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Abstract: We provide explicit formulas of Evans kernels, Evans-Selberg potentials and

fundamental metrics on potential-theoretically parabolic planar domains.
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1. Introduction. All open Riemann sur-

faces can be classified in the potential-theoretical

sense into two types, namely hyperbolic ones and

parabolic ones. The latter case happens if and

only if there exists no Green function, or equiv-

alently there exists no non-constant subharmonic

function bounded from above. On a potential-

theoretically parabolic Riemann surface, there ex-

ists a so-called Evans-Selberg potential, whose

existence is equivalent to the parabolicity condi-

tion (see [E, K, Na62, S]). In contrast to various

applications of Evans-Selberg potentials (see

[M, SV]), concrete examples are not quite under-

stood. In this paper, on potential-theoretically

parabolic planar domains, we provide explicit for-

mulas of Evans-Selberg potentials, as well as

formulas of the so-called Evans kernels and funda-

mental metrics, whose definitions will be recalled in

the next section.

Theorem 1.1. There exist Evans-Selberg

potentials on C n f0g with a pole q given by

eqðpÞ :¼ log
jp� qj
jpjkjqjl

;

where k; l 2 ð0; 1Þ.
Using this eqðpÞ, we derive a corollary as

follows:

Corollary 1.2. There exist fundamental

metrics on C n f0g (in coordinate z) given by

jzj�sjdzj2;
where s 2 ð0; 2Þ.

For the Evans kernels, we have the following

theorem.

Theorem 1.3. There exist Evans kernels on

C n f0g given by

eðp; qÞ :¼ log
jp� qj
jpqjl

;

where l 2 ð0; 1Þ.
By the construction process of the above

eðp; qÞ, we obtain the following result.

Theorem 1.4. Given t > 0, let Gtðp; qÞ be

the Green kernel on fz 2 C je�2t < jzj < e2tg. Then,

lim
t!þ1

ðGtðp; qÞ þ logðet � e�tÞÞ ¼ log
jp� qjffiffiffiffiffiffiffiffi
jpqj

p ;

uniformly on each compact subset of C n f0g �
C n f0g.

Similarly, we have results for the twice punc-

tured complex plane, which is also potential-theo-

retically parabolic although it is hyperbolic in the

Poincaré sense.

Theorem 1.5. There exist Evans-Selberg

potentials on C n f0; 1g with a pole q given by

log
jp� qj

jpjkjqjljp� 1jmjq � 1jn
;

where k; l;m; n > 0, kþm < 1 and lþ n < 1.

Corollary 1.6. There exist fundamental

metrics on C n f0; 1g (in coordinate z) given by

jzj�sjz� 1j�jjdzj2;

where s; j > 0 and sþ j < 2.

Theorem 1.7. There exist Evans kernels on

C n f0; 1g given by

log
jp� qj

jpqjkjðp� 1Þðq � 1Þjm
;

where k;m > 0 and kþm < 1.
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2. Preliminaries. Let’s first recall the Re-

movable Singularity Theorem for a harmonic func-

tion (cf. [B, Ro]).

Proposition 2.1. If u is harmonic and

bounded on the punctured disc fz 2 C : 0 < jzj <
1g, then it extends to a harmonic function on the

whole disc.

Proposition 2.1 could follow from the following

Proposition 2.2, which describes the behaviors near

isolated singularities (cf. [ABR, p. 50]).

Proposition 2.2 (Bôchner’s Theorem). Let

w 2 D � C, and let h be a positive harmonic

function on D� fwg. Then �h extends to be a

subharmonic function on D, and there exists a

harmonic function k on D and a constant b � 0,

such that

hðzÞ ¼ kðzÞ � b log jz� wj; z 2 D� fwg:

For a subharmonic function, a generalized

Removable Singularity Theorem is described as

follows (see [Ra, Theorem 3.6.1]):

Proposition 2.3. Let U be an open subset of

C, let E be a closed polar set, and let u be a

subharmonic function on U � E. Suppose that each

point of U \ E has a neighborhood N such that u is

bounded from above on N � E. Then u has a unique

subharmonic extension to the whole of U.

Next, let’s look at the definition of an Evans-

Selberg potential (cf. [SNa, p. 351], [SNo, p. 114]).

