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Abstract: We show the existence and uniqueness for self-similar measures for iterated

function systems driven by weak contractions. Our main idea is using the duality theorem

of Kantorovich-Rubinstein and equivalent conditions for weak contractions established by

Jachymski. We also show collage theorems for such iterated function systems.

Key words: Self-similar measures; iterated function systems; weak contractions;
Kantorovich-Rubinstein duality theorem.

1. Introduction and main result.

Hutchinson [Hu81] showed the following result:

Let N � 2. Let X be a complete metric space. Let

p1; . . . ; pN 2 ð0; 1Þ such that
PN

i¼1 pi ¼ 1. Let f1; . . . ;
fN be contractions on X. Then, there exist a unique

compact set K and a unique probability measure �

on K such that K ¼ [Ni¼1fiðKÞ and

�ðAÞ ¼
XN
i¼1

pi�ðf�1
i ðAÞÞ

for any Borel subset A of K.

In this paper we consider the case that

f1; . . . ; fN are weak contractions. Iterated function

systems driven by weak contractions are considered

in [AF04, Ha85-1, Ha85-2, L04], for example. There

are several different definitions of weak contrac-

tions, here we adopt the following definition.

Definition 1.1 (Weak contractions in the

sense of Browder [Br68], cf. [J97]). Let ðX; dÞ be

a metric space and f : X ! X be a map. Then, we

say that f is a weak contraction in the sense of

Browder if there exists an increasing right-contin-

uous function � : ½0;þ1Þ ! ½0;þ1Þ such that

�ðtÞ < t; t > 0;

dðfðxÞ; fðyÞÞ � �ðdðx; yÞÞ; x; y 2 X:
Hata [Ha85-1, Ha85-2] extended the result

of [Hu81] and showed that if each fi is a weak

contradiction on X, then there exists a unique

compact subset K of X such that K ¼ [Ni¼1fiðKÞ.
Hata’s definition is different from the Browder’s

one, but it follows that they are equivalent.

In this paper we show that

Theorem 1.2. Let ðX; dÞ be a complete met-

ric space and f1; . . . ; fN be weak contractions. Let

K be the unique compact subset of X such that

K ¼ [Ni¼1fiðKÞ. Let p1; . . . ; pN 2 ð0; 1Þ such thatPN
i¼1 pi ¼ 1. Then, there exists a unique probability

measure � on K such that

�ðAÞ ¼
XN
i¼1

pi�ðf�1
i ðAÞÞð1Þ

for any Borel subset A of K.
Barnsley [Ba05, Ba06] considered an inhomo-

geneous version of this result, specifically, he

showed that there exists a unique Borel probability

measure � on a topological space X such that

�ðAÞ ¼ p�0ðAÞ þ
XN
i¼1

pi�ðf�1
i ðAÞÞ;

8A: Borel subset of X;

where each fi is a continuous transformation on X,

pþ
PN

i¼1 pi ¼ 1, p > 0, pi � 0 for each i, and, �0 is

a probability measure on X. This framework is

general, however, the assumption that p > 0 is

essential.

Our second result is a collage theorem.

Theorem 1.3. Let ðX; dÞ be a complete met-

ric space and f1; . . . ; fN be weak contractions. Let K

be the unique compact subset of X such that K ¼
[Ni¼1fiðKÞ. Let dHaus be the Hausdorff distance

between compact subsets of X. Then, for any M >

� > 0, there exists � > 0 such that if a compact subset

L of X satisfies that
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dHausðL;[Ni¼1fiðLÞÞ � �;ð2Þ

and

dHausðK;LÞ �M;ð3Þ

then,

dHausðK;LÞ � �:

If f1; . . . ; fN are contractions, then, the collage

theorem is shown by [BEHL86]. Since we add (3),

the above result is not an extension of [BEHL86].

However, we believe that (3) is not a large con-

straint. If ðX; dÞ is compact, there existsM such that

(3) is satisfied for any compact subset L of X.

