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Abstract: Consider a surface S immersed in the Lorentz-Minkowski 3-space R3
1. A

complete light-like line in R3
1 is called an entire null line on the surface S in R3

1 if it lies on S and

consists of only null points with respect to the induced metric. In this paper, we show the

existence of embedded space-like maximal graphs containing entire null lines. If such a graph is

defined on a convex domain in R2, then it must be contained in a light-like plane (cf. Remark 3.3).

Our example is critical in the sense that it is defined on a certain non-convex domain.

Key words: Maximal surface; type change; zero mean curvature; Lorentz-Minkowski
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1. Introduction. We let R3
1 be the Lorentz-

Minkowski 3-space of signature ðþ þ �Þ. It is well-

known that there are no complete space-like zero

mean curvature immersions in R3
1 other than planes

(cf. [5]). It is thus interesting to investigate

singularities of zero mean curvature surfaces. In

fact, maximal surfaces with singularities were

investigated by several geometers, see references

in [11]. Regarding these works, the second and third

authors introduced the concept of maxface in [11],

which covers a large class of space-like surfaces

with zero mean curvature admitting singular

points. The elliptic catenoid

f0 :¼ ðsinh v cosu; sinh v sin u; vÞ ðjuj � �; v 2 RÞ

is a typical example of maxface with a cone-like

singular point (cf. Fig. 1, left).

However, if space-like maximal surfaces have

analytic extensions which change their causal type,

then those extensions cannot remain in the class

of maxfaces. In [13], two functions Af and Bf for

immersed hypersurfaces in Lorentzian manifolds

were introduced. Using them, we give here a new

notion ‘ZMC-map’ as an appropriate new class for

zero mean curvature surfaces with singularities, as

follows (maxfaces are all ZMC-maps but the con-

verse is not true): Let U be a domain in the

uv-plane, and let f : U ! R3
1 be a smooth map into

the Lorentz-Minkowski 3-space R3
1. We set

P :¼
fu � fu fu � fv
fv � fu fv � fv

� �
and

Bf :¼ detðP Þ;

where � denotes the canonical Lorentzian product of

R3
1 and detðP Þ denotes the determinant of the 2� 2

matrix P . We set

Q :¼
fuu � ~� fuv � ~�
fvu � ~� fvv � ~�

� �
;

where

~� :¼
1 0 0

0 1 0

0 0 �1

0
B@

1
CAðfu �E fvÞ

and fu �E fv denotes the Euclidean vector product

of R3. Here ~� gives a Lorentzian normal vector field

of f defined on U . Consider the matrix

W :¼ ~PQ

and set

Af :¼ traceðW Þ;

where ~P is the cofactor matrix of P . We call f a

ZMC-map (i.e. zero mean curvature map) if it is

an immersion on an open dense subset of U and Af
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vanishes identically. Since the property that Af

varnishes is independent of the choice of local

coordinates, ZMC-maps can be defined from an

arbitrarily given 2-manifold. Moreover, one can

generalize the concept of ZMC-map for a map into

Rnþ1
1 from an arbitrarily given n-manifold using

the function Af given in [13].

We let f be a ZMC-map. A point p 2 U is said

to be a space-like point (resp. time-like point) of f ,

if BfðpÞ > 0 (resp. BfðpÞ < 0). A point which is

neither space-like nor time-like is said to be a null

point or a light-like point of f . (If p is a singular

point of f , then BfðpÞ ¼ 0. So p is a null point.)

If f : U ! R3
1 is a light-like surface, that is, all

points on U are null points, then Af vanishes

identically (cf. [9, Example 4]). So, by our defini-

tion, a light-like surface is also an example of a

ZMC-map.

Definition 1.1. A ZMC-map is said to be

maximal type (resp. of mixed type) if Bf � 0 but

does not vanish identically (resp. Bf changes its

sign on U). On the other hand, a ZMC-map is said

to be null or light-like if Bf vanishes identically. A

ZMC-map which is neither maximal, of mixed type

nor light-like is said to be time-like.

We now fix f : U ! R3
1 as a ZMC-map. A null

point p 2 U is called degenerate if the exterior

derivative of Bf vanishes at p. The light-cone

f1 :¼ ðv cosu; v sinu; vÞ ðjuj � �; v 2 RÞ;

is a light-like ZMC-map consisting only of degen-

erate null points.

Definition 1.2. We say that a ZMC-map

f : U ! R3
1 contains a null line segment if there

exists an open interval I and a smooth curve

� : I ! U such that �ðIÞ consists only of null points

and f � �ðIÞ is a subset of a light-like line in R3
1. In

this case, f � �ðIÞ is called a null line. Moreover, if

f � �ðIÞ coincides with a complete light-like line, we

call it an entire null line.

