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Abstract:

We show the existence and uniqueness for self-similar measures for iterated

function systems driven by weak contractions. Our main idea is using the duality theorem
of Kantorovich-Rubinstein and equivalent conditions for weak contractions established by
Jachymski. We also show collage theorems for such iterated function systems.

Key words: Self-similar measures;
Kantorovich-Rubinstein duality theorem.

1. Introduction and main  result.
Hutchinson [Hu81] showed the following result:
Let N > 2. Let X be a complete metric space. Let
p1,---,pn € (0,1) such that Zf\ilpi =1.Let fi,...,
fn be contractions on X. Then, there exist a unique
compact set K and a unique probability measure p
on K such that K = UY | f;(K) and

u(A) = Zpiu(ffl(A))

for any Borel subset A of K.

In this paper we consider the case that
fi,..., fn are weak contractions. Iterated function
systems driven by weak contractions are considered
in [AF04, Ha85-1, Ha85-2, L.04], for example. There
are several different definitions of weak contrac-
tions, here we adopt the following definition.

Definition 1.1 (Weak contractions in the
sense of Browder [Br68], cf. [J97]). Let (X,d) be
a metric space and f: X — X be a map. Then, we
say that f is a weak contraction in the sense of
Browder if there exists an increasing right-contin-
uous function ¢ : [0, +00) — [0, +00) such that

o(t)<t, t>0,

d(f(x), f(y)) < o(d(z,y)),

Hata [Ha85-1,Ha85-2] extended the result

of [Hu81] and showed that if each f; is a weak
contradiction on X, then there exists a unique
compact subset K of X such that K = UY | fi(K).
Hata’s definition is different from the Browder’s

z,y € X.
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iterated function

systems; weak contractions;

one, but it follows that they are equivalent.

In this paper we show that

Theorem 1.2. Let (X,d) be a complete met-
ric space and fi,..., fnv be weak contractions. Let
K be the unique compact subset of X such that
K=UYN,fi(K). Let pi,...,py € (0,1) such that
Zfil p; = 1. Then, there exists a unique probability
measure i on K such that

o p(A) = > (7 (4)

for any Borel subset A of K.

Barnsley [Ba05,Ba06] considered an inhomo-
geneous version of this result, specifically, he
showed that there exists a unique Borel probability
measure p on a topological space X such that

N
p(A) = puo(A) + Y _pin(f; ' (A)),

VA: Borel subset of X,

where each f; is a continuous transformation on X,
p+2£\;1p¢ =1, p>0, p; >0 for each 4, and, puy is
a probability measure on X. This framework is
general, however, the assumption that p >0 is
essential.

Our second result is a collage theorem.

Theorem 1.3. Let (X,d) be a complete met-
ric space and fi, ..., fx be weak contractions. Let K
be the unique compact subset of X such that K =
Ufilfi(K). Let dpa.s be the Hausdorff distance
between compact subsets of X. Then, for any M >
€ > 0, there exists § > 0 such that if a compact subset
L of X satisfies that
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2. Proofs.

2 ditans (L, UY, fi(L)) < 6,

@ aus (L, Uima fi(D)) < Definition 2.1 (Hata’s definition of weak

and contractions [Ha85-2, Definition 2.1]). Let (X,d)

(3) diras (K, L) < M, be a metric spface and f: X — X be.a map. Then,
we say that f is a weak contraction in the sense of

then, Hata if for any t > 0

dHaus(Ka L) <e

If f1,..., fy are contractions, then, the collage
theorem is shown by [BEHLS86]. Since we add (3),
the above result is not an extension of [BEHLS&6].
However, we believe that (3) is not a large con-
straint. If (X, d) is compact, there exists M such that
(3) is satisfied for any compact subset L of X.

Finally we state a collage theorem for proba-
bility measures. Let (X,d) be a complete metric
space and f1, ..., fy be weak contractions. Let K be
the unique compact subset of X such that K =
UN, fi(K). Let P(K) be the set of probability
measures on K. For f: K — R, let Lip(f) be the
Lipschitz constant for f. For p,v € P(K), let

D(,v) = sup{ /A fd /K fdv: Lip(f) < 1}.

This is called the Monge-Kantorovich metric.
(P(K),D) is a compact metric space. See [Ba06,
Theorem 2.4.15 and Definition 2.4.16] for details.

Theorem 1.4. Let (X,d) be a complete met-
ric space and fi,. .., fn be weak contractions. Let K
be the unique compact subset of X such that
K =UY,fi(K) and u be the solution for (1). Let
P1s.--,pn € (0,1) such that Zfilpi =1. Then, for
any € > 0, there exists 6 > 0 such that if a probability
measure v on K satisfies that

N

(4) D(}/, Zpiy o f71> <6,
i=1

then,
D(v,p) <e.

