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Abstract:

Let F be a non-archimedean local field of arbitrary characteristic. In this paper,

we announce an explicit formula of the unramified Shintani functions for (GSp,(F),
(GLy xgr, GLo)(F)). As an application, we compute a local zeta integral, which represents

the spin L-factor of GSp,.
Key words:

1. Introduction. Let F be a non-archime-
dean local field of arbitrary characteristic. We
announce a result of [G], which is an explicit
formula of the unramified Shintani functions,
and its application to an unramified local zeta
integral of Murase—Sugano type for (GSp,(F),
(GLy xgL, GL2)(F)). For a non-archimedean local
field Fy of characteristic 0, Murase-Sugano [MS]
introduced a new kind of local zeta integral for the
pair (SO, (F),S0,_1(Fy)) of special orthogonal
groups and proved that it represents the standard
L-factors of SO, ([MS,Theorem 1.6]). Shintani
functions, which are our main objects, appear in
such a local zeta integral of Murase—Sugano type.
Later Kato—-Murase-Sugano [KMS] gave an explicit
formula of the unramified (Whittaker—)Shintani
functions for the pair (SO, (F),SO,_1(F)) of split
special orthogonal groups except for the case where
the characteristic of F'is 2.

In this note, we announce an explicit formula
of the unramified Shintani functions for
(GSp4(F), (GLs xgL, GLy)(F)), where F is of ar-
bitrary characteristic. Also we extend the local
zeta integral for the pair (SOs5(Fp),SO4(Fpy)) of
split special orthogonal groups to that for
(GSpy(F), (GLy xgr, GL2)(F)) and prove that
our local zeta integral represents the spin L-factor
of GSp,. Here we note that there are two important
points about our results. First, we allow F to be of
characteristic 2. Our explicit formula in the case
where F' is of characteristic 2 is not reduced to the
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result in [KMS], although that in the other case is
reduced to a special case of their results (see §3.3).
Second, our computation for the local zeta integral
is more direct, compared to [MS, Theorem 1.6].
Namely we compute the local zeta integral directly
by using our explicit formula (see Remark 4.2.3 and
Remark 4.3.3).

Until the end of this paper, F is a non-
archimedean local field of arbitrary characteristic.
We denote by 0 = oy the ring of integers of F, and
we let p be the maximal ideal of 0. Let ¢ be the
number of elements of o/p. Once and for all, we fix
a generator w of p. We denote by 1, the identity
matrix of size n.

2. Preliminaries. In this section, we intro-
duce basic notation and objects which will be used
throughout this paper.

2.1. Basic objects. Let
algebraic group over F' defined by

G = GSp,
={g € GL4| 'gJg = v(g)J, v(g) € GL1}.

(")

Let P be a minimal parabolic subgroup of G defined
by

G be an affine

Here

where T is a maximal (split) torus of G defined by


http://dx.doi.org/10.3792/pjaa.93.105

106 K. GEJIMA

T = {t(tlat27t$)| t17t27t3 S GL1}7
t(t1, to, t3) := diag(ty, ta, tat; ', taty ")

and N is the unipotent radical of P.
Let Gy be an affine algebraic group over F
defined by

G(] = GLQ XGL; GLZ
= {(g1,92) € GLy x GLy|det(g1) = det(g2)}.

We often identify Gy with a subgroup of G via the
embedding

a by

ay b] a9 b2
Gy > , € G.
’ ((Cl d1> (62 d2>> ~ 1 d;

c dy

Then Py = PN Gy = TyNj is a minimal parabolic
subgroup of G, where T is a maximal (split) torus
of Gy defined by

To = {t(ty, ty, t5)| £}, 15, t5 € GL1} (=T)

and N is the unipotent radical of Py.

We set G:=G(F) and Gj:= Gy(F). Then
K := GNGLy(0) and Ky := Gy N GLy4(0) are max-
imal compact subgroups of G and G, respectively.
Let Z be the center of G and Z, the center of Gy. We
note that Z C Zy ~ Z x {£1}.

Let W and W, be the Weyl groups of (G, T') and
(Go, Tp), respectively. Then W has eight elements
and W, has four elements.

