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On the product of Hurwitz zeta-functions

By Nian Liang WANG* and Soumyarup BANERJEE™)**)

(Communicated by Masaki KASHIWARA, M.J.A., April 12, 2017)

Abstract:

Corresponding to the lattice point problem for a random sphere Kendall and

Rankin [8], Nakajima [9] considered the summatory function of the coefficients of the product of
two Hurwitz zeta-functions and obtained the Bessel series expression. In this note we treat the
case of the product of » Hurwitz zeta-functions for an arbitrary integer s > 2 and obtain the
expression in terms of the Voronoi-Steen function. This amounts to a refinement of corrected
Nakajima’s formula with streamlining of the ambiguous argument.

Key words:

1. Introduction. Counting the lattice
points in a domain has been a fascinating subject
and already Gauss considered the lattice points
in a circle with radius r, say, and enunciated the
asymptotic result with the main term the area
7r? and the error term of the order of r. Dirichlet
considered the corresponding problem for a hyper-
bola zy = r and succeeded in obtaining an asymp-
totic formula with the error term of the order of
r. Estimating the error term has been known as
the Gauss circle problem and Dirichlet’s divisor
problem, respectively. It was Voronoi [13] who
introduced a new phase not only into the lattice
point problem but also into the fields where there
is a zeta-function, as expressing the error term in
terms of special functions, and in particular
Bessel functions. Some of the generalizations are
in higher dimensions, such as the »-dimensional
sphere problem associated to the Epstein zeta-
functions and the Piltz divisor problem associated
to ((s)”, where ((s) indicates the Riemann zeta-
function.

As a generalization of the Gauss circle prob-
lem, Kendall and Rankin [8] considered the lattice
points in a random sphere and obtained the Bessel
series expression. Since the generating function
is the s-dimensional Epstein zeta-function,
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Chandrasekharan and Narasimhan [4] naturally
obtained the Bessel series expression for the s-di-
mensional random sphere problem.

The corresponding random Piltz divisor prob-
lem was considered by Nakajima [9] who obtained a
Bessel series expression for the summatory function
in the case of the product of two Hurwitz zeta-
functions. Here the Hurwitz zeta-functions ((s, @)
are defined for 0 < a < 1 by

> 1
C(Sv a) - Z (TL + 0&)3

n=0

(1.1)

for 0 := Res > 1 and then continued meromorphi-
cally over the whole plane by the functional
equation. The Riemann zeta-function is a special
case of the Hurwitz zeta-function:

C(S) = C(Sv 1)'

Let s be a positive integer > 2 and let {\,}
denote the strictly increasing sequence of numbers
of the form

(1.2) M=(mi+a) - (n.+a.), n; e NU{0}

with multiplicity d()\n), so that

(1.3)  d\) =d(M) = > 1.
(ny4aq)-(n+a)=\,
n;€NU{0}
Then
d(\,)
(14)  @(s) = (s 0n) -+ ((s,00) = Y —
An >‘n
for o > 1.
We write
(1.5) a=(a, ,a,) € R €(0,1)".
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As a generalization of the Piltz divisor problem, one
may consider the summatory function

>
(m+ap)-(n,+a,)<z

n.jeNU{0}
— P(a) + A(z; ),

D(z;a) = Y d(\) =

A<z

(1.6)

say, where P(z) = P(x; ) is the residual function
which is the sum of the residues of the generating
function, ¢(s) to be defined below, with weights and
we are to express the error term A(z; ) in terms of
special functions and where the prime on the
summation sign means that the term corresponding
to (n1 + 1) -+ (ns, + @) = x is halved, which aris-
es from the discontinuous integral.

