Left-orderability for surgeries on twisted torus knots

By Anh Tuan Tran
Department of Mathematical Sciences, University of Texas at Dallas, FO35, 800 West Campbell Road, Richardson, TX 75080-3021, U.S.A.
(Communicated by Kenji Fukaya, m.J.A., Dec. 12, 2018)

Abstract

We show that the fundamental group of the 3 -manifold obtained by $\frac{p}{q}$-surgery along the $(n-2)$-twisted $(3,3 m+2)$-torus knot, with $n, m \geq 1$, is not left-orderable if $\frac{p}{q} \geq 2 n+$ $6 m-3$ and is left-orderable if $\frac{p}{q}$ is sufficiently close to 0 .

Key words: Dehn surgery; left-orderable; L-space; twisted torus knot.

1. Introduction. The motivation of this paper is the L-space conjecture of Boyer, Gordon and Watson [BGW] which states that an irreducible rational homology 3 -sphere is an L-space if and only if its fundamental group is not left-orderable. Here a rational homology 3 -sphere Y is an L-space if its Heegaard Floer homology $\widehat{H F}(Y)$ has rank equal to the order of $H_{1}(Y ; \mathbf{Z})$, and a nontrivial group G is left-orderable if it admits a total ordering $<$ such that $g<h$ implies $f g<f h$ for all elements f, g, h in G.

Many hyperbolic L-spaces can be obtained via Dehn surgery. A knot K in S^{3} is called an L-space knot if it admits a positive Dehn surgery yielding an L-space. For an L-space knot K, Ozsvath and Szabo [OS] proved that the $\frac{p}{q}$-surgery of K is an L-space if and only if $\frac{p}{q} \geq 2 g(\underset{q}{K})-1$, where $g(K)$ is the genus of K. In view of the L-space conjecture, one would expect that the fundamental group of the $\frac{p}{q}$-surgery of an L-space knot K is not left-orderable if and only if $\frac{p}{q} \geq 2 g(K)-1$.

By [BM] among the set of all Montesinos knots, the $(-2,3,2 n+1)$-pretzel knots, with $n \geq 3$, and their mirror images are the only hyperbolic L-space knots. Nie $[\mathrm{Ni}]$ has recently proved that the fundamental group of the 3 -manifold obtained by $\frac{p}{q}$-surgery along the $(-2,3,2 n+1)$-pretzel knot, with $n \geq 3$, is not left-orderable if $\frac{p}{q} \geq 2 n+3$ and is left-orderable if $\frac{p}{q}$ is sufficiently close to 0 . This result extends previous ones by Jun [Ju], Nakae [Na], and Clay and Watson [CW]. Note that the genus of the $(-2,3,2 n+1)$-pretzel knot, with $n \geq 3$, is equal to $n+2$.

[^0]In this paper, we study the left-orderability for surgeries on the twisted torus knots. Some results about non left-orderable surgeries of twisted torus knots were obtained by Clay and Watson [CW], Ichihara and Temma [IT1,IT2], and Christianson, Goluboff, Hamann, and Varadaraj [CGHV]. We will focus our study on the $(n-2)$-twisted $(3,3 m+2)$-torus knots, which are the knots obtained from the $(3,3 m+2)$-torus knot by adding $(n-2)$ full twists along an adjacent pair of strands. For $n, m \geq 1$, these knots are known to be L-space knots, see [Va]. Moreover, the ($n-2$)-twisted $(3,5)$-torus knots are exactly the $(-2,3,2 n+1)$-pretzel knots. Note that the genus of the $(n-2)$-twisted $(3,3 m+2)$-torus knot, with $n, m \geq 1$, is equal to $n+3 m-1$.

The following result generalizes the one in $[\mathrm{Ni}]$.
Theorem 1. Suppose $n, m \geq 1$. Then the fundamental group of the 3-manifold obtained by $\frac{p}{q}$-surgery along the $(n-2)$-twisted $(3,3 m+2)$-torus knot is
(i) not left-orderable if $\frac{p}{q} \geq 2 n+6 m-3$,
(ii) left-orderable if $\frac{p}{q}$ is sufficiently close to 0 .