Finally we state a collage theorem for proba-

bility measures. Let ðX; dÞ be a complete metric

space and f1; . . . ; fN be weak contractions. Let K be

the unique compact subset of X such that K ¼
[Ni¼1fiðKÞ. Let PðKÞ be the set of probability

measures on K. For f : K ! R, let LipðfÞ be the

Lipschitz constant for f . For �; � 2 PðKÞ, let

Dð�; �Þ :¼ sup

Z
K

fd��
Z
K

fd� : LipðfÞ � 1

� �
:

This is called the Monge-Kantorovich metric.

ðPðKÞ; DÞ is a compact metric space. See [Ba06,

Theorem 2.4.15 and Definition 2.4.16] for details.

Theorem 1.4. Let ðX; dÞ be a complete met-

ric space and f1; . . . ; fN be weak contractions. Let K

be the unique compact subset of X such that

K ¼ [Ni¼1fiðKÞ and � be the solution for (1). Let

p1; . . . ; pN 2 ð0; 1Þ such that
PN

i¼1 pi ¼ 1. Then, for

any � > 0, there exists � > 0 such that if a probability

measure � on K satisfies that

D �;
XN
i¼1

pi� � f�1
i

 !
� �;ð4Þ

then,

Dð�; �Þ � �:

Before we proceed to proof, we give an

example.

Example 1.5. Let X ¼ ½0; 1�, N ¼ 2, p1 ¼
p2 ¼ 1=2, f1ðxÞ ¼ x=ðxþ 1Þ, and f2ðxÞ ¼ 1=ð2� xÞ.
Then, the distribution function of the solution �

of (1) is the Minkowski question-mark function

[M1905]. In this particular case, it is shown in

Kesseböhmer-Stratmann [KeSt08] that the

Hausdorff dimension for � is strictly smaller than

one.

2. Proofs.

Definition 2.1 (Hata’s definition of weak

contractions [Ha85-2, Definition 2.1]). Let ðX; dÞ
be a metric space and f : X ! X be a map. Then,

we say that f is a weak contraction in the sense of

Hata if for any t > 0

lim
s!t;s>t

sup
x;y2X;dðx;yÞ�s

dðfðxÞ; fðyÞÞ < t:

Lemma 2.2 (Cf. [J97, Theorem 1]). Let

ðX; dÞ be a metric space and f : X ! X be a map.

Then, f is a weak contraction in the sense of Hata if

and only if f is a weak contraction in the sense of

Browder.

Proof. If f is a weak contraction in the sense of

Browder, that is, [J97, Condition (a) of Theorem 1]

holds, then it is obvious that f is a weak contraction

in the sense of Hata. Conversely, assume that f is

a weak contraction in the sense of Hata. Then,

[J97, Condition (f) of Theorem 1] holds for

�ðsÞ :¼ sup
dðx;yÞ�s

dðfðxÞ; fðyÞÞ; s � 0:

Then, by [J97, Theorem 1], f is a weak contraction

in the sense of Browder. �

[W91, Proposition A4.5] also discusses several

conditions for Hata’s definition of weak contrac-

tions.

Now we proceed to the proof of Theorem 1.2.

If f : X ! X is a weak contraction and not a

contraction on a metric space X, then, Lipðg � fÞ ¼
LipðgÞmay occur for a function g on X, and it would

be difficult to give an upper bound for

sup

Z
X

g � fd��
Z
X

g � fd� : LipðgÞ � 1

� �
;

�; � 2 PðXÞ:

Therefore, it seems that the proof of [Hu81] does not

work well in a direct manner. Our idea is that we

first show the metric D is identical with the first

Wasserstein metric on PðKÞ thanks to the duality

theorem of Kantorovich-Rubinstein [KR58] (see

also Villani’s book [V09, Particular Case 5.16]),

and then use several definitions for weak contrac-

tions which are equivalent to Browder’s definition.

Their equivalences are established by [J97, Theo-

rem 1].

Proof. By the fixed point theorem of Browder,

it suffices to show that for any t > 0,

lim
s!t;s>t

sup
Dð�;�Þ�s

D
XN
i¼1

pi� � f�1
i ;
XN
i¼1

pi� � f�1
i

 !
< t:
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Since

D
XN
i¼1

pi� � f�1
i ;
XN
i¼1

pi� � f�1
i

 !

