An explicit formula of the unramified Shintani functions for $(GSp_4, GL_2 \times_{GL_1} GL_2)$ and its application

By Kohta Gejima

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

(Communicated by Kenji FUKAYA, M.J.A., Oct. 12, 2017)

Abstract: Let F be a non-archimedean local field of arbitrary characteristic. In this paper, we announce an explicit formula of the unramified Shintani functions for $(\mathbf{GSp}_4(F), (\mathbf{GL}_2 \times_{\mathbf{GL}_1} \mathbf{GL}_2)(F))$. As an application, we compute a local zeta integral, which represents the spin L-factor of \mathbf{GSp}_4 .

Key words: Shintani functions; automorphic *L*-functions; zeta integrals.

1. Introduction. Let F be a non-archimedean local field of arbitrary characteristic. We announce a result of [G], which is an explicit formula of the unramified Shintani functions, and its application to an unramified local zeta integral of Murase–Sugano type for $(\mathbf{GSp}_4(F),$ $(\mathbf{GL}_2 \times_{\mathbf{GL}_1} \mathbf{GL}_2)(F)$). For a non-archimedean local field F_0 of characteristic 0, Murase–Sugano [MS] introduced a new kind of local zeta integral for the pair $(\mathbf{SO}_n(F_0), \mathbf{SO}_{n-1}(F_0))$ of special orthogonal groups and proved that it represents the standard L-factors of SO_n ([MS, Theorem 1.6]). Shintani functions, which are our main objects, appear in such a local zeta integral of Murase-Sugano type. Later Kato-Murase-Sugano [KMS] gave an explicit formula of the unramified (Whittaker-)Shintani functions for the pair $(\mathbf{SO}_n(F), \mathbf{SO}_{n-1}(F))$ of split special orthogonal groups except for the case where the characteristic of F is 2.

In this note, we announce an explicit formula of the unramified Shintani functions for $(\mathbf{GSp_4}(F), (\mathbf{GL_2} \times_{\mathbf{GL_1}} \mathbf{GL_2})(F))$, where F is of arbitrary characteristic. Also we extend the local zeta integral for the pair $(\mathbf{SO_5}(F_0), \mathbf{SO_4}(F_0))$ of split special orthogonal groups to that for $(\mathbf{GSp_4}(F), (\mathbf{GL_2} \times_{\mathbf{GL_1}} \mathbf{GL_2})(F))$ and prove that our local zeta integral represents the spin L-factor of $\mathbf{GSp_4}$. Here we note that there are two important points about our results. First, we allow F to be of characteristic 2. Our explicit formula in the case where F is of characteristic 2 is not reduced to the

2010 Mathematics Subject Classification. Primary 22E50; Secondary 11F70, 20G25, 43A90.

result in [KMS], although that in the other case is reduced to a special case of their results (see §3.3). Second, our computation for the local zeta integral is more direct, compared to [MS, Theorem 1.6]. Namely we compute the local zeta integral directly by using our explicit formula (see Remark 4.2.3 and Remark 4.3.3).

Until the end of this paper, F is a non-archimedean local field of arbitrary characteristic. We denote by $\mathfrak{o} = \mathfrak{o}_F$ the ring of integers of F, and we let \mathfrak{p} be the maximal ideal of \mathfrak{o} . Let q be the number of elements of $\mathfrak{o}/\mathfrak{p}$. Once and for all, we fix a generator ϖ of \mathfrak{p} . We denote by 1_n the identity matrix of size n.

- **2. Preliminaries.** In this section, we introduce basic notation and objects which will be used throughout this paper.
- **2.1.** Basic objects. Let G be an affine algebraic group over F defined by

$$\mathbf{G} = \mathbf{GSp}_4$$

$$= \{ g \in \mathbf{GL}_4 | {}^t gJg = \nu(g)J, {}^\exists \nu(g) \in \mathbf{GL}_1 \}.$$

Here

$$J = \left(\begin{array}{c} 1_2 \\ -1_2 \end{array}\right).$$

Let \mathbf{P} be a minimal parabolic subgroup of \mathbf{G} defined by

$$\mathbf{P} = \mathbf{TN} = \left\{ \left(egin{array}{c|ccc} * & * & * & * & * \ & * & * & * \ \hline & & * & * \ \hline & & * & * \ \end{array}
ight) \in \mathbf{G}
ight\},$$

where T is a maximal (split) torus of G defined by

$$\mathbf{T} = \{ t(t_1, t_2, t_3) | t_1, t_2, t_3 \in \mathbf{GL}_1 \},$$

$$t(t_1, t_2, t_3) := \operatorname{diag}(t_1, t_2, t_3 t_1^{-1}, t_3 t_2^{-1})$$

and N is the unipotent radical of P.