Klyachin [9] showed the following fact:

Fact 1.3 (The line theorem for ZMC-sur-

faces). Let f:U ! R3
1 be a ZMC-immersion such

that o 2 U is a degenerate null point. Then, f

contains a null line segment passing through fðoÞ.
This fact was generalized to a much wider class

of surfaces, including real analytic constant mean

curvature surfaces in R3
1, see [12,13]. Although

there are properly embedded time-like ZMC-sur-

faces with an entire null line (see [3, Examples 2.2

and 2.3]), each of all examples of ZMC-surfaces with

space-like points given in [1,2,6,10] containing an

entire null line L has at least one cone-like singular

point on L (see Fig. 2).

For example, Fig. 2, left is the hyperbolic

catenoid (as a ZMC-map) given in [10]. (This

surface is called the catenoid of 2nd kind in [10])

and satisfies

sin2 xþ y2 ¼ t2;ð1Þ

where ðx; y; tÞ is the canonical coordinate system of

R3
1, and y ¼ 	t, x ¼ k� (k 2 Z) are entire null lines

on the surface.

On the other hand, the maximal ZMC-surface

given in [1, Theorem 5.3 (1-i)] satisfies

2ðy� tÞ sin t ¼ ðx2 þ y2 � 2ytþ t2Þ cos tð2Þ

and y ¼ t, x ¼ 0 gives the entire null line on the

surface (see Fig. 2, right). By (1) and (2), these two

surfaces have no self-intersections.

The purpose of this paper is to show the

following

Theorem 1.4. There exist embedded maxi-

mal ZMC-surfaces (resp. embedded ZMC-surfaces

of mixed type) each of which contains an entire null

line.

Remark 1.5. This theorem gives the first

example of maximal ZMC-immersion containing an

entire null line. On the other hand, examples of

ZMC-maps of mixed type containing an entire null

Fig. 2. Maximal surfaces with cone-like singular points lying

on null lines, where the white lines indicate null points.

Fig. 1. The elliptic catenoid (left) and the light-cone (right).

98 S. AKAMINE, M. UMEHARA and K. YAMADA [Vol. 95(A),



line were given in [8, Example 9.3 for m ¼ 1] using a

different approach.

Corollary 1.6. There exists a family of em-

bedded maximal ZMC-hypersurfaces (resp. embed-

ded ZMC-hypersurfaces of mixed type) in Lorentz-

Minkowski space Rnþ1
1 each of which contains an

ðn� 1Þ-dimensional light-like plane.

The proof is completely same as in the proof of

[7, Corollary 1.2]. The strategy to prove Theorem

1.4 is as follows: In [7], local existence of a 1-

parameter family ffcg of ZMC-surfaces of mixed

type such that each fc contains a null line segment

was shown. By improving the argument there, we

will show in Section 3 that each fc can be analyti-

cally extended so that it contains an entire null line.

Also, by modifying the estimates in [7], we will also

show the existence of ZMC-surfaces of maximal

type each of which contains an entire null line.

Unfortunately, our construction is local, and so the

resulting surfaces are not proper. So the following

question still remains (this is essentially the same

question as in [3, Question 1]):

Question. Are there properly embedded

maximal surfaces in R3
1, which contain at least one

entire null line?

As a partial answer of this question, a

Bernstein-type theorem for entire ZMC-graphs

consisting only of space-like or null points was

given in the authors’ previous work [3]. As we have

mentioned in Remark 1.5, Hashimoto and Kato [8]

recently gave a new method for constructing ZMC-

maps containing null lines, using bi-complex exten-

sions. The authors expect that this could be

developed to apply to the above question.

2. ZMC-surfaces with null lines. We con-

sider a real analytic ZMC-immersion f containing

the entire null line in R3
1. By a suitable Lorentzian

transformation of the ambient space, we may

assume that this entire null line is given by

L :¼ fð0; y; yÞ 2 R3
1; y 2 Rg:

On a neighborhood of a null point, there exist a

domain U in the xy-plane containing the y-axis and

a real analytic function  : U ! R such that f can

be expressed as the graph of a function of the form

 ðx; yÞ :¼ yþ �ðyÞ
2

x2 þ
X1
k¼3

�kðyÞ
k

xk;ð3Þ

where � and �k (k ¼ 3; 4; 5; . . .) are certain real

analytic functions on R. Since

fðx; yÞ ¼ ðx; y;  ðx; yÞÞ;
we have

Af ¼ ð1�  2
yÞ xx þ 2 x y xy þ ð1�  2

xÞ yy;
Bf ¼ 1�  2

x �  2
y:

Since f is a ZMC-graph, the function A :¼ Af

vanishes identically. So we have

0 ¼ Axxjx¼0 ¼ 2��0 þ �00;ð4Þ

where the prime means the derivative with respect

to y. Hence there exists a constant � such that

�0 þ �2 þ � ¼ 0:ð5Þ

If � > 0, then f is space-like, and if � < 0, then f is

time-like. If � ¼ 0, the causal type of f cannot be

specified, and the following four possibilities arise:

(i) the graph of  is of mixed type,

(ii) the graph of  consists of space-like points,

except for the y-axis,

(iii) the graph of  consists of time-like points

except for the y-axis, and

(iv) the graph of  consists only of null points.