The rest of this paper is devoted to the proof of Theorem 1. In Section 2 we prove part (i). To do so, we follow the method of Jun [Ju], Nakae [Na] and Nie [Ni] which was developed for studying the non left-orderable surgeries of the $(-2,3,2 n+1)$-pretzel knots. In Section 3 we prove part (ii). To this end, we apply a criterion for the existence of leftorderable surgeries of knots which was first developed by Culler and Dunfield [CD], and then improved by Herald and Zhang [HZ].
2. Non left-orderable surgeries. Let $K_{n, m}$ denote the $(n-2)$-twisted $(3,3 m+2)$-torus knot. By [IT2] (see also [IT1], [CW]), the knot group of
$K_{n, m}$ has a presentation with two generators a, b and one relation

$$
w^{n}(a w)^{m} a^{-1}(a w)^{-m}=(w a)^{-m} a(w a)^{m} w^{n-1}
$$

where a is a meridian. Moreover, the preferred longitude corresponding to $\mu=a$ is
(2.1) $\lambda=a^{-(4 n+9 m-2)}\left[(w a)^{m} w^{n}\right](a w)^{m-1} a\left[w^{n}(a w)^{m}\right]$.

Note that the first homology class of w is twice that of the meridian a.

Remark 2.1. (i) It is known that $K_{n, 1}$ is the pretzel knot of type $(-2,3,2 n+1)$. The above presentation of the knot group of $K_{n, 1}$ was first derived in $[\mathrm{LT}]$ and $[\mathrm{Na}]$.
(ii) The formula (2.1) for the longtitude of $K_{n, m}$ in [IT1], [IT2] contains a small error: $a^{-(4 n+9 m-2)}$ was written as $a^{-(2 n+9 m+2)}$.

Let $M_{\frac{p}{q}}$ be the 3 -manifold obtained by $\frac{p}{q}$-surgery along ${ }^{q}$ the $(n-2)$-twisted $(3,3 m+2)$-torus knot $K_{n, m}$. Then the fundamental group of $M_{\underline{p}}$ has a presentation with two generators a, b and q two relations

$$
\begin{aligned}
w^{n}(a w)^{m} a^{-1}(a w)^{-m} & =(w a)^{-m} a(w a)^{m} w^{n-1} \\
a^{p} \lambda^{q} & =1 .
\end{aligned}
$$

Since $a^{p} \lambda^{q}=1$ in $\pi_{1}(M)$ and $a \lambda=\lambda a$, there exists an element $k \in \pi_{1}(M)$ such that $a=k^{q}$ and $\lambda=k^{-p}$, see e.g. [Na , Lemma 3.1].

Suppose $m, n \geq 1$. Assume the fundamental group of $M_{\frac{p}{q}}$ is left-orderable for some $\frac{p}{q} \geq 2 n+$ $6 m-3$, where $q>0$. Then there exists a monomorphism $\rho: \pi_{1}\left(M_{\underline{p}}\right) \rightarrow \operatorname{Homeo}^{+}(\mathbf{R})$ such that there is no $x \in \mathbf{R}{ }^{q}$ satisfying $\rho(g)(x)=x$ for all $g \in \pi_{1}(M)$, see e.g. [CR, Problem 2.25].

From now on we write $g x$ for $\rho(g)(x)$.
Lemma 2.2. We have $k x \neq x$ for any $x \in \mathbf{R}$.
Proof. Assume $k x=x$ for some $x \in \mathbf{R}$. Then $x=k^{q} x=a x$. If $x=w x$ then $g x=x$ for all $g \in \pi_{1}(M)$, a contradiction. Otherwise, without loss of generality, we assume that $x<w x$. Then we have

$$
\begin{aligned}
x & =a^{(4 n+9 m-2)} k^{-p} x \\
& =a^{(4 n+9 m-2)} \lambda x \\
& =\left[(w a)^{m} w^{n}\right](a w)^{m-1} a\left[w^{n}(a w)^{m}\right] x \\
& >x,
\end{aligned}
$$

which is also a contradiction.
Since $k x \neq x$ for any $x \in \mathbf{R}$ and $k x$ is a continuous function of x, without loss of generality, we may assume $x<k x$ for any $x \in \mathbf{R}$. Then
$x<k^{q} x=a x$.
Lemma 2.3. We have $(a w)^{m} a x<w(a w)^{m} x$ for any $x \in \mathbf{R}$.