Corollary 1 (Corrected version of Nakajima’s
theorem). For a = (o, 8) € (0,1)* the error term
(1.6) may be expressed as

(1.7) A(z;,8)
I e

NG

_ g 2 da,ﬁ(n)jﬁda,ﬁ(n) K, (47_‘_\/%)

1T & daﬂ(n)—kd_a#_g(n)
2 ~ vn
where the coefficients are to be defined below.
Even in this corrected form, there seems to be
no rule of appearance of the Bessel functions and
there is little hope of considering the product of »
Hurwitz-zeta functions. Our method gives the
proper result for the general case at a stretch.
Moreover, Nakajima applied the Oth order
Perron’s formula (a special case of (1.16) below)
to express D(z;«, () as

1 z°
18 Dwed) =gz | e n)Tas

Ji(—4my/nz),

(c>1).
It is warned, however, e.g. in Davenport
[5,pp. 104-105] that applying the Oth order

Perron’s formula is problematic because there is
no guarantee that the interchange of summation
and integration is legitimate and that to stick to
the Oth order Perron’s formula, one has to apply
the truncated formula as can be found in many
textbooks. Nakajima made the same mistake in his
earlier paper [10] which was corrected and improved
by Banerjee and Mehta [1].
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The common procedure is to apply higher
order Riesz sums as in many previous investiga-
tions including Val’fi§ [12] and Chandrasekharan
and Narasimhan [3,pp. 106-111]. Then the final
result for the Oth Riesz sum can be obtained by
differencing or in most cases by differentiating as
long as the differentiated series is uniformly con-
vergent. Indeed, in our case all the differentiated
series are absolutely convergent and the differenti-
ating procedure is valid.

Preliminaries. e The Hurwitz zeta-functions
(1.1) are related with the Lerch zeta-function Is(«)
by the functional equation (cf. [2]):

I'(s)
(2m)”

where the Lerch zeta-function (or also known as the
polylogarithm function) is defined by

(1.9) ¢(1 - s,a) = (e %0, (a) + e2°1,(1 — a)},

o0 2mina

)= ¢

n=1
forc>1,acR(ors=1,0<a<1).
Using (1.9) and the fact that [ (1—a)=
ls(—a), we obtain
(110) CP(S) = C(Sa al)g(sa OQ) e C(Sv Ot%)
F(l - S)% v}
_ —5(1-s)\»
= s [ F o)
X llfs(OLQ) e llfs(a%)

+ (e—%i(l—s))}:fle%j(l—s)

nS

X {li—s(—an) () - - li—(as)
+ lhos(on)li—s(—ag) - - li—s(ew.)
+othos(an)ls(ag) - lis(—as)}

ux}

+ (2N _(—an)s
X ll_s(_OLQ) v ll_s(—()é%) .

The case > = 2 reads as
(1 —s)?
+ 1175 (a)llfs(_ﬂ) + 1175(—Ol)1175(5)
+ ™0 (—a)l_s(—P)}.

-, 05) € R* we write

(s, )(s, B) = {e7™ =91, _(a)li—4(B)

For a = (aq, -
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(111)  Ly(an) -y )—id"(”) >1 L1 A =S 1y (?

: ool =2 =7 0 (1.17) (@) = ;(— )7 @t vy).
where If f has the p-th derivative f(), then
(1.12)  duo(n) =dg,..a,(n) (1.18) Aff(x)

— § : 627ri(a1m1+~~+a%mz)
mjeN
My m,=n
We write dy(,_,_-(n) to indicate dq(n) with (¢ —
r) «;’s are positive and (r) «;’s are negative, e.g.
dio 1 = dia1(n)
— § e271'i(alm1+a2m27a3m3)

ijN
mymema=n

e The Meijer G-function is
A1y. .., 0p
1.13 G
(L13) G (x bl,...,bq>
I CED)
=1

‘ f[ (1 —bj+s)

Jj=m+1

HI‘(l —aj+s)
=1

I] T -9

Jj=n+1

1

 2mi

rds.

e The Voronoi-Steen function
V=V(z;a1,---,a,) (cf. [11]) is defined by

0 dzx
mev(l,, at, -+, an) -

2 Jo
=T(s+a) --T(s+ay,).

(1.14)

It is a special case of the G-function:

a17--~,an,>

The general Perron’s formula can be found
in Hardy-Riesz [6] to the effect that

1 / o
m Z Olk(fl' — )\n)

A<z
1 T(s)p(s)x**?
S 2mi Jiy D(s+p+1)
where the left-hand side sum is the Riesz sum of
order p, ¢(s) =3 2% and c is bigger than the
abscissa of absolute convergence of ¢(s).