Before we proceed to proof, we give an
example.

Example 1.5. Let X=[0,1], N=2, p, =
p2=1/2, fi(z) =z/(x+1), and fo(z) =1/(2 - =).
Then, the distribution function of the solution u
of (1) is the Minkowski question-mark function
[M1905]. In this particular case, it is shown in
Kessebohmer-Stratmann ~ [KeSt08]  that  the
Hausdorff dimension for g is strictly smaller than
one.

Jm osupd(f(2), f(y) <t
) zyeX,d(z,y)<s

Lemma 2.2 (Cf. [J97, Theorem 1]). Let
(X,d) be a metric space and f: X — X be a map.
Then, f is a weak contraction in the sense of Hata if
and only if f is a weak contraction in the sense of
Browder.

Proof. If fis a weak contraction in the sense of
Browder, that is, [J97, Condition (a) of Theorem 1]
holds, then it is obvious that f is a weak contraction
in the sense of Hata. Conversely, assume that f is
a weak contraction in the sense of Hata. Then,
[J97, Condition (f) of Theorem 1] holds for

¢(s) == sup d(f(x), f(y)), s = 0.

d(z,y)<s

Then, by [J97, Theorem 1], f is a weak contraction
in the sense of Browder. O

[W91, Proposition A4.5] also discusses several
conditions for Hata’s definition of weak contrac-
tions.

Now we proceed to the proof of Theorem 1.2.

If f: X — X is a weak contraction and not a
contraction on a metric space X, then, Lip(go f) =
Lip(g) may occur for a function g on X, and it would
be difficult to give an upper bound for

sup{/XgOfdu—/XQOdeiLip(g)Sl},
u,v € P(X).

Therefore, it seems that the proof of [Hu81] does not
work well in a direct manner. Our idea is that we
first show the metric D is identical with the first
Wasserstein metric on P(K) thanks to the duality
theorem of Kantorovich-Rubinstein [KR58] (see
also Villani’s book [V09, Particular Case 5.16]),
and then use several definitions for weak contrac-
tions which are equivalent to Browder’s definition.
Their equivalences are established by [J97, Theo-
rem 1].

Proof. By the fixed point theorem of Browder,
it suffices to show that for any ¢ > 0,

N N
im sup D (me o fi1,Y pive f[1> <t
FTRSPND i=1 =1

wv)<s
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Since

N N
D (Zpiu o fi',Y pwo fﬂ)
i=1 i

i=1

N
< sztD(,U o f;lv Vo fz‘il)a

i—1
it suffices to show that for each i,
(5) lim sup D(Mo fz._l,z/o fi_l) <t.
S D) <s

For p,ve P(K), let II(u,v) be the set of
probability measures on X x X whose marginal
distributions to the first and second coordinates
are pu and v respectively. By the duality theorem
of [KR58],

D) = int{ [ [ dtoasds) v € 1 |

If Y € H(Hﬂ’)v thCH, Yo (fiafi)_l € H(ILLO fi717
vo fi1). Hence, for any v € I(u,v),

Do flvo fl) < / A(fi(2), fi(y))(dady).
KJK

Since f; is a weak contraction, by the condition
of Krasnoselskii-Stetsenko [KrSt69], whose equiv-
alence with Browder’s definition is established by
Jachymski [J97, Theorem 1 (d)], there exists a con-
tinuous function ; : [0,400) — [0, +00) such that
Y;i(t) > 0if t > 0, and,

(6) d(fl(x)afz(y)) < d(l‘7y) - ’g[]l(d(l',y)), T,y € K.

We show that a contradiction occurs if we take a
sufficiently small 6 > 0.

Since K is compact, there exists M such that
sup, yex d(z,y) < M. Take sufficiently small €€
(0,1) so that 4et < M. Then,

D(p,v)

<[ it +
d(x,y)<et d(z,y)>et

< (e)y({(z,y) € K* - d(z,y) < et})
+ My({(z,y) € K? : d(z,y) > et}).

Hence,

d(z,y)y(dzdy)

D(p,v) — et

Y{(z,y) € K* : d(z,y) > et}) > =

Since 1); is positive and continuous,
inf t’(/)i(u) > 0.