Proof. Since

$$
w^{n}(a w)^{m} a^{-1}(a w)^{-m}=(w a)^{-m} a(w a)^{m} w^{n-1}
$$

in $\pi_{1}\left(M_{\frac{p}{q}}\right)$, we have

$$
\begin{aligned}
& w(a w)^{\frac{q}{q}} x \\
&= {\left[(a w)^{m} a(a w)^{-m} w^{-n}(w a)^{-m} a(w a)^{m} w^{n-1}\right] } \\
& \times w(a w)^{m} x \\
&=(a w)^{m} a\left[(w a)^{m} w^{n}(a w)^{m}\right]^{-1} a\left[(w a)^{m} w^{n}(a w)^{m}\right] x .
\end{aligned}
$$

Writing g for $(w a)^{m} w^{n}(a w)^{m}$, we then obtain

$$
w(a w)^{m} x=(a w)^{m} a g^{-1} a g x>(a w)^{m} a x
$$

since $g^{-1} a g x>g^{-1} g x=x$.
Lemma 2.3 implies that $(a w)^{m} x<(a w)^{m} a x<$ $w(a w)^{m} x$. Hence $x<w x$ for any $x \in \mathbf{R}$.

Lemma 2.4. For any $x \in \mathbf{R}$ and $k \geq 1$ we have

$$
\begin{aligned}
& (a w)^{m} a^{k} x<w^{k}(a w)^{m} x \\
& a^{k}(w a)^{m} x<(w a)^{m} w^{k} x .
\end{aligned}
$$

Proof. We prove the lemma by induction on $k \geq 1$. The base case ($k=1$) is Lemma 2.3. Assume $(a w)^{m} a^{k} x<w^{k}(a w)^{m} x$ for any $x \in \mathbf{R}$. Then

$$
\begin{aligned}
(a w)^{m} a^{k+1} x & =(a w)^{m} a^{k}(a x) \\
& <w^{k}(a w)^{m} a x \\
& <w^{k}(w a)^{m} w x \\
& =w^{k+1}(a w)^{m} x .
\end{aligned}
$$

Similarly, assuming $a^{k}(w a)^{m} x<(w a)^{m} w^{k} x$ for any $x \in \mathbf{R}$ then

$$
\begin{aligned}
a^{k+1}(w a)^{m} x & <a(w a)^{m} w^{k} x \\
& =(a w)^{m} a w^{k} x \\
& <w(a w)^{m} w^{k} x \\
& =(w a)^{m} w^{k+1} x .
\end{aligned}
$$

This completes the proof of Lemma 2.4.
Lemma 2.5. With $\frac{p}{q} \geq 2 n+6 m-3$ we have $w x<a x$ for any $x \in \mathbf{R}$.

Proof. With $\frac{p}{q} \geq 2 n+6 m-3$ and $q>0$, we have $-p+(2 n+6 m-3) q \leq 0$. Since $a=k^{q}, \lambda=$ k^{-p} and $x<k x$ for any $x \in \mathbf{R}$, we have

$$
\begin{aligned}
a x & \geq k^{-p+(2 n+6 m-3) q} a x \\
& =a^{2 n+6 m-2} \lambda x
\end{aligned}
$$

$$
=a^{-n}\left[(w a)^{m} w^{n}\right](a w)^{m-1} a\left[w^{n}(a w)^{m}\right] a^{-(n+3 m)} x
$$

Then, by Lemma 2.4, we obtain

$$
\begin{aligned}
a x & >a^{-n}\left[a^{n}(w a)^{m}\right](a w)^{m-1} a\left[(a w)^{m} a^{n}\right] a^{-(n+3 m)} x \\
& =w(a w)^{m-1} a(a w)^{m-1} a(a w)^{m} a^{-3 m} x \\
& >w a^{m-1} a a^{m-1} a a^{m} a^{-3 m} x \\
& =w x
\end{aligned}
$$

Here, in the last inequality, we use the fact that $x<w x$ for any $x \in \mathbf{R}$.

