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Abstract:

We determine the mod 2 cohomology ring of the classifying space of the

exceptional Lie group Eg and the action of the Steenrod algebra on it.
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1. Introduction. In 1975, Kono and Mimura
[6] determined the ring structure of the mod 2
cohomology ring H*(BEjg) of the classifying space
BEg of the compact simply-connected exceptional
Lie group Eg except for the relation of degree 68.
Their result is stated as follows:

Theorem 1.1 (Kono-Mimura [5]). The mod
2 cohomology ring of the classifying space BEg of the
exceptional Lie group Eg is

H*(BEs) = Z/2[ya, Yo, Y7, Y10: Y15 Y34, Y32, Yas) /1,
such that degy; =1 and I is the ideal generated by

Yryio,  YryYis, Yrys4, Tes,

where reg = y§4 + yfgygg + y%0y48 + higher terms.

Thus the remaining problem on the mod 2
cohomology ring of BEg is the determination of the
higher terms in rgg. Indeed, Toda [10] announced
the result in 1973, but the detailed account never
appeared in the literature. The purpose of this
paper is to complement Toda’s method and to give
a description of H*(BEs) as an algebra over the
mod 2 Steenrod algebra. Our strategy for determin-
ing reg is stated as follows: Let y, be the unique
generator of H*(BEg). We define the generators
y; for i =6,7,10,18,34 by using the cohomology
operations (see (3.1) and (3.2)). Let pg be the
representation

(1.1)

whose highest weight is the fundamental weight wy

P6 E6 i SU(27)
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(for the fundamental weight of Eg, see [4, Chapter
VI, §4]). Then pg induces a map of classifying spaces
BEg — BSU(27). The induced homomorphism in
cohomology is denoted by

pi - H'(BSU(27)) — H*(BEy).

The i-th Chern class ¢;(pg) of pg is defined by pg(c;)
where ¢; is the i-th universal Chern class in
H*(BSU(27)) (See [2,Appendix]). We define the
remaining generators y; for i = 32,48 by using the
Chern classes of pg (see (3.4) and (3.5)). Then by
applying a squaring operation Sq*?Sq'°Sq®Sq* to
the Chern class cy4(ps) =43, we obtain 74 (see
Proposition 5.1):

reg = y§4 + y%gysz + y%oy48
+ YY10Y18Y34 + YaY10Yss + Yayioysa.

We remark that other relations are also obtained
from the Chern class cs(ps) =y} + yeyio. More
precisely, the relation y7;y19 = 0 is obtained from

Sa' (¥} + yeyro + cs(ps)) =0,

and y7y18 = yryss = 0 are respectively obtained by
applying Sq®, Sq'°Sq® to yryio = 0. Thus all the
relations of H*(BEs) are obtained from the Chern
classes of pg and the Wu formula.

In general, given a map X — Y of topological
spaces, the cohomology H*(X) has the structure of
an H*(Y)-algebra over the mod 2 Steenrod algebra
A. In other words, it is an algebra over the Massey-
Peterson algebra H*(Y)® A, or the semitensor
product of algebras in [6]. Using our result, we can
determine the structure of the mod 2 cohomology
of BEs as an algebra over the Massey-Peterson
algebra H*(BSU(27)) ® A whose H*(BSU(27))-al-
gebra structure is given by the homomorphism pj.
Notice that, as an algebra over the Massey-Peterson
algebra H*(BSU(27)) ® A, the mod 2 cohomology
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ring H*(BEjg) is generated by the single element yy
and all the relations are obtained from c4(ps) = ¥
and ¢s(ps) = Y + Ysy10-

2. The mod 2 cohomology of BSpin(10).
Recall the mod 2 cohomology of BSpin(10) which
will be needed in §3. According to Adams’ book [1],
there exists an inclusion jgyin(10) : Spin(10) — Fg.
The restriction of pg to Spin(10) is given as follows:

P6 © Jspin(10) = 1 + A1 + Ay,

where A; : Spin(10) — SO(10) — SU(10) is the
standard representation, and A, :Spin(10) —
SU(16) is the spin representation.

The mod 2 cohomology of BSpin(10) is

H*(BSpin(10)) = Z/2[wy, we, wr, ws, wig, s2]/ 1,

where ugs is the 16-th Chern class c¢i6(Ay) of the
spin representation A, and I is the ideal generated
by wrwiy (see Quillen’s paper [9] for the details).
The action of Steenrod squares on w;’s is given by
the Wu formula:

L fj—i—1+t
Z ; Wi—Wjit,

t=0

Sqiwj =

where wg =1 and w; =0 for i ¢ {4,6,7,8,10}. Let
Sq be the total Steenrod square, that is, Sq =
1+Sq" +Sq*> +Sq> +---. Then, we have the fol-
lowing proposition.