The general formula for the difference operator

of order p € N with difference y > 0 is given by

(1.15)  V(z;ai,---,a,) = GS:S <x

(1.16)

)

z+y Lty ta—11Y
=/ dtl/ dtz---/ fO,)dt,.
T t tp1

If the order p € N, then the Riesz sum amounts
to the s times integration of the original sum A, (z).
Thus Landau’s differencing is an analogue of the
integration and differentiation.

The estimate is known that

(1.19) ¢(s,0) = O(t]"" log 1)),
where
1
(1.20) 7(0) :5(1—0), 0<o<1,
1
7(0)25—0, <0

Then instead of (1.22) we consider the pth
Riesz sum with

1
(1.21) N9p>§%(1+a)+1,
1 ~
1.22) D’(z;0) = ——— z—X\,) d(N,
(1.22) D"(z;cx) F(p+1)§§;( ) d(An)
1 1
=— [ ¢ "0 ds,

 2mi (© s(s+1)---(s+p)

where (¢) indicates the Bromwich integral along the
vertical line 0 = ¢, —0o < ¢ < 0o and ¢(s) is defined
by (1.4).

2. A multi-dimensional divisor prob-
lem. For the summatory function (1.6) of the
s-dimensional shifted divisor function we have the
following theorem.

Theorem 2.1. For

a=(ay, - ,a,) € (0,1)7

X V((Qﬂ)%(BT)%naz

1’...717O>
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1,-~,1,o).

Here P(x) = Po(x) is the residual function which is
the sum of the residues of the weighted generating
function

S T S

s

(2'2) <p(s) ? = C(Sv al) T C(Sv 04%) ?

ats=0and 1, or

1 xs

— | p(s)— ds
21t Jo s

(2.3)
where C' is a curve lying in the strip —a < o < 1 and
encircling s =0 and 1.

Proof. We apply the Cauchy residue theorem
as follows: Take a rectangle with vertices at s =
c+it,-T<t<T, s=c+il,—a<o<c,
—a+it,-T <t<T and s=oc—il,—a<o<c,
where T > 0 is to mean 77 > 0 and T3 > 0 tending
to oo independently but we usually use this
convention. By (1.19), the integrand is

S =

T%%(Pra) )

Hence since the order p of the Riesz sum satisfies
(1.21), the horizontal integrals are estimated by

7150

as T — oo. At the same time, this assures absolute
convergence of the vertical integral along s=
—a +it.

Thus we may let T'— oo and express the initial
integral by the residual function and the resulting
vertical integral, which is the meaning of ‘moving
the line of integration’ from (c¢) to (—a):

(2.4) D(z;a) = P(x) + A(z; )

where P(z) = P,(z) is the residual function (2.2)
and
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25) Ae) =g [ o o)dle,a--Cls,0

o 1
s(s+1)---(s+p)
is the error term.

At this stage one can apply the standard
procedure of applying the functional equation
(1.10) followed by the change of summation and
integration. What arises is the p times integration
of the Voronoi-Steen function. I.e. we have sums
with the coefficient

1
1,1,-~~,1,—p>'

It would be of some interest to express the
resulting G-functions in explicit form as in [7] but
here we stick to the Oth order Riesz sum.

Hence we apply the differentiation under the
integral sign p times since we may assure the
uniform convergence of the integral of the form
I 5= (—a) I'(1—s)”*ds. We denote the resulting
integrals by I, I, - - -. We may also differentiate the

2 TPds

(2.6) szl’l(@w)”(e%)”n:ﬂ

residual function

1 1
%/C S Py oy
under the integral sign to arrive at (2.3).

Using
ra-s)”

(28) ————=-T(-

(2.7) " ds

8)%711—‘(_3)7
we simplify the G-function into Gg’g or the Voronoi-
Steen function.