With $\frac{p}{q} \geq 2 n+6 m-3$, by Lemmas 2.4 and 2.5 we have

$$
\begin{aligned}
(a w)^{m} x & =\left[(a w)^{m} a\right] a^{-1} x \\
& <\left[w(a w)^{m}\right] a^{-1} x=(w a)^{m} w\left(a^{-1} x\right) \\
& <(w a)^{m} a\left(a^{-1} x\right)=a^{-1}\left[(a w)^{m} a\right] x \\
& <a^{-1}\left[w(a w)^{m}\right] x=a^{-1} w\left[(a w)^{m} x\right] \\
& <a^{-1} a\left[(a w)^{m} x\right]=(a w)^{m} x,
\end{aligned}
$$

a contradiction. This proves Theorem 1(i).
3. Left-orderable surgeries. To prove Theorem 1(ii) we apply the following result. It was first stated and proved by Culler and Dunfield [CD] under an additional condition on K.

Theorem 3.1 ([HZ]). For a knot K in S^{3}, if its Alexander polynomial $\Delta_{K}(t)$ has a simple root on the unit circle, then the fundamental group of the manifold obtained by $\frac{p}{q}$-surgery along K is leftorderable if $\frac{p}{q}$ is sufficiently close to 0 .

In view of Theorem 3.1, to prove Theorem 1(ii) it suffices to show that the Alexander polynomial of the twisted torus knot $K_{n, m}$ has a simple root on the unit circle. The rest of the paper is devoted to the proof of this fact. We start with a formula for the Alexander polynomial of a knot via Fox's free calculus.
3.1. The Alexander polynomial. Let K be a knot in S^{3} and $E_{K}=S^{3} \backslash K$ its complement. We choose a deficiency one presentation for the knot group of K :

$$
\pi_{1}\left(E_{K}\right)=\left\langle a_{1}, \ldots, a_{l} \mid r_{1}, \ldots, r_{l-1}\right\rangle
$$

Note that this does not need to be a Wirtinger presentation. Consider the abelianization

$$
\alpha: \pi_{1}\left(E_{K}\right) \rightarrow H_{1}\left(E_{K} ; \mathbf{Z}\right) \cong \mathbf{Z}=\langle t\rangle
$$

The map α naturally induces a ring homomorphism $\tilde{\alpha}: \mathbf{Z}\left[\pi_{1}\left(E_{K}\right)\right] \rightarrow \mathbf{Z}\left[t^{ \pm 1}\right]$, where $\mathbf{Z}\left[\pi_{1}\left(E_{K}\right)\right]$ is the group ring of $\pi_{1}\left(E_{K}\right)$. Consider the $(l-1) \times l$
matrix A whose (i, j)-entry is $\tilde{\alpha}\left(\frac{\partial r_{i}}{\partial a_{j}}\right) \in \mathbf{Z}\left[t^{ \pm 1}\right]$, where $\frac{\partial}{\partial a}$ denotes the Fox's free differential. For $1 \leq j \leq l$, denote by A_{j} the $(l-1) \times(l-1)$ matrix obtained from A by removing the j th column. Then it is known that the rational function

$$
\frac{\operatorname{det} A_{j}}{\operatorname{det} \tilde{\alpha}\left(a_{j}-1\right)}
$$

is an invariant of K, see e.g. [Wa]. It is well-defined up to a factor $\pm t^{k}(k \in \mathbf{Z})$ and is related to the Alexander polynomial $\Delta_{K}(t)$ of K by the following formula

$$
\frac{\operatorname{det} A_{j}}{\operatorname{det} \tilde{\alpha}\left(a_{j}-1\right)}=\frac{\Delta_{K}(t)}{t-1}
$$