2.2. Satake isomorphism. Throughout this
subsection, we put H = G or Gy and

(T7 N7 Pa K)
(TO7N07P07K0)

if H=aG;

Ty, Ny, Py, Ky) =
(Tw, Ng, Pu, Kpr) { i H— G,

Let n be a positive integer. A character of (F*)" is
called unramified if it is trivial on (0*)". We denote
by X, ((F*)") the group of unramified characters
of (F*)". We note that (F*)” is identified with Ty

via an isomorphism
(F*) — T, (t1,ta,t3) > t(tr, b, t3).

Then the modulus character dp, of Py is an element
of X,,,(Ty) := X,LT((FX)?’). We sometimes identify
X € X (Ty) with (x1, X2, x3) € X (F*)? via

X(t(t1, b2, t3)) = xa(t)xe(t2)xs(ts).
Also, we often identify X, (T) with (C*)* via

an(TH) - (CX)37X — (Xl(W),Xg(W),Xg(W))
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Let H(H, Kp) be the Hecke algebra of (H, Ky)
over C, that is, H(H, Ky) is a C-algebra consisting
of continuous functions ¢ € C.(H) with compact
support which satisfies

o(kizks) = ()

The multiplication of 1,2 € H(H, Kp) is given by

(vx S H,vkl,kg S KH).

(1 % o) (@) = /H o1 (@ ps(hydh ("x € H),

where dh is the Haar measure of H with
vol(Kp;dh) = 1. We note that the identity element
of H(H, Ky) is chg,. Here chy is the characteristic
function of a subset A C H.

We recall the Satake isomorphism using the
above mnotation (see [C,4.2], for example). Let
C[Ty /Ty N Ky] be the group algebra of Ty /Ty N
Kpy. Then we have Homc.y(C[Th/TH N Ky, C) ~
(C*)? ~ X,,(Ty). The Weyl group Wy of (H,Ty)
acts on Ty by

w-t:=wtw ' (Ywe Wy, "t € Ty).

The action is extended linearly to an action of
Wy on C[Ty /Ty N Ky]. The Satake transform w :
H(H,Kpg) — C[Ty/Ty N Ky is defined by

() (0) =m0 [

Ny

o(tn)dn ("t € Ty)

for all ¢ € H(H, Ky). Here dn is the Haar measure
of Ny with VOI(NH N Ky; dn) =1.
Theorem 2.2.1.

i) The Satake transform w is an algebra iso-
morphism from H(H, Ky) onto the subalgebra
C[Ty/Ty N KH]W” of ClTy /Ty N Ky consist-
ing of the invariants of the Weyl group Wy

il) Any unitary homomorphism from H(H, Kg) to
C is of the form

wy(p) = / W)Xt (Yo € H(H, Kp))

for some x € X,,,(Ty). Here dt is the Haar
measure of Ty with vol(Ty N Ky;dt) = 1.
Moreover, we have wy, = wy if and only if there
exists w € Wy such that x' =wy. Here Wy
acts on X, (Tg) by (wx)(t) = x(w™'-t). In
particular, we have a bijection
X,”.(TH)/WH :> Homc_alg(H(H, KH), C),
X > Wy

3. Shintani functions. In this section, we
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introduce the unramified Shintani functions for
(G, Gp) and state their explicit formula.

3.1. The definition of Shintani functions.
For any ¢ € X,,,(Tp),E € X,,,(T), we define S(§,E)
to be the C-vector space consisting of all continuous
functions S : G — C such that

L(6)R(®)S](x) = /G df /G dg 6(¢)S(g " 29)®(g)

= we(P)w=(P)S(x)

for all (¢, ®) € H(Gy, Ko) x H(G, K). Here dg (resp.
dg) is the Haar measure of G (resp. Gp) with
vol(K;dg) =1 (resp. vol(Kp;dg) =1). We call an
element of S(¢, =) an unramified Shintani function
of type (§,E), or simply a Shintani function. The
following lemma immediately follows from the
definition.
Lemma 3.1.1. Any Shintani function S €
S(&,Z) has the following properties:
i) S(Kzk) = S(z) for all ¥ € Ko,z € G,k € K;
i) S(z0z2) = £(20) 'E(2)S(x) for all 2y € Zy,x €
G,z € Z. In particular, we have S(§,E) = {0} if
El#1

3.2. A Cartan type decomposition. We set

AT = {p = (1, po, ) € 22| pn > o, 20 > pi3},
AGt = (i = (i, i, 1) € Z2 |y > 0,20y > i}

and

€eqG.