�
XN
i¼1

piDð� � f�1
i ; � � f�1

i Þ;

it suffices to show that for each i,

lim
s!t;s>t

sup
Dð�;�Þ�s

D � � f�1
i ; � � f�1

i

� �
< t:ð5Þ

For �; � 2 PðKÞ, let �ð�; �Þ be the set of

probability measures on X �X whose marginal

distributions to the first and second coordinates

are � and � respectively. By the duality theorem

of [KR58],

Dð�; �Þ ¼ inf

Z
K

Z
K

dðx; yÞ�ðdxdyÞ : � 2 �ð�; �Þ
� �

:

If � 2 �ð�; �Þ, then, � � ðfi; fiÞ�1 2 �ð� � f�1
i ;

� � f�1
i Þ. Hence, for any � 2 �ð�; �Þ,

Dð� � f�1
i ; � � f�1

i Þ �
Z
K

Z
K

dðfiðxÞ; fiðyÞÞ�ðdxdyÞ:

Since fi is a weak contraction, by the condition

of Krasnoselskii-Stetsenko [KrSt69], whose equiv-

alence with Browder’s definition is established by

Jachymski [J97, Theorem 1 (d)], there exists a con-

tinuous function  i : ½0;þ1Þ ! ½0;þ1Þ such that

 iðtÞ > 0 if t > 0, and,

dðfiðxÞ; fiðyÞÞ � dðx; yÞ �  iðdðx; yÞÞ; x; y 2 K:ð6Þ

We show that a contradiction occurs if we take a

sufficiently small � > 0.

Since K is compact, there exists M such that

supx;y2K dðx; yÞ �M. Take sufficiently small � 2
ð0; 1Þ so that 4�t �M. Then,

Dð�; �Þ

�
Z
dðx;yÞ��t

dðx; yÞ�ðdxdyÞ þ
Z
dðx;yÞ>�t

dðx; yÞ�ðdxdyÞ

� ð�tÞ�ðfðx; yÞ 2 K2 : dðx; yÞ � �tgÞ
þM�ðfðx; yÞ 2 K2 : dðx; yÞ > �tgÞ:

Hence,

�ðfðx; yÞ 2 K2 : dðx; yÞ > �tgÞ �
Dð�; �Þ � �t

M
:

Since  i is positive and continuous,

inf
M�u>�t

 iðuÞ > 0:

Therefore,Z
K�K

 iðdðx; yÞÞ�ðdxdyÞ

�
ðDð�; �Þ � �tÞþ

M
inf

M�u>�t
 iðuÞ

�
Dð�; �Þ � �t

M
inf

M�u>�t
 iðuÞ:

Hence,

Dð� � f�1
i ; � � f�1

i Þ

�
Z
K�K

dðfiðxÞ; fiðyÞÞ�ðdxdyÞ

�
Z
dðx; yÞ�ðdxdyÞ �

Dð�; �Þ � �t
M

inf
M�u>�t

 iðuÞ:

By taking infimum with respect to �,

Dð� � f�1
i ; � � f�1

i Þð7Þ

� 1� infM�u>�t  iðuÞ
M

� �
Dð�; �Þ

þ �t

M
inf

M�u>�t
 iðuÞ:

By (6),  iðuÞ � u for any u �M, and hence,

inf
M�u>�t

 iðuÞ < M:

Hence,

sup
Dð�;�Þ�s

Dð� � f�1
i ; � � f�1

i Þ

� 1�
infM�u>�t  iðuÞ

M

� �
sþ �t

M
inf

M�u>�t
 iðuÞ:

Hence,

lim
s!t;s>t

sup
Dð�;�Þ�s

Dð� � f�1
i ; � � f�1

i Þ

� 1�
infM�u>�t  iðuÞ

M

� �
tþ

�t

M
inf

M�u>�t
 iðuÞ

¼ t 1� ð1� �Þ infM�u>�t  iðuÞ
M

� �
< t:

Thus (5) follows. �

Now we show the collage theorem.