Definition 2.4. On an open Riemann sur-

face �, an Evans-Selberg potential EqðpÞ with a

pole q 2 � is a real-valued function satisfying the

following conditions:

(i) For all p 2 � n fqg, EqðpÞ is harmonic with

respect to p,

(ii) EqðpÞ � log j’ðpÞ � ’ðqÞj is bounded near q,

with ’ being the local coordinate,

(iii) EqðpÞ ! þ1, as p! a1, the Alexandroff

ideal boundary point of �.

Moreover, if this potential Eðp; qÞ :¼ EqðpÞ is

symmetric in ðp; qÞ (regarded as a function on

�� �), and Eðp; qÞ � Eðp; q0Þ are bounded near the

boundary for any pair ðq; q0Þ, then Eðp; qÞ is called

an Evans kernel (see [Na67], [SNa, p. 354]). Two

Evans kernels with the same prescribed singular-

ities at the boundary are up to an additive constant

by the Maximum Principle of subharmonic func-

tions. Important properties of an Evans kernel are

its joint continuity and uniform convergence, im-

plying that it is approximable by Green kernels.

Proposition 2.5 (Nakai). Let Eðp; qÞ be an

Evans kernel on �, and Gtðp; qÞ the negative Green

kernel on �t :¼ fp 2 � j Eðp; q0Þ < tg with a fixed

q0 2 �. Then

Eðp; qÞ ¼ lim
t!þ1

Gtðp; qÞ þ tð Þð1Þ

uniformly on each compact subset of �� �.

Proposition 2.5 is useful for computing some

explicit formulas of Evans-Selberg potentials. Typi-

cal examples of parabolic planar domains are the

complex plane C, finitely-punctured complex

planes, and C n Z. Thus, it seems desirable to

determine the Evans kernel by (1) as long as

explicit formulas of Green kernels are known.

Meanwhile, the above �t and Nt are attainable in

some special cases. Finally, we look at the definition

of the so-called fundamental metric [SV].

Definition 2.6. On a potential-theoretically

parabolic Riemann surface �, the fundamental

metric under the local coordinate z ¼ ’ðpÞ is

defined as

cðzÞjdzj2 :¼ exp lim
q!p
ðEqðpÞ � log j’ðpÞ � ’ðqÞjÞjdzj2:

3. Explicit formulas. Explicit formulas of

the Evans-Selberg potentials are not quite under-

stood, except the case of C where the logarithmic

kernel log jp� qj becomes a good candidate. In this

section, we provide explicit formulas of the Evans-

Selberg potential on punctured complex planes.

Proof of Theorems 1.3 and 1.4. Without loss of

generality assume q0 ¼ 1 in Proposition 2.2. For

any t > 1, choose a function r ¼ rðtÞ > 0 (to be

determined later) such that r& 0þ as t! þ1 and

the annulus Ar :¼ fp 2 C j r < jpj < 1=rg is equal to

RT :¼ fp 2 � j Eðp; 1Þ < logðet � e�tÞ :¼ Tg, which

admits a Green kernel gT ðp; qÞ. By [CH, pp. 386–

388], the negative Green kernel for Ar is

gT ðp; qÞ ¼ Re log r
1
2 � z

�log q
2 log r

ffiffiffi
p

q

r
�

ffiffiffi
q

p

r� �0
@

8<
:

�
Q1

j¼1 1� p
q
� r4j

� �
1� q

p
� r4j

� �
Q1

j¼1 1� pq � r4j�2ð Þ 1� 1
pq
� r4j�2

� �
1
A
9=
;:

By Proposition 2.5, it follows that

Eðp; qÞ

¼ lim
T!1

Re log r
1
2 � z

�log q
2 log r �

ffiffiffi
p

q

r
�

ffiffiffi
q

p

r� �� �
þ T

� �
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¼ lim
T!1

1

2
log rþ log

jp� qjffiffiffiffiffiffiffiffi
jpqj

p þ T
( )

:

Choosing r such that

lim
T!1

1

2
log rþ T

� �
¼ 0;ð2Þ

we know that the Evans kernel becomes

Eðp; qÞ ¼ log
jp� qjffiffiffiffiffiffiffiffi
jpqj

p :