For all XA = (A, M\, \3) € Z3, we set t(\) := t(z™,
w, ).

Theorem 3.2.1 (Cartan type decomposi-
tion).
G= || Kogl',wK, g, pm) =t )nt(p).
HEAT
MIGAO++

This theorem is proved in the same way as
[KMS, Theorem 5.2]. See [G] for more details. From
Lemma 3.1.1 (i) and Theorem 3.2.1, it follows that
the Shintani functions are determined by the values
on the set {g(u/, pu) | 1/ € AJT,p e AT}

3.3. A relation between Shintani functions
on GSp,(F) and SOs5(F). As mentioned in
Introduction, if F' is not of characteristic 2, the
unramified Shintani functions on GSp,(F) are
related to those on SO5(F). To explain the relation-
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ship, we first recall an accidental isomorphism
between PGSp, and SOs;. Here the split special
orthogonal group SO, and an embedding
SO4(F) — SO;(F) are defined exactly in the same
way as [KMS, §3]. We consider an F-vector space

V ={XeM(F)| XJ—-JX=0,Tr(X)=0}

with a quadratic form Q(X)= Tr(X?)/4. Then
(V, Q) has the following basis {f,l;}?:l:

1 1
-1
= , fa= ;
1
1
-1
3= ) ;
-1
1
Ji= — , 5= N
1

We identify V with F® via f;+ 4(0,---,0,1,
0,---,0). Let O(V,Q) C GL5(F) be the orthogonal
group of the quadratic space (V, Q). Then we have a
group homomorphism v : G — O(V, Q) defined by

v5(9)X = wagwy X (wagwy )" (Y(g, X) € G x V),

where

The above homomorphism induces an isomor-
phism 75 : PGSpy(F) = G/Z = SOs(F). In partic-
ular, we have ¥5(t(t1,t2,t3)2) = ds(titats ' tity') €
T; for any t(t1,t2,t3) € T, where T}, is the maximal
torus of SO, (F) defined in [KMS,3.2] and
ds(s1,82) == diag(s1, s2,1, 85", s71).

Let &= (&,6,8) € Xu(Th),E = (E1,5:,53) €
X, (T). In this subsection, we assume that ((2)|, =
1 (see Lemma 3.1.1). We fix an unramified charac-
ter x € X,,-(F*) such that x(w)* = E(wly) and set
X:=xov:G— C*. Then Y| is an unramified
character of T. We note that X is K-bi-invariant
and " = x" for every n € Z. Since X(t(t1,te,t3)) =
x(t3), X is identified with (1,1, ) € X,..(F*)®. We
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set By :=Ex 1 = (51,52, 55x ") and & =& =
(1,&,&x). We note that any S € S(&,,Z,-1) sat-
isfies S(zz) = S(z) for all (z,z) € Z x G. Hence
we can regard S € S(&,,E,1) as a Shintani function
on SO5(F) via the accidental isomorphism. Indeed,
S(,Ey-1) is naturally identified with S(6g,y,
Oz,1)s0,,» Where S(0c,,0z,1)g0, is the space
of unramified Shintani functions on SOs(F)
considered in  [KMS] and  (6gy,0z,1):=
((€1283x, €163x), (E1EaBsx !, E1Esx 1)) is an unra-
mified character of Ty x T5. For a Shintani function
SeS(E,Ey1), we set S*:=xS. We note that
S(14) = 1 if and only if S%(14) = 1.

Proposition 3.3.1. We have an
phism

S(0cx: Oz 1)so, = S(€: E1) = S(65), 5.

isomor-

Hence we can obtain an explicit formula of
the unramified Shintani functions on GSp,(F) from
that on SO5(F) if F' is not of characteristic 2.