M>u>e
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Therefore,
¥i(d(z,y))y(drdy)
KxK
(D(u,v) ), .
D U A .
= M MEeset viu)
D(p,v) — et
>0 ().
- M M>u>et 1(“)
Hence,

D(/J'O fiilal/ofiil)
< / d(fi(x), fi(y)(dady)
KxK

D(u,v) —et |
M MIZI111f>et Vi),

< [ dtwontdsdy) -
By taking infimum with respect to ~,
(7) D(#Offlyl/offl)
inf u>et Vi
< (1 - e ) (u)>D(u, )

et .
+ M Mlzrqltfxt vi(w)-
By (6), ¥;(u) < wu for any u < M, and hence,

inf td)i(u) <M.

M>u>e
Hence,
sup D(M © f;l, Vo fifl)
D(p,v)<s
inf]\[>u>ft 1/)7 (u) e .
< - =7 —_— i .
> <1 M 5+ MMIZI}lf;et wi(U)
Hence,
lim sup D(po fl-_l, vo fi_l)
s—t,s>t D(u,v)<s
inflw>u>€t 1/)2 (u) et :
< - = 7 e 1
> <1 M t+ M]\/[lzliget wl(u)
infarsuse ¥i(u)
=t{1—-—(1—¢)—————~ ) <t
(1- (- g
Thus (5) follows. U

Now we show the collage theorem.

Proof of Theorem 1.3. Assume that there exist
M > e >0 such that for any 6 > 0 there exists a
compact subset L of X satisfying (2), (3) and

(8) ditaus (K, L) > €.
Since K = U, f;(K),
ditans (K, L) < ditans(L, UYL, fi(L))
+ dians (UL fi (K), U, fi(L))
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Hence,
(9) dHaus(Kﬂ L) -6< dHaUS( i:lf’i(K)v Uf\ilfl(L))
< max ditaus (fi(K), fi(L)).

1<i<

Since f; is a weak contraction, there exists a
continuous function ; : [0,4+00) — [0,4+00) such
that ¢;(t) > 0if t > 0, and, (6) holds. It follows that

dHaus(fl?(K)7 fl(L))
< max{d(fz($)7 fz(y)> S K7y € L’ d(ac,y)
S dHaus(K7 L)}
< max{d(z,y) — ¢i(d(z,y)) : d(z,y)
S dHaus(Ka L)}
Since 1;(t) > 0 for any ¢ > 0,
max{d(x, y) - % (d(l’, y)) : d(il?, y) < dHauS(Kv L)}

< max { g,max{d@,y) —dley) & < dlay)

< ditaus (K, L)} }
By (3),

max{d(z,y) — ¥i(d(x,y)) : €/2
S d(x,y) S dHauS(K, L)}

< dHaus(K: L) - se[ieI/12f]\r[] %(8)

By this and (9),
dHaus(K7 L) -9

< max{e/27 Apgans (K, L) — min, Se[ng’m 1/12»(3)}.
We remark that by the continuity and pos-
itivity for 4,
inf (s) > 0.
56[161)127111] dj (8)

Hence if we take

s <mindcfd min,_inf (o)}

and an associated L, then, by (8), a contradiction
occurs. U

Remark 2.3. (i) We are not sure whether
we can drop (3) or not. It is added because we do
not know about the long-time behavior of ;(t)
appearing in the above proof. If lim; .. ¥;(t) > 0,
we can remove (3). If f; is contractive, then, we can
take ¢;(t) := (1 — Lip(f3))?-
(ii) [AF04, Proposition 4.3] considers a weak con-
tractivity for the Barnsley-Hutchinson operator.

[Vol. 94(A),

However, their definition of weak contractions
[AF04, Definition 3.1], which is also adopted
by [RO1], is stronger than the one we adopt. If
[AF04, Definition 3.1] is adopted, we can drop (3).

Finally we show Theorem 1.4.

Proof. The outline is the same as in the proof
of Theorem 1.3, so we give a sketch only. Assume
that there exists € > 0 such that for any ¢ € (0,¢)
there exists a probability measure v on K satisfying
(4), and
(10) D(p,v) > e.

We have that for some i,
(1) Duv)—6< D(uo 7 vo £7).

Let M such that sup, e d(x,y) < M. Then, we
can show that by replacing et with D(u,v)/4 in the
proof of Theorem 1.2, and by recalling (7),

D(po f'vo f)
< <1 _ 3inf]\r12u>D(u,V)/4 % (U))D(,u, I/).

4M
By this, (10) and (11),

3infyrs s piuw)/a Yi(u)

12 5> D
( ) > M (/1'7 V)
(13) S 3einfaszyse/a Yi(u)

= 4M ’

Hence a contradiction occurs if

3eming <<y infrs sy ¥i(u)

0<é<
aM

O
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