Remark 2.1. If we weaken the condition

that the image of f contains a null line segment,

an example for the case (i) was shown in [7], and a

general local existence theorem for such  satisfying

(i), (ii) and (iii) was shown in [12, Prop. 6.7].

As shown in [6] and [12], by a homothetic

change efðx; yÞ :¼ ðx; y; ~ ðx; yÞÞ

~ ðx; yÞ :¼ 1

m
 ðmx;myÞ; m > 0

� �
;

one can normalize � to be �1, 0 or 1. In fact, as

shown in [6],

�þ :¼ �tanðyþ cÞ jcj <
�

2

� �

is a general solution of �0 þ �2 þ � ¼ 0 for � ¼ 1. If

� ¼ 0, then

�0
I :¼ 0 and �0

II :¼
1

yþ c
ðc 2 R n f0gÞ

are the solutions, and

��I :¼ tanhðyþ cÞ ðc 2 RÞ;
��II :¼ cothðyþ cÞ ðc 2 R n f0gÞ;
��III :¼ 	1

are the solutions for � ¼ �1. If
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� ¼ �þ; �0
II ; �

�
II ;

then they are not defined on R, so these three

cases cannot produce any embedded ZMC-surfaces

with entire null lines. In fact, the maximal surface

given in (2) is of type �þ. On the other hand, the

light-cone (Fig. 1, right) and the maximal surface

given in (1) is of type �0
II on each null line.

Moreover, the time-like surface given by the

implicit function

ðy� tþ tanh tÞ2 þ x2 ¼ tanh2 tð6Þ

has a null line y ¼ t, x ¼ 0 and is of type ��II (see

Fig. 3). So if we seek candidates of ZMC-immer-

sions containing entire null lines, then only the

possibilities are

� ¼ �0
I ; �

�
I ; �

�
III :

The cases � ¼ ��I , ��III give only time-like ZMC-

surfaces, and properly embedded examples were

known (cf. [3, Examples 2.2 and 2.3]). So only the

case � :¼ �0
Ið
 0Þ is remaining.

This special case was discussed in [7], and here

we would like to point out the method used in [7] is

sufficient to show the following assertion:

Theorem 2.2. There exist real analytic

functions  i : U ! R ði ¼ 1; 2; 3Þ defined on a do-

main U in R2, each of whose graphs gives a ZMC-

embedding containing an entire null line of type �0
I ,

so that  1,  2 and  3 satisfy the conditions (i), (ii)

and (iii), respectively.

The existence of  1 and  2 proves Theorem 1.4

in the introduction.

3. Proof of Theorem 2.2. We first consider

the case (i). For each c > 0, a function  of a ZMC

surface of mixed type satisfying � ¼ 0 was con-

structed in [7]. Such a surface can be characterized

by the condition

�3ðyÞ ¼ 3cy; �kð0Þ ¼ �0kð0Þ ¼ 0 ðk � 4Þ:ð7Þ

For an arbitrary � > 0, there exists a positive

constant C� such that  is defined on

V� :¼ ð�C�1
� ; C�1

� Þ � ð��; �Þ:

Remark 3.1. In [7, Page 290], the inequality

j�lj �
3cjyjl

�þ2

ðl� þ 2Þ2
Ml�3 � 	0c

lð8Þ

was shown, where C� :¼ �M and 	0 :¼ 3ð�MÞ3=c.
However, there was a typographical error, and we

should correct

C� :¼
ffiffiffi
�
p
M; 	0 :¼

3cffiffiffi
�
p
M3

:ð9Þ

Then (8) holds, correctly.

The uniqueness of the solution  implies that  

can be extended on the domain U :¼
S
��1 V�. In

particular, U contains the entirety of the y-axis, and

so  gives an example of type (i) containing the

entire null line L.

We show the existence of surfaces satisfying

(ii) or (iii) as a modification of the proof of [7]. We

will change the initial condition and modify the

estimates in [7] as follows: We set

�3ðyÞ ¼ 0; �4ðyÞ ¼ 4cy ðc 6¼ 0Þ;ð10Þ
�kð0Þ ¼ �0kð0Þ ¼ 0 ðk � 5Þ;

as the initial condition. Then, by [12, (6.5)],

Bfðx; 0Þ ¼ �2cx4 þOðx5Þ

holds. Hence, if the power series in (3) with the

condition (10) converges, the graph of  satisfies (ii)

(resp. (iii)) if c < 0 (resp. c > 0). The convergence of

(3) can be proved by imitating the argument in [7].