Proposition 2.1. In H*(BSpin(10)), we have

Sq(ws) = ws + we + wr + wj,
q(wg) = wg + wr + (wig + wawg) + wawy + wé,
Sq(wr) = wr + wywr + wewy + w%,
Sq(ws) = ws + wig + wyws + (wywig + wews)
+ wrws + wﬁ,
Sq(wi0) = wig + wywg + Wewig + Wswig + Wi

We recall the Chern classes of the representa-
tions A; and A.. According to [8, Theorem 5.11 in
Chapter III], the Chern classes of the representa-

tion A; are given by
(Z = 47 67 77 87 10)7

w?
ci(A)=9 "
0 (i=1,2,3,5,9).

According to [7,p. 159], the Chern classes of the
representation A, are given by

2 1
cs(A4) = w3 + wewig + wy,
c12(Ay) = wyw?, + wewswig + wWiwswyg + wiw?
12 +) = W4Wy 6 W8wWio 4 WeW10 4 Wy

+ w6,
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ca(Ay) = wgw%O + wiw%o + wiwgwgwyy + wgww
+ wéwg + w‘%,

cas(Ay) = w?o + w4w6wfo + U/g'LUg’LUl[) + w%wg,

c16(Ay) = usza,

and ¢;(AL) = 0 for i # 8,12,14,15, 16.
Using the Whitney sum formula

- i: ciek(M)er(AL),

CL(l + Al + A+)

we obtain the following proposition.

Proposition 2.2. The 2-th (i =0,1,2,3,4),
24-th and 27-th Chern classes of the restriction of pg
to Spin(10) are given as follows:

jgpin(lo)cl (pﬁ) =0,
JSpln 10) C2{P6

(p6) =
JSpm 10) cs(ps) = w4,
(p6) =
(p6) =

JSpm(lo)C8 P6) = Wewio + w4,
2
]Spln 10) c16(ps) = uz2 + wg + wewgwio
2
+ w4w6w8w10 + w4w10

2 4 4
+ wjwg + wywswiy,

2 2.2
Jspm(10)c24(l70) = wguz2 + wswm + w6w8w10

4
+ w6w10 + w4w6w8wm + w4w10,

FSpin(10)¢27(p6) = 0.

3. The choice of generators of H*(BEg).
In this section, we fix the algebra generators of
H*(BEg). First, we adopt the generators y4, ys, yr,
Y10, Y13 defined in [5]. Namely, yy is the unique
generator in H*(BEg) = Z/2, and ys, y7, Y10 and ;5
are defined as follows:

(3.1)  y5:=Sqys, yr == Sq' s,

y10 = Sa'ys + yays, 18 = S Y10
In [5, Proposition 6.10], Kono and Mimura showed
that Sq'%y;5 can be taken as an algebra generator of
degree 34. In this paper, we adopt the following
element y34 as a generator in order to simplify our
presentation of the homomorphism jgpin(lO):

(3.2) Y31 = Sq" Y18 + Yey10Y1s + Yayio-

We shall define the generators of degrees 32 and 48.
Since we have jSpln(lO)C4(p6) =w? and H®(BEg) =
Z/2{y2}, we obtain Jspm(lo)y4 wy. Using the
squaring operations, we obtain
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(3.3) JSpini0)(¥1) = wi  for i =4,6,7,10,
jgpin(lo) (ylS) = WsWio,

j§1)111(1o)(y34) = wﬁwm.

Using the Whitney sum formula

— icz-fk(h)%(ﬁﬁv

k=0

Ci(]. + )\1 + A+)

we have
=k _ 4 2 3,2
JSpin(lo)(CIG(PG)) = Uug2 + Wy + WewWywio + Wywig

2 1
+ wywewswio + WyWeWi0

2 4
+ wywg,

which is an indecomposable element. Thus we

obtain the following proposition.
Proposition 3.1 (Toda [10]). The

class c16(pg) is an indecomposable element.
Therefore we can take

Chern

(3.4) ys2 == pg(ci6 + cacra + cics)

as an algebra generator of degree 32.
Furthermore, we define an element 3 as
follows:

(3.5) yus := pj(cas + cro€14 + CoC1s + Cacia + CaCC1s).