Proof of Theorem 1.3. Assume that there exist

M > � > 0 such that for any � > 0 there exists a

compact subset L of X satisfying (2), (3) and

dHausðK;LÞ > �:ð8Þ

Since K ¼ [Ni¼1fiðKÞ,
dHausðK;LÞ � dHausðL;[Ni¼1fiðLÞÞ

þ dHausð[Ni¼1fiðKÞ;[Ni¼1fiðLÞÞ
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Hence,

dHausðK;LÞ � � < dHausð[Ni¼1fiðKÞ;[Ni¼1fiðLÞÞð9Þ
� max

1�i�N
dHausðfiðKÞ; fiðLÞÞ:

Since fi is a weak contraction, there exists a

continuous function  i : ½0;þ1Þ ! ½0;þ1Þ such

that  iðtÞ > 0 if t > 0, and, (6) holds. It follows that

dHausðfiðKÞ; fiðLÞÞ
� maxfdðfiðxÞ; fiðyÞÞ : x 2 K; y 2 L; dðx; yÞ
� dHausðK;LÞg

� maxfdðx; yÞ �  iðdðx; yÞÞ : dðx; yÞ
� dHausðK;LÞg:

Since  iðtÞ � 0 for any t � 0,

maxfdðx; yÞ �  iðdðx; yÞÞ : dðx; yÞ � dHausðK;LÞg

� max

�
�

2
;max

�
dðx; yÞ �  iðdðx; yÞÞ :

�

2
� dðx; yÞ

� dHausðK;LÞ
��

:

By (3),

maxfdðx; yÞ �  iðdðx; yÞÞ : �=2

� dðx; yÞ � dHausðK;LÞg
� dHausðK;LÞ � inf

s2½�=2;M�
 iðsÞ:

By this and (9),

dHausðK;LÞ � �

< max �=2; dHausðK;LÞ � min
1�i�N

inf
s2½�=2;M�

 iðsÞ
� �

:

We remark that by the continuity and pos-

itivity for  i,

inf
s2½�=2;M�

 iðsÞ > 0:

Hence if we take

� < min �=4; min
1�i�N

inf
s2½�=2;M�

 iðsÞ
� �

and an associated L, then, by (8), a contradiction

occurs. �

Remark 2.3. (i) We are not sure whether

we can drop (3) or not. It is added because we do

not know about the long-time behavior of  iðtÞ
appearing in the above proof. If limt!1  iðtÞ > 0,

we can remove (3). If fi is contractive, then, we can

take  iðtÞ :¼ ð1� LipðfiÞÞt.
(ii) [AF04, Proposition 4.3] considers a weak con-

tractivity for the Barnsley-Hutchinson operator.

However, their definition of weak contractions

[AF04, Definition 3.1], which is also adopted

by [R01], is stronger than the one we adopt. If

[AF04, Definition 3.1] is adopted, we can drop (3).

Finally we show Theorem 1.4.

Proof. The outline is the same as in the proof

of Theorem 1.3, so we give a sketch only. Assume

that there exists � > 0 such that for any � 2 ð0; �Þ
there exists a probability measure � on K satisfying

(4), and

Dð�; �Þ > �:ð10Þ

We have that for some i,

Dð�; �Þ � � � Dð� � f�1
i ; � � f�1

i Þ:ð11Þ

Let M such that supx;y2K dðx; yÞ �M. Then, we

can show that by replacing �t with Dð�; �Þ=4 in the

proof of Theorem 1.2, and by recalling (7),

Dð� � f�1
i ; � � f�1

i Þ

� 1�
3 infM�u>Dð�;�Þ=4  iðuÞ

4M

� �
Dð�; �Þ:

By this, (10) and (11),

� �
3 infM�u>Dð�;�Þ=4  iðuÞ

4M
Dð�; �Þð12Þ

�
3� infM�u>�=4  iðuÞ

4M
:ð13Þ

Hence a contradiction occurs if

0 < � <
3�min1�i�N infM�u>�=4  iðuÞ

4M
:

�
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