3.2. Proof of Theorem 1(ii). Let

$$
\begin{aligned}
& r_{1}=w^{n}(a w)^{m} a^{-1}(a w)^{-m}, \\
& r_{2}=(w a)^{-m} a(w a)^{m} w^{n-1} .
\end{aligned}
$$

Then we can write $\pi_{1}\left(E_{K_{n, m}}\right)=\left\langle a, w \mid r_{1} r_{2}^{-1}=1\right\rangle$. In $\pi_{1}\left(E_{K_{n, m}}\right)$ we have

$$
\begin{aligned}
\frac{\partial r_{1} r_{2}^{-1}}{\partial a} & =\frac{\partial r_{1}}{\partial a}+r_{1} \frac{\partial r_{2}^{-1}}{\partial a} \\
& =\frac{\partial r_{1}}{\partial a}-r_{1} r_{2}^{-1} \frac{\partial r_{2}}{\partial a} \\
& =\frac{\partial r_{1}}{\partial a}-\frac{\partial r_{2}}{\partial a} .
\end{aligned}
$$

Let $\delta_{k}(g)=1+g+\cdots+g^{k}$. Then

$$
\begin{aligned}
& \frac{\partial r_{1} r_{2}^{-1}}{\partial a} \\
& \quad=w^{n}\left[\delta_{m-1}(a w)-(a w)^{m} a^{-1}(a w)^{-m}\right. \\
& \left.\quad \times\left(\delta_{m-1}(a w)+(a w)^{m}\right)\right] \\
& \quad-\left[-(w a)^{-m} \delta_{m-1}(w a) w+(w a)^{-m}\right. \\
& \left.\quad \times\left(1+a \delta_{m-1}(w a) w\right)\right] \\
& = \\
& \quad-w^{n}(a w)^{m} a^{-1}\left[1-(a-1)(a w)^{-m} \delta_{m-1}(a w)\right] \\
& \quad-(w a)^{-m}\left[1+(a-1) w \delta_{m-1}(a w)\right]
\end{aligned}
$$

The Alexander polynomial $\Delta_{K_{n, m}}(t)$ of $K_{n, m}$ satisfies

$$
\frac{\Delta_{K_{n, m}}(t)}{t-1}=\frac{\tilde{\alpha}\left(\frac{\partial r_{1} r_{2}^{-1}}{\partial a}\right)}{\tilde{\alpha}(w)-1}
$$

Hence, since $\tilde{\alpha}(a)=t$ and $\tilde{\alpha}(w)=t^{2}$, we have

$$
\begin{aligned}
& -(t+1) \Delta_{K_{n, m}}(t) \\
& \quad=t^{2 n+3 m-1}\left[1-(t-1) t^{-3 m} \delta_{m-1}\left(t^{3}\right)\right] \\
& \quad+t^{-3 m}\left[1+(t-1) t^{2} \delta_{m-1}\left(t^{3}\right)\right]
\end{aligned}
$$

$$
\begin{gathered}
=t^{2 n+3 m-1}+t^{-3 m}-\left(t^{2 n-1}-t^{2-3 m}\right)(t-1) \delta_{m-1}\left(t^{3}\right) \\
=t^{2 n+3 m-1}+t^{-3 m}-\left(t^{2 n-1}-t^{2-3 m}\right) \frac{t^{3 m}-1}{t^{2}+t+1} \\
=t^{-3 m} \frac{1+t+t^{3 m+2}+t^{2 n+3 m-1}+t^{2 n+6 m}+t^{2 n+6 m+1}}{t^{2}+t+1} \\
\text { Let } \\
t^{n+3 m-1 / 2}+t^{-(n+3 m-1 / 2)}+t^{n+3 / 2}+t^{-(n-3 / 2)} . \text { Then } \\
\Delta_{K_{n, m}}(t)=-\frac{t^{n-1} f(t)}{\left(t^{1 / 2}+t^{-1 / 2}\right)\left(t+t^{-1}+1\right)}
\end{gathered}
$$