E.g. the first integral is

1 NG
h:f/_L_i
2m (-

) (2m) 1) (e 2 ly(an) - -
li—s(as) T ds
S
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The second integral is

1 ra-—s)” _
I=_— T iss) (e
2mi J(—a) (27)

{hos(—ar) -+ li—y(e) + -

+lh_g(on) - lg(—a)} l: ds
- (D@ -y
1,1,.‘.,170)
(et bt

x v((zw)”(e%i)ﬂm

%(175))%72

1,1,~.-7170).

Procedure being the same, we conclude the result
thereby covering the case of » = 2. O

In particular, Theorem 2.1 with =23
amounts to

Corollary 2. (i) For a = (aj,a) € (0,1)7
we have
D(z; ) = P(x)

I & dal,ag(n)

1 = dm,—@z (n) + d—0|,02 (n)
n

n RS o~ Aoy —a,(N)
4% =

v((2r)enal1,0)

V((Zﬂ)an’LO)

V((27r)26_”nx|1, 0),
< n

where

P(z) = Pa,0,(z) = zlogx + { (— FF (a1)>

) e () (o)
(il) For a = (a1, an, a3) € (0,1)%, we have
D(z; o) = P(x)

(e F)* & diso(n)

@) 4 Z n v((en () e

1,1,0)

677 c~dyo1(n 3 i
V(27r ernx ,)
w; )
_Ood“2 V23J¥ 1,1,0
SZ ( e 2nx|l, ,)

n—=
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(6%) do-3(n) 3, -T\3
V( 2m)3 (=3 nx’l,l,O)
o s Z Sy ((2n)(e®)
with P(z) = Py (z)
function (2.2).
3. Two-dimensional case.
verse Heaviside integral

(31) Gy (z ajb ) =220, 1(21/2),

where K, (z) indicates the modified Bessel function
of the third kind which is often referred to as the
K-Bessel function. In view of this, Corollary 2 (i)
entails

= Poyan0s () being the residual

Recall the in-

Theorem 3.1. For0<a,B<1,
(3.2) D(z; e, 0) = P(z) + Az v, 8)
where
(3.3) P(z) =Pupx)

g (D @)

n (_ F% (@) - 1}33 +¢(0,2)¢(0,8)

and

(3.4) A(z; o, 8)

Z‘FZ 0(1 D‘f“ ~(n )Kl(4m¢%)

n=1

_\/7”;

Remark 1. The K-Bessel function is related
to other Bessel functions via

+d“’ p(n )K1(47r\/77£).

X mi(v+1) 2 miv
Yi(iz)=e 2 I,(z)——e 2 K,(2)

™

T
(—w< argz < 2).

Let J.(z) denote the Bessel function of the first
kind. Then

(3.5)

Jy(iz) = e%L,(z).

Now for v =1, this gives

Ki(—i2) = = (=Ji(2) — Y (2)),

Ki(i2) = 5 (=/i(=2) = iY1(=2)).

l\3|>1 l\DI
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Hence Corollary 1 is a restatement of Theorem
3.1.

It is of some interest to consider the case where
one of the perturbation parameters is 1:

Corollary 3. For0 < a <1, we have
D(z;a,1) =Pya(x)

al(
TSl il

_@id@(n)m o) 1 ar

Y I (—dm/nz)

5
Mg

§~
a:é

2
with dy(n) = da(

do1(n) =" e defined by (1.12) and

lIn

pase) < stogs 5] (o) -

1 1
+ 5 o — Z 5
~ being the Fuler constant.
Proof. As in (2.5), the generating function is
(s, )¢(s)-

Now ((s,@)((s) satisfies

F(l — S) F(%) 7l+s
3.6) ((s,a)((s) = ———— T2
( )C( ) )C( ) (27T)175 F(%)
X {e 5001 (@) + 30791, (=a) )1 — 5).
Thus the treatment is verbatim to that of Theo-
rem 2.1 and we complete the proof of the corollary.
O
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