It is easy to check that Eðp; qÞ � Eðp; q0Þ are

bounded near the boundary (consisting points 0 and

1) for any pair ðq; q0Þ 2 C n f0g �C n f0g, Eðp; qÞ is

symmetric in ðp; qÞ, and Eðp; qÞ tends to þ1 at the

boundary. Finally, setting rðtÞ :¼ e�2t, we know

that they satisfy (2) by definition. Moreover, when t

is sufficiently large it holds that Ar ¼ RT , i.e.,

r < jpj <
1

r

� �
¼
jp� 1jffiffiffiffiffiffi
jpj

p < et � e�t
( )

:

Thus, Theorem 1.4 is proved. For Theorem

1.3, it suffices to check by definition that for any

fixed 0 < l < 1, eðp; qÞ gives an Evans kernel on

C n f0g. �

By dropping the symmetry in ðp; qÞ, one

can easily construct Evans-Selberg potentials on

C n f0g, which gives Theorem 1.1. Corollary 1.2

then follows from Theorem 1.1 and Definition 2.6.

For the case of C n f0; 1g, we are not sure how to

make the approximation process and to use Prop-

osition 2.5. Nevertheless, by the formulas in Theo-

rems 1.1 and 1.3, we can construct by hand Evans

kernels and Evans-Selberg potentials, which yield

Theorems 1.5 and 1.7, respectively. Via elliptic

functions, the author in [D] constructed an Evans-

Selberg potential on a once-punctured complex

torus.

4. Boundary behaviors. In this section,

we first fix a point q0 2 C n f0g. For an arbitrary

Evans-Selberg potential Eq0
ðpÞ with a pole q0, let D

be a neighborhood of 0 such that Eq0
ðpÞ > 0 on D.

Then, according to Proposition 2.2 (Bôchner’s

Theorem), there exists a constant b0 � 0 such

that Eq0
ðpÞ þ b0 � log jpj is harmonic and bounded

on D 3 0. Similarly, for this same Eq0
ðpÞ, there

exists a constant b1 � 0 such that Eq0
ðpÞ � b1 �

log jpj is harmonic and bounded near 1. Denote

maxfb0; b1g by bmax; q0
or just bmax (if q0 is not

necessarily specified).

Lemma 4.1. For any fixed q0 2 C n f0g,

inf
Eq0 ðpÞ

bmax;q0

	 

¼

1

2
:

Proof. First, denote the above left hand side

by bCnf0g � inffbmax;q0
g. For fixed q0 2 C n f0g,

from eq0
ðpÞ (for k ¼ l ¼ 1=2) in Theorem 1.1, we

know that bCnf0g � 1=2. Now, let us assume that

bCnf0g < 1=2 and conduct the proof by contradic-

tion. Then, for an arbitrary Evans-Selberg potential

Eq0
ðpÞ with a pole q0, it holds that

lim
p!0
fEq0
ðpÞ þ bCnf0g � log jpjg <1;

and

lim
p!1
fEq0
ðpÞ � bCnf0g � log jpjg <1:

Therefore, Eq0
ðpÞ � eq0

ðpÞ < Eq0
ðpÞ þ bCnf0g � log jpj �

1=2 � log jpj � eq0
ðpÞ <1, as p! 0. Similarly,

Eq0
ðpÞ � eq0

ðpÞ <1, as p!1. Since Eq0
ðpÞ �

eq0
ðpÞ is harmonic in p on C n f0g and bounded

from above, according to Proposition 2.3, it extends

as a subharmonic function on Ĉ :¼ C [ f1g.
Therefore, Eq0

� eq0
must be a constant, which is

a contradiction to bCnf0g < 1=2. So, the lemma is

proved. �

Since the final result in the above Lemma

does not depend on any particular choice of q0,

we further obtain the following theorem for any

Evans-Selberg potential EqðpÞ on C n f0g with a

pole q.

Theorem 4.2.

inf
EqðpÞ
fbmax;q : q 2 C n f0gg ¼

1

2
:

For the domain C n f0; 1g, by a similar argu-

ment, we can find constants b0; b1; b1 � 0 such

that EqðpÞ þ b0 � log jpj, EqðpÞ þ b1 � log jp� 1j, and

EqðpÞ � b1 � log jpj are all harmonic and bounded

from above near 0, 1, and 1, respectively. Denote

maxfb0; b1; b1g by bmax. Then, we have the following

result for any Evans-Selberg potential EqðpÞ on C n
f0; 1g with a pole q.

Theorem 4.3.

inf
EqðpÞ
fbmax;q : q 2 C n f0; 1gg ¼

1

3
:
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