One can show that ysg is also an indecomposable
element. According to Adams’ book [1], there
exists an inclusion jg, : ¥4 — Eg. Then the induced
homomorphism j, : H*(BEs) — H*(BFy) is com-
puted in Appendix A. The equations (A.4) show
that the element j}, (yss) is an indecomposable
element in j*F4H*(BE6). Therefore y,5 is also an
indecomposable element as well. By Proposition 2.2,
we have

% 4 2
Jspin(10) (¥32) = us2 + wg + wewgwio,

-j;pin(l(])(y48) = w§u32'
It follows easily from Theorem 1.1 that the
module structure of H*(BFEs) is given as follows:

(3.6) H*(BEg) = Z/2[ys, Y6, Y10, Y18, Y32, Yas]{ 1, Y34}
© Z/2[ys, Y6, Y7, Y32, Yas|{yr}-
Consider the following submodule M; of H*(BEs):
My = Z/2[ys, Y6, Y10, Y32, Yas){1, Yis, Vis, Ysas
Y18Y34, y%gy&;}
© Z/2[ys, Yo, y7, Y32, Yas|{y7}-

Then the following result holds:
Proposition 3.2. The composition of maps
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M, — H*(BEs) — H*(BSpin(10))
s injective.

Proof. We replace the generator g €
H*(BSpin(10)) by j§in(10) (¥s2) which is also denoted
by w32. We define a partial ordering for the
monomial of H*(BSpin(10)) as follows:

ke, k7, ks, kio, k32 I, l7, s, lio, ls2
U’4 W Wy Wg™ Wy Y3y < w4 We Wy Wg WyY39

if and only if kg < Ig.
Then the leading term of

Tspin(10)Y1" Y6 Y10 V1S Y4' Y35 Uis’
for0<mig<3and 0 <ngy <2is
wT wgo wgls+3n34+6n43 w?(l)g+mg+n34 y§§2 ,
and the leading term of
Tspin(10)Y4" Y Y7 Y5 Yas'
is
witwgtwy wgmxyg%z

Since all the leading terms are different, the
proposition is proved. ([l

By (3.3), we see that the element y?s + y%0y34 is
in the kernel of jgpin(m), and we obtain the following
corollary by using the module structure of H*(BEjs).

Corollary 3.3. The kernel of the homomor-
phism jgpm(lo) is the ideal generated by yis + y%0y34.
In particular, fépin(w) 18 injective for x < 54.

Using Corollary 3.3, we can determine the
action of the total Steenrod square on w4, ys, Y7,

Y10, Y18-
Proposition 3.4. In H*(BFEg), we have

Sa(ys) = ya +ys + yr + 45,
Sq(ya) =y + Y7 + (y10 + yays) + yayr + g,
Sa(yr) = yr + vayr + ysyr + 3,
0) = Y10 + Yayio + Yeyio + y1s + y%o,
8) = y1s + Uiy + (Yeyio + Yivis) + Yivio
+ (Yo + Yewss + vavsyio)
+ (Y34 + Yoyro1s + Yayly) + Yis-

Note that, using Corollary 3.3, we can calculate
the action of the total Steenrod square on ys4, ys2
and y4g up to degree = < 54.

4. Chern classes of the 27-dimensional
representation pg. In this section, we compute
the Chern classes of the complex representation
pe : Bg — SU(27). The result is needed in determin-

Sq(
Sq(

N
n
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ing the relation rgs (Proposition 5.1). It is well-
known that H*(BSU(27)) is a polynomial ring in
the wuniversal Chern classes c¢o,c3,...,c07. The
action of Steenrod squares on H*(BSU(27)) is given
by the Wu formula:

(4.1)  Sq¥*e; =0,
i j—i— 14t
Sq? cj = Z ( ¢ )Citcj+t7
=0

where ¢g =1 and ¢; =0 for i ¢ {2,3,...,27}. As an
algebra over the Steenrod algebra, H*(BSU(27)) is
generated by ¢, ¢y, cs, C16.

Proposition 4.1. The 2'-th (i =0,1,2,3,4),
24-th and 27-th Chern classes of the representation
pe are given as follows:

ca(ps) =0,
2(06) =
ca(po) = v,
es(ps) = Ysyio + Ui,
c16(p6) = ys2 + Yiysyis + YiyTo + Yive + Yiveyro,
caa(p6) = yas + Yioyis + YeUis + Yasyiois
+ Yyl + Yivios
c27(p6) = Yis + Yioust-

Proof. Using Corollary 3.3 and Proposition 2.2,
we can compute all the Chern classes except for
car(ps). We have co7(ps) = Sq*(ca6(ps)) by the Wu
formula Sq?ces = ca7 + c1co6 and c1(pg) =0. The
right-hand side can be computed by using
Sq?yss = 0 and Sq’ysy = y3s by the remark below
Proposition 3.4. O

We end this section by computing the action
of Steenrod squares on yso, y4s. By definition, we
have yss = pi(ci + cac1a + cjcs). By computing
ps(Sq(cis + cacia + cieg))  using  Propositions 3.4
and 4.1 and the Wu formula, we have the following
proposition:

Proposition 4.2. In H*(BEg), we have

Sq'ys2 = 0,
Sq*ys2 = 0,
Sq'ys2 = Yis + Ysyios
Says2 = Yayis + Yeysa,
Sa' s = yas + Ylovis + Yguls + Yeyr0vs2
+ YaYeYroyis + Yivis + YiYoysa
+ Yguto + YiYio + Yiys,
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Sq*? Y3 = y2y.