3.4. An explicit formula of Shintani func-
tions. We define a rational function cg(§,Z) on
X (Ty) X X (T) =~ (C)? x (C*)® by

b(¢, =
cs(6.3) = e
where
d(E) = (1-55)(1-55")1-5)(1 - =),
d'(§) = (1-&)1 - &),

b(¢,E) == (1 — ¢ PL&EIEs) (1 — ¢ 26EE1Es)
x (1 - ¢ Pa&EEEE;) (1 — ¢ 26 6EGERES)
X (1= q P66E15055) (1 — ¢ /2626351 55 5y)
x (1= ¢ PGEIEE)(1 - ¢ 26 6E6E15E).

Then the main result of [G] is as follows:
Theorem 3.4.1. Let (§,Z) be any element of

X (To) x X, (T). Then we have
L (if (3)|;=1),
0 (otherwise).

dime S(¢,5) = {

If (€2)|, = 1, for any nonzero Shintani function S €
S(&,Z) we have S(14) # 0, and the Shintani function
Wez € S(€,E) with Wez(14) =1 is given by

Wez(g(X,A)

(2125 e e

=T oW Z cs(w'§, wE)
(1 —q ) weW
weW,
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X ((wZ)~'62) (H () (') 7' 6*) (V)
for all (N,\) € Aj™ x AT, Here & (resp. &) is the
modulus character of P (resp. Py).

If F is not of characteristic 2, Theorem 3.4.1 is
reduced to a special case of [KMS, Theorem 10.9] by
Proposition 3.3.1. However, since Theorem 3.4.1 in
the case where F'is of characteristic 2 is not reduced
to their results, we do their proof all over again.
See [G] for a proof which contains the case where F'
is of characteristic 2.

Remark 3.4.2. There are several papers
studying (Whittaker—) Shintani functions on
GSpy(F) or related groups other than [KMS].
For instance, Whittaker—Shintani functions for
(Sp,, (F'), Jacobi group) were studied by Murase
[M] for n = 2. Later Murase’s result was generalized
to any n by Shen [S]. Also, Bump-Friedberg—
Furusawa [BFF] studied Bessel functions on
GSp,(F) and Hironaka [H] studied Shintani func-
tions for (Spy(F),SLy(F) x SLo(F)).

4. Local zeta integrals of Murase—Sugano
type. In this section, we introduce a local zeta
integral of Murase-Sugano type for (G,G,) and
prove that the local zeta integral represents the
local spin L-factor of GSp,. Details will appear in
a forthcoming paper.

4.1. Iwasawa decomposition of GSping. In
order to define a local zeta integral of Murase—
Sugano type, we consider the Iwasawa decomposi-
tion of the split general spin group GSping. But,
for simplicity, in this paper we consider a group Gy
defined as follows instead of GSping(F):

G = {g € GL4(F)| det(g) € (F*)*}.

Remark 4.1.1. The split general spin group
GSping(F) is realized as follows:

GSping(F) = {(g,7) € GL4(F) x F*| det(g) = r*}.
Hence we have an isomorphism
GSping(F)/{(14,+1)} = G1.

Let P,y be a maximal parabolic subgroup of G
given by

Py = € Gi p = My Noy.

Here Mys is a Levi subgroup of Py given by
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Moy = {my(a,b) | a,b € GLa(F), det(ab) € ()},

-1

and Nyy is the unipotent radical of P,,. We note
that every m;j(a,b) € My has a factorization

det(a)
det(b)

m; (a,b) = ml(oz_1 ca,b)my (o - 19, 19), o’ =

Namely, for any m; € My, we have a factorization
my = B(m) diag(a(mi), 1, a(m), 1)

for some (B(my),a(my)) € Gy x F*. We note that
such a factorization of m; is not unique. We set
K, :=G;NGLy(0). Then every g€ G; has an
Iwasawa decomposition

g =mi(g)ni(g)k1(9)
= B(ma(g)) diag(a(ma(9)),1, a(mi(g)), 1)ni(g)k1(9)
for some (mi(g),n1(g),k1(g)) € Maa X Nog X Kj.

For all g € Gy, we fix such a factorization of g
and set B(g) = B(mi(g)) and a(g) = a(mi(g)). The
following lemma is easily checked by direct calcu-
lation.