In [7], functions bi (i � 0) were used, where

b0 :¼ y b1 :¼ 0; b2 :¼ �ð¼ 0Þ

and bk ¼ �k holds for k � 3. Since b2 ¼ b3 ¼ 0 in [7],

the series fPk;Qk; Rkg were produced by the follow-

ing recursive formula: We set Pj ¼ Qk ¼ Rl ¼ 0 for

3 � j � 5, 3 � k � 9, 3 � l � 10, and

Pk :¼
Xk�2

m¼4

2ðk� 2mþ 3Þ
k�mþ 2

�m�
0
k�mþ2; k � 6;

Qk :¼
Xk�6

m¼4

Xk�m�2

n¼4

3n� kþm� 1

mn
�0m�

0
n�k�m�nþ2;

k � 10;

Fig. 3. A time-like ZMC-surface without self-intersection

which has a cone-like singular point lying on a null line.
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Rk :¼
Xk�7

m¼4

Xk�m�3

n¼4

�m�n�
00
k�m�nþ2

k�m� nþ 2
; k � 11:

Here Pk, Qk and Rk are determined by �j (4 � j �
k� 2). Thus, the functions �k (k � 5) are inductive-

ly determined by the ordinary differential equation

�00k ¼ �kðPk þQk � RkÞ; �kð0Þ ¼ �0kð0Þ ¼ 0;ð11Þ

where k � 5. The following proposition holds, which

corresponds to [7, Proposition 1.3]:

Proposition 3.2. For each c 6¼ 0 and � > 0,

we set

M� :¼ 3 max
�

144
 jcj j�j3=2;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
192c2


4
p �

;ð12Þ

where 
 is a positive constant such that

t

Z 1�t

t

du

u2ð1� uÞ2
� 
 0 < t <

1

2

� �
:

Then the functions �lðyÞ ðl � 5Þ satisfy the inequal-

ities

j�00l ðyÞj � jcj jyj
l�Ml�3;ð13Þ

j�0lðyÞj �
3jcj jyjl

�þ1

l� þ 2
Ml�3;ð14Þ

j�lðyÞj �
3jcj jyjl

�þ2

ðl� þ 2Þ2
Ml�3ð15Þ

for any y 2 ½��; ��, where

l� :¼
1

2
ðl� 1Þ � 2 ðl ¼ 5; 6; . . .Þ:

Proof. We can prove this by induction on

l � 5. The functions �k of small indices are deter-

mined by the recursive formula (11) as follows:

�4 ¼ 4cy; �5 ¼ 0; �6 ¼ �8c2y3;ð16Þ
�7 ¼ 0; �8 ¼ �32c3y5:

The estimates (13)–(15) for l ¼ 5 follow from (16).

In the case of [7], we set b3ð¼ �3Þ 6¼ 0, but in our

present case b3 ¼ 0 and the first non-trivial term

begins from b4ð¼ �4Þ. In particular, sub-terms

appearing in Pk;Qk; Rk are fewer than those in [7].

So, (13)–(15) for l � 6 follow using the same

induction argument as in [7]. Therefore, the same

estimates as in the proof of Proposition 1.9 in [7]

are entirely valid also in this case. �

By Proposition 3.2, for an arbitrary � � 1,  is

well-defined on

V� :¼ ð�C�1
� ; C�1

� Þ � ð��; �Þ;

where C� :¼
ffiffiffi
�
p
M (cf. (9)). In fact, like as in the

case of [7], the inequality

j�lj �
3jcj jyjl

�þ2

ðl� þ 2Þ2
Ml�3 � 	0C

l
� ðl � 5Þð17Þ

can be shown, where 	0 :¼ 3jcj=ð
ffiffiffi
�
p
M3Þ. The

uniqueness of the solution  implies that  can be

extended on the domain

U :¼
[
��1

V�:ð18Þ

In particular, U contains the entirety of the y-axis,

and so  gives an example of type (ii) (resp. (iii)) if

c < 0 (resp. c > 0) containing the entire null line L.

Remark 3.3. The domain U defined in (18)

is not convex in R2. However, this fact is crucial to

construct a maximal graph containing an entire

line. In fact, as pointed out in [4, Lemma 1], if there

exists a maximal graph defined on a closed convex

domain in R2 whose image contains an entire null

line, then it must be a light-like plane. So if there

exists an entire graph of mixed type containing an

entire null line L, then either

. the both side of the entire null line are time-

like, or

. there exists a sequence of time-like points (on

the side containing space-like points) which is

asymptotic to the line L,

as a consequence.
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