Hence $\Delta_{K_{n, m}}\left(e^{i \theta}\right)=-\frac{e^{i(n-1) \theta} f\left(e^{i \theta}\right)}{2 \cos (\theta / 2)(2 \cos \theta+1)}$.
Let $g(\theta)=f\left(e^{i \theta}\right) / 2$. To show that $\Delta_{K_{n, m}}(t)$ has a simple root on the unit circle, it suffices to show that $g(\theta)$ has a simple root on $(0,2 \pi / 3)$. We have

$$
\begin{aligned}
g(\theta)= & \cos (n+3 m+1 / 2) \theta+\cos (n+3 m-1 / 2) \theta \\
& +\cos (n-3 / 2) \theta \\
= & 2 \cos (\theta / 2) \cos (n+3 m) \theta+\cos (n-3 / 2) \theta
\end{aligned}
$$

If $n=1$ then $g(\theta)=\cos (\theta / 2)(2 \cos (n+3 m) \theta+$ 1). It is clear that $\theta=\frac{2 \pi / 3}{n+3 m}$ is a simple root of $g(\theta)$ on $(0, \pi / 6]$.

Suppose $n \geq 2$. We claim that $g(\theta)$ has a simple root on $\left(\theta_{0}, \theta_{1}\right)$ where $\theta_{0}=\frac{\pi / 2}{n+3 m}$ and $\theta_{1}=\frac{\pi / 2}{n+3 m / 2-3 / 4}$. Note that $0<\theta_{0}<\theta_{1} \leq \frac{\pi / 2}{7 / 4}=\frac{2 \pi}{7}$. We have

$$
g\left(\theta_{0}\right)=\cos (n-3 / 2) \theta_{0}=\cos \left(\frac{\pi}{2} \frac{n-3 / 2}{n+3 m}\right)>0
$$

since $0<\frac{\pi}{2} \frac{n-3 / 2}{n+3 m}<\frac{\pi}{2}$.
At $\theta=\theta_{1}=\frac{\pi / 2}{n+3 m / 2-3 / 4}$ we have

$$
\begin{aligned}
& \cos (n+3 m) \theta+\cos (n-3 / 2) \theta \\
& \quad=2 \cos (n+3 m / 2-3 / 4) \theta \cos (3 m / 2+3 / 4) \theta \\
& \quad=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
g\left(\theta_{1}\right) & =\left(1-2 \cos \left(\theta_{1} / 2\right)\right) \cos (n-3 / 2) \theta_{1} \\
& =\left(1-2 \cos \left(\theta_{1} / 2\right)\right) \cos \left(\frac{\pi}{2} \frac{n-3 / 2}{n+3 m / 2-3 / 4}\right) \\
& <0
\end{aligned}
$$

since $1-2 \cos \left(\theta_{1} / 2\right)<0<\cos \left(\frac{\pi}{2} \frac{n-3 / 2}{n+3 m / 2-3 / 4}\right)$.
We show that $g(\theta)$ is a strictly decreasing function on $\left(\theta_{0}, \theta_{1}\right)$. Indeed, we have

$$
\begin{aligned}
-g^{\prime}(\theta)= & \sin (\theta / 2) \cos (n+3 m) \theta \\
& +2(n+3 m) \cos (\theta / 2) \sin (n+3 m) \theta \\
& +(n-3 / 2) \sin (n-3 / 2) \theta
\end{aligned}
$$

Since

$$
0<(n-3 / 2) \theta<\frac{\pi}{2} \frac{n-3 / 2}{n+3 m / 2-3 / 4}<\frac{\pi}{2}
$$

we have $(n-3 / 2) \sin (n-3 / 2) \theta>0$. Since $\frac{\pi / 2}{n+3 m}<$ $\theta<\frac{\pi / 2}{n+3 m / 2-3 / 4}$ we have

$$
\pi / 2<(n+3 m) \theta<\frac{\pi}{2} \frac{n+3 m}{n+3 m / 2-3 / 4}<\pi
$$

which implies that $\cos (n+3 m) \theta<0<\sin (n+$ $3 m) \theta$. Hence

$$
\begin{aligned}
-g^{\prime}(\theta)> & \sin (\theta / 2) \cos (n+3 m) \theta \\
& +\cos (\theta / 2) \sin (n+3 m) \theta \\
= & \sin (n+3 m+1 / 2) \theta
\end{aligned}
$$