In a similar way, since we have yus = p§(cos +
cloC14 + cgc1g + cgcm + c4c6¢14), we have the follow-
ing proposition by computing p§(Sq(cas + croc14 +
CC18 + 03012 + cacgcia)):

Proposition 4.3. In H*(BFEg), we have

Sq'yus =0,
Sq’yss = 0,
S 4 _ 2 2
q Y48 = Y18Y34 + YeY10Y1s T Y10Y32,
Sq8y4s = yims,
Sq'%yus = y10Yis + Yeyi0Yas + YaYsis + Yioysa
+ YayeyToysa + Yivas,
Sq™yus = ysoyus + ywl/%gyzu + y6y§oyi1]’8
+ YaYeYisYss + YioYisYs2 + YeUiolas
+ yiysywyzxg + y§y10y1sy34 + yiy?oywym
+ y4yﬁy§()y18y32 + yi?ﬁo?ﬂs + yéy%oy%g
2 3 9 2.3 3 4, 3
+ Yy¥s¥i0¥is T Va¥sYis T Ys¥10Yis
+ y4y§y§0934 + ygyioySZ + yiyil()y?)?
+ Y3Yeyas + YiYeyr0vas + ViYsyis
+ YiYeYioyss + YaYioyss + YiYeYioysa-

5. The last relation rgg and the remaining
action of the cohomology operations. First,
we determine the relation rgg = 0. For the sake
of notational simplicity, we write ¢, ¢, for

Sq*28q'°Sq®Sq?, Sq'%Sq®Sq*Sq?, respectively. On
the one hand,

o(y3) = (61(ya))”

and both sides can be computed by using Proposi-
tion 3.4. On the other hand, pj(¢(cs)) can be
computed by Proposition 4.1 and the Wu formula
(4.1). Then, by the naturality of the cohomology
operations ¢(pf(cs)) = pi(¢(cs)), we obtain the
desired relation rgg immediately.

Proposition 5.1. In H*(BEjs), the following
relation holds:

Ysa + Yisys2 + Yloyas + Yey10Y1sysa
+ Yay10Yis + Yayioyss = 0.

In the rest of this section, we compute the
action of Steenrod squares on ysy. We put F :=
pe(ca0 + cacig) + Ysyza. Then, by using Proposi-
tion 4.1, we have
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F = yss + v2yi0uis + vavivis + vout + vduio

+ Yiyeyto + Yiveyis + Yavio + Yive + viysyio-

Note that F' is a polynomial in w4, ys, Y7, Y10, 18-
Hence, we can compute Sq(F') by using Proposi-
tion 3.4. We put

Fy :=Sq(F) + ps(Salcacis + e20)) = Says)Sa(ysa),
Fy :=Sq(ys) + e-
It follows from the module structure (3.6) that the

multiplication by yg is injective in H*(BEg). There-
fore we obtain

Sa(yss) = {F1 + F2Sq(ysa) }/ye-

Using this equality, we can compute Sq'yss for i =
1,2,..., inductively.

Proposition 5.2. In H*(BEg), we have

Sq'yss = 0,

Sq’ys1 = Y,

Sq4y34 = y%oyl&

SA*ys1 = Ysyiss

Sq"yss = yarr0is + Ysyr0yss + ¥ho + YeyTovis

+ YiYeYis + Yaysyio + Yiysa,

Sa™yss = y1syas + Ysays2 + Yayr0y1sYsa-

Thus we have determined the structure of
H*(BEj) as an algebra over the Steenrod algebra.

A. The homomorphism H*(BEg) —
H*(BF,4). In this appendix, we fix the algebra
generators of H*(BF,) which are needed to show
the indecomposability of y,3 € H*(BEs), and calcu-
late the homomorphism jj, : H*(BEgs) — H*(BFy)
induced from the inclusion jg, : Fy — Eg.