Lemma 4.1.2. The subgroup Py N Ky of Gy
s equal to the intersection of Ky and

1 1 !
1 GLy(0) Ms(o) 1
SR (G|
1 1
4.2. Unramified zeta integrals of
Murase—Sugano type. Let (&,2) € X, (Tp) %
X (T) such that (€E)|, =1. For any Shintani

function S € §(&, =), we define a local zeta integral
of Murase—Sugano type by

local

Zus(s;S) == S(B(g)~"

Go\G

9)la(g)ldg

where dg is the right invariant measure of Gy\G and
| - | is the p-adic absolute value normalized so that
jw| =q!

Remark 4.2.1. The local zeta integral
Zus(s;S) is a local component of a certain global
zeta integral (cf. [MS]). Details will appear in a
forthcoming paper.
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Since any Shintani function S € §(¢, =) can be
regarded as a function on Ky\G/K, it follows from
Lemma 4.1.2 that the value S(3(g) 'g)la(g)® is
independent of a choice of the Iwasawa decompo-
sition of g€ G C G1. For any x = (x1,x2,Xx3) €
(C*)? and s € C, we set

L(x;s) == (1= x3¢") " (1 = x1xsq )"
(1= xox3q ) (1= xaxaxzq )™

We prove the following theorem as an applica-
tion of Theorem 3.4.1.

Theorem 4.2.2. Let (&,E) € X (Tp) x
X (T) such that ((E)|, =1. For the Shintani
function S € S(&E) with S(l4) =1, the local
zeta integral Zyg(s;S) is absolutely
gent if Re(s) > sz := max{log, [|=s||,1og, |Z1Z3]|,
log, ||[Z2E3]|, log, [|E15253]}. Here || - || is the usual
absolute value on C. If Re(s) > sz, the zeta integral
Zyns(s;S) can be evaluated as

L(E;s)

L&Y s+1/2)

Remark 4.2.3. Theorem 4.2.2 is generaliza-
tion of [MS, Theorem 1.6] for the pair (SOs(F),
SOy (F)) of split special orthogonal groups. While
they proved their result without using the explicit
formula of Shintani functions for (SO;(F),
SO4(F)), we compute the local zeta integral
Zs(s; S) using that for (G, Gy).

4.3. Evaluation of the unramified local zeta
integrals. In this subsection, we evaluate the
local zeta integral Zjs¢(s;S) by using the explicit
formula of S € S(&,=). First we state the following
theorem.

Theorem 4.3.1.

conver-

Zys(s;S) =

We have the decomposition
G=| |Ga()K
1>0

Here a(l) := g((0,0,0), (1,1,1)).
For any integrable function F:Gy\G — C
which is right K-invariant, Theorem 4.3.1 yields

/G T @i =3 Faym

where
v == vol(Gy Na(l)Ka(l)™;dg) ™"

We note that the integrand S(5(g ) g)|a(g)]” of the
local zeta integral Zs(s;S) is a function on
Go\G/K. Hence we have
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Zus(s:8) = Y S(B(a(1) ™ all))la(a(l))[ "o

e 1

S(B(a1) " alD)vig ™.

Il
o

Since B(a(l)) 'a(l) € Kpa(l)K, it is enough to com-
pute the volume v; and the value

S(B(a(1) " a(l)) = S(a(D)).

Proposition 4.3.2. Forl >0, we have
(if 1=0),

1
"o {q3l(1 —q%) (if 1>0).

In particular, the generating function for the
sequence {vi}5 is given by

Zvltl = 11 Cét .

1=0 -t
The domain of convergence of the above power
series is |[t]| < ¢73.

From Theorem 3.4.1 and Proposition 4.3.2, we
obtain Theorem 4.2.2.

Remark 4.3.3. Murase-Sugano  obtained
Proposition 4.3.2 as a corollary of computation of
their local zeta integral (see [MS,Lemma 1.12]).
However we can also prove Proposition 4.3.2 by
directly computing the index [K((]l) :Kélﬂ)} for all
1> 0. Here K\ := Gy na(l)Ka(l)™.
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