Since $0<(n+3 m+1 / 2) \theta<\frac{\pi}{2} \frac{n+3 m+1 / 2}{n+3 m / 2-3 / 4} \leq \pi$, we have $\sin (n+3 m+1 / 2) \theta \geq 0$. Hence $-g^{\prime}(\theta)>0$ on $\left(\theta_{0}, \theta_{1}\right)$. This, together with $g\left(\theta_{0}\right)>0>g\left(\theta_{1}\right)$, implies that $g(\theta)$ has a simple root on $\left(\theta_{0}, \theta_{1}\right)$. The proof of Theorem 1 (ii) is complete.

Acknowledgements. The author has been partially supported by a grant from the Simons Foundation (\#354595 to AT). He would like to thank Prof. K. Ichihara for helpful discussions.

References

[BGW] S. Boyer, C. McA. Gordon and L. Watson, On L-spaces and left-orderable fundamental groups, Math. Ann. 356 (2013), no. 4, 1213-1245.
[BM] K. L. Baker and A. H. Moore, Montesinos knots, Hopf plumbings, and L-space surgeries, J. Math. Soc. Japan 70 (2018), no. 1, 95-110.
[CD] M. Culler and N. M. Dunfield, Orderability and Dehn filling, Geom. Topol. 22 (2018), no. 3, 1405-1457.
[CGHV] K. Christianson, J. Goluboff, L. Hamann, and S. Varadaraj, Non-left-orderable surgeries on twisted torus knots, Proc. Amer. Math. Soc. 144 (2016), no. 6, 2683-2696.
[CR] A. Clay and D. Rolfsen, Ordered groups and topology, Graduate Studies in Mathematics, 176, American Mathematical Society, Providence, RI, 2016.
[CW] A. Clay and L. Watson, Left-orderable fundamental groups and Dehn surgery, Int. Math. Res. Not. IMRN 2013, no. 12, 2862-2890.
[HZ] C. Herald and X. Zhang, A note on orderability and Dehn filling, arXiv:1807.00742.
[IT1] K. Ichihara and Y. Temma, Non-left-orderable surgeries and generalized BaumslagSolitar relators, J. Knot Theory Ramifications 24 (2015), no. 1, 1550003, 8 pp.
[IT2] K. Ichihara and Y. Temma, Non-left-orderable surgeries on negatively twisted torus
knots, Proc. Japan Acad. Ser. A Math. Sci. 94 (2018), no. 5, 49-52.
[Ju] J. Jun, ($-2,3,7$)-pretzel knot and Reebless foliation, Topology Appl. 145 (2004), no. 13, 209-232.
[LT] T. T. Q. Le and A. T. Tran, On the AJ conjecture for knots, Indiana Univ. Math. J. 64 (2015), no. 4, 1103-1151.
[Na] Y. Nakae, A good presentation of $(-2,3,2 s+1)$-type pretzel knot group and R-covered foliation, J. Knot Theory Ramifications 22 (2013), no. 1, 1250143, 23 pp.
[Ni] Z. Nie, Left-orderablity for surgeries on $(-2,3,2 s+1)$-pretzel knots, arXiv: 1803.00076.
[OS] P. S. Ozsváth and Z. Szabó, Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011), no. 1, 1-68.
Va $]$ F. Vafaee, On the knot Floer homology of twisted torus knots, Int. Math. Res. Not. IMRN 2015, no. 15, 6516-6537.
[Wa] M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), no. 2, 241-256.

[^0]: 2010 Mathematics Subject Classification. Primary 57M27; Secondary 57M05, 57M25.