The algebra structure of mod 2 cohomology
ring of BFy is well-known, and given as follows (see

[3, Proposition 19.2], [8, Theorem 6.6 in Chapter
VII], [11, Section 2] or [5, (1.12)]):

(A1)  H"(BFi) =Z/2[ys, Y6, Y7, Y16, You)-

In order to fix the algebra generators of H*(BFy),
we consider the representation py: Fy — SO(26)
and the inclusion igpi,s) : Spin(8) < Fj. The maps
pa and igpin(g) induce the homomorphisms in coho-
mology:

Pt H*(BSO(26)) — H'(BFY),
iSpin(s) © 1" (BFy) — H"(BSpin(8)).

The restriction of py to Spin(8) is
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P10 dsping) = 2+ A + Ay + A
where A; : Spin(8) — SO(8) is the standard repre-
sentation and Ay : Spin(8) — SO(8) are the spin
representations.
The mod 2 cohomology of BSpin(8) is
H*(Bspln(8)) = Z/2[’LU4, We, W7, WS, US],

where ug is the 8-th Stiefel-Whitney class ws(A)
of the spin representation A,. The total Stiefel-
Whitney classes of these representations are

w()q) =1+ wy + wg + wy + wg,

w(Ay) =1+ wy + we + wr + us,

w(A_) =1+ wy + wg + wr + (ws + usg).
See [7] for the details.

Using Whitney sum formula, the total Stiefel-

Whitney class of the representation py o igpiys) can
be obtained as follows:

(A.2)

iSpin(syW(pa) = 1+ wy + wg + wr + wi + (w§ + w})
+ (w? + wiwg) + wiwy
+ (w3 + wgus + uj + wywy)
+ (Wi + wyw?) + wiwy
+ (wbwg + w4w§ + wawgug + w4u§)
+ w? + (wﬁwg 4 wewgug + wgug)
+ (w7w§ + wrwgug + w7u§)
+ (wius + wsul).

We will define all the generators of H*(BF,) in
terms of the Stiefel-Whitney classes of the repre-
sentation ps. On the one hand, by (A.2), w;(p4) are
nonzero for ¢ = 4,6, 7. On the other hand, by (A.1),
dim H(BF,) =1 for i = 4,6,7. Therefore, the ele-
ments y; :=w;(ps) (i=4,6,7) can be taken as
algebra generators. We define

Y16 = wig(pa) + Yy,

since igpm(g)(ww(m) +yayl) = wi 4+ wsug +ui s
not in i’épm(8>Z/2[y4,y6,y7]. In a similar way, we
define

Yoq ‘= w24(p4),

since i, ) (W21 (p1)) = wlug + wsu? is not in
igpin(s)Z/Q[y4,y6,y7,ylﬁ}. We remark that g4 and
yoq correspond to the 2-nd and 3-rd elementary
symmetric polynomials of the Stiefel-Whitney
classes wg(A1), ws(A;) and wg(A_) respectively,
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and the generators of H*(BF,) defined as above are
the same as those of [11].

The action of Steenrod squares on H*(BF) can
be calculated from that on H*(BSpin(8)), since the
homomorphism i§ ;. : H*(BFy) — H*(BSpin(8))
is the monomorphism 8see [11, Theorem 2.5]). Thus
we obtain

(A3) w(ps) =1+ ya+ys +yr + i + (U5 + i)
+ (47 + yitys) + yiyr + (yic + yay;)
+ (5 + yay?) + Ysyr + (Yayie + Yoys)
+ Y2 + Yeyi6 + Y7y + You.
Since the restriction of pg to Fj is given by
pe © jr, = 1+ (p1)c
we obtain j, c(ps) = w(ps)®. Then the induced
homomorphism is given as follows:
(A.4) Tk (i) = yi (for i = 4,6,7),
G (i) = 0 (for i = 10,18, 34),
I, (y2i) = 47 (for i = 16, 24).

B. Comparison with Toda’s generators.
Finally, we compare our generators with Toda’s
generators in [10]. Using our generators, Toda’s
generators are given as follows:

(B.1) for i = 4,6,7,10, 18,

T = Yi,
T34 = Y34 + YeY10Y18 + y4y?0,
232 = c16(ps) mod decomp,

Zss = coa(pg) mod decomp.

Note that z34 is the same as the generator sy
defined in [5,Definition 6.11]. Then Toda an-
nounced the following relations without proof:

(B.2)  wrwi, w7w18,  T7T34,
T3y + Tigar + T30 Tas + TeT10T18T 34
There are several choices of generators that satisfy
both (B.1) and (B.2). For example, if we define
T32 = Y32 + YaY10Y18,
Tas = Yas -+ Yay10Yss + YaYeYioyis + Yivios

they satisfy (B.1) and (B.2).
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