Let \mathbf{G}_0 be an affine algebraic group over F defined by

$$\mathbf{G}_0 = \mathbf{GL}_2 \times_{\mathbf{GL}_1} \mathbf{GL}_2$$

= $\{(g_1, g_2) \in \mathbf{GL}_2 \times \mathbf{GL}_2 | \det(g_1) = \det(g_2) \}.$

We often identify \mathbf{G}_0 with a subgroup of \mathbf{G} via the embedding

$$\mathbf{G}_0\ni \left(\begin{pmatrix}a_1&b_1\\c_1&d_1\end{pmatrix},\begin{pmatrix}a_2&b_2\\c_2&d_2\end{pmatrix}\right)\mapsto \begin{pmatrix}a_1&b_1\\a_2&b_2\\c_1&d_1\\c_2&d_2\end{pmatrix}\in \mathbf{G}.$$

Then $\mathbf{P}_0 = \mathbf{P} \cap \mathbf{G}_0 = \mathbf{T}_0 \mathbf{N}_0$ is a minimal parabolic subgroup of \mathbf{G}_0 , where \mathbf{T}_0 is a maximal (split) torus of \mathbf{G}_0 defined by

$$\mathbf{T}_0 = \{ t(t_1', t_2', t_3') | t_1', t_2', t_3' \in \mathbf{GL}_1 \} \ (= \mathbf{T})$$

and N_0 is the unipotent radical of P_0 .

We set $G := \mathbf{G}(F)$ and $G_0 := \mathbf{G}_0(F)$. Then $K := G \cap \mathbf{GL}_4(\mathfrak{o})$ and $K_0 := G_0 \cap \mathbf{GL}_4(\mathfrak{o})$ are maximal compact subgroups of G and G_0 , respectively. Let Z be the center of G and Z_0 the center of G_0 . We note that $Z \subset Z_0 \simeq Z \times \{\pm 1\}$.

Let W and W_0 be the Weyl groups of (G, T) and (G_0, T_0) , respectively. Then W has eight elements and W_0 has four elements.

2.2. Satake isomorphism. Throughout this subsection, we put H = G or G_0 and

$$(T_H, N_H, P_H, K_H) = \begin{cases} (T, N, P, K) & \text{if } H = G; \\ (T_0, N_0, P_0, K_0) & \text{if } H = G_0. \end{cases}$$

Let n be a positive integer. A character of $(F^{\times})^n$ is called *unramified* if it is trivial on $(\mathfrak{o}^{\times})^n$. We denote by $X_{nr}((F^{\times})^n)$ the group of unramified characters of $(F^{\times})^n$. We note that $(F^{\times})^3$ is identified with T_H via an isomorphism

$$(F^{\times})^3 \to T_H, \quad (t_1, t_2, t_3) \mapsto t(t_1, t_2, t_3).$$

Then the modulus character δ_{P_H} of P_H is an element of $X_{nr}(T_H) := X_{nr}((F^{\times})^3)$. We sometimes identify $\chi \in X_{nr}(T_H)$ with $(\chi_1, \chi_2, \chi_3) \in X_{nr}(F^{\times})^3$ via

$$\chi(t(t_1, t_2, t_3)) = \chi_1(t_1)\chi_2(t_2)\chi_3(t_3).$$

Also, we often identify $X_{nr}(T_H)$ with $(\mathbf{C}^{\times})^3$ via

$$X_{nr}(T_H) \to (\mathbf{C}^{\times})^3, \chi \mapsto (\chi_1(\varpi), \chi_2(\varpi), \chi_3(\varpi)).$$

Let $\mathcal{H}(H, K_H)$ be the Hecke algebra of (H, K_H) over \mathbb{C} , that is, $\mathcal{H}(H, K_H)$ is a \mathbb{C} -algebra consisting of continuous functions $\varphi \in C_c(H)$ with compact support which satisfies

$$\varphi(k_1xk_2) = \varphi(x) \quad (\forall x \in H, \forall k_1, k_2 \in K_H).$$

The multiplication of $\varphi_1, \varphi_2 \in \mathcal{H}(H, K_H)$ is given by

$$(\varphi_1 * \varphi_2)(x) = \int_H \varphi_1(xh^{-1})\varphi_2(h)dh \quad (\forall x \in H),$$

where dh is the Haar measure of H with $vol(K_H; dh) = 1$. We note that the identity element of $\mathcal{H}(H, K_H)$ is ch_{K_H} . Here ch_A is the characteristic function of a subset $A \subset H$.

We recall the Satake isomorphism using the above notation (see [C, 4.2], for example). Let $\mathbf{C}[T_H/T_H \cap K_H]$ be the group algebra of $T_H/T_H \cap K_H$. Then we have $\mathrm{Hom}_{\mathbf{C}\text{-alg}}(\mathbf{C}[T_H/T_H \cap K_H], \mