
(C*)" and T is an arbitrary nonconstant rank one
local system on C*. Similarly, if 7 is the dimension
of the convex hull of v U {0}, we can find out a toric
change of coordinates so that the polynomial f, —1
involves only first r; variables. We also define a
sheaf £, in the same way as previous.

Let F, be the pullback of the sheaf E n=gen
via the isomorphism 7 in Theorem 3.1 (for J [d]),
where C, is the C-constant sheaf on C¥" (@)=s5(@) For
ke N* and a € AE;L]’IC), we denote by F, the sheaf
(n1L,0)" on X|g,, which is the dual of the pullback
of £, via min Theorem 3.1 (for J = [d]). For k € N
and a € A("k denote by i, the inclusion of X[y,
into Xn‘,o(f) Then the sheaf

(3) F=F P )

~vel. GGO‘\,(‘IAE{A .0)

@ @ (ia,k)[j:a,k

v€lek21 geq DA nk)

on X,o(f) is exactly a sheaf that we expect,
namely, it yields that the spectral sequence in
Theorem 3.2 is degenerate at ;. ForyeT'., ke N
and p € Z, we denote by D, ., be the set of all a €
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0, N A" such that d — 1+ dn — s(a) — k=p. By

the above construction, we have the following
Lemma 3.3. Let f be as above, F as in (3).
Form € Z withm+d—1 odd,

Hm(XnO(f)v}-) =0

otherwise, putting p := (m +d—1) €Z, we have

=D D (X Fo)

Y€l a€D4g,

o D D H' X For)-

YElk>1 a€Dy )y

H;n( n O

Consider the case p := 3 (m +d — 1) € Z. Using
the morphisms 7 and 7 in Theorem 3.1, the
Kunnéth formula, the Poincare duality and compu-
tations on spectral sequences we get, for a € Doy,

H (Xg)a, Fa) = HHX, (1), £4)"
= Hdil(X"/(l),/:'%l)
and, for k€ N* and a € D,
H (X0, Fag) = HTHX(0), Lop)"
=~ H'(X,(0), £,0).
This together with the previous lemma gives us
the following theorem. Remark that for every k& > n,
the k-summand in the direct sum in the theorem
vanishes, hence the direct sum on the right hand
side is finite.

Theorem 3.4. Let f be as above, F as in (3).
Form € Z withm+d—1 odd,

Hm(Xn,O(f)7~7:) =0
otherwise, with p =1 (m+d — ), we have
H:}”( nO @Hd 1 )‘Dmﬂﬂ
~vel,
@G)mﬂmmawmﬁ
yelle,k>1

4. A motivic analogue of a monodromy
relation of Lé Diang Trang. We again use the
notation in Section 3.1. Let f be in C[z] vanishing
at O and nondegenerate with respect to I'. Since the
function £, is linear and strictly positive on JQ{”" and
dim olf”' = |J,| — dim(y), thus using Theorem 3.1
and [4, Lemme 2.1.5] we get

(4) Sf,O _ Z(_l)\‘]ﬁ|+17dim(w)X%th,
vel.

where

[Vol. 96(A),

X, = Xy, (D] = [X5,1,(0)]:

This formula covers Guibert’s formula in [4],

Sro= 3 (1" MmO ([x (1)) - [X,(0)),

~vel.

where Guibert requires f to contain whole d
variables at each of its monomials (in this case, J, =
[d] for all v €T,), while we do not. Note that in
Guibert’s formula in [4, Proposition 2.1.6], the fac-
tor L — 1 after X,(0) should be deleted. Further-
more, the formula (4) can be also interchanged to
that of Saito (see [11, Theorem 3.3]), in which, for
each v € T'., Saito uses the minimal affine subspace
of R? containing 7 while we use the minimal
coordinate subspace of RY containing 7.

Denote by O the origin of C*!, and by f the
polynomial f(z1,...,24-1,0). A main result of this
note is stated as follows, which may be considered
as a motivic analogue (in the context of nondegen-
erate singularities) of Lé Diing Trang’s work on a
monodromy relation of a complex singularity and
its restriction to a hyperplane general to f (see [7]).

Theorem 4.1. With the previous hypothesz's
and notation, the identity Sy o = 8~ =+ Sf 2.0 holds
n ./\/l“

Here is the sketch of proof of this theorem. By
definition of (n,m)-iterated contact loci, we have

Xn,,m,O(fy xd) = |_|
(Jy,a)EPy aa=m
Thus Z7, o(T) = cr (20 + Z), where Z9 is

Z [X,A a

ﬂA (£, (a),0)
ZJ‘( )>ad

and Z;r is

XJ,.,aw

]L*d&/,’ (a)T@/A‘ (a)

o

[XJAV "(L}Lid(é’“ (a)+k) Tf"‘ (a)+k
aea;{”‘ ﬁAt;L (@
£ (a)+k>ag,k>1
We are now in position to apply Theorem 3.1. Note
that if d € J,, then £; (a) + k > a4 automatically for
any k€ N. If d¢ J,, the inequality £; (a) +k > aq
is in the situation of [5, Lemma 2.10], in which the
corresponding series has the limit zero. Thus we get

Z (_1)‘Jvl—H_dhn(V)X%Jﬁ )

el del,

Sf X,y O

It follows from this and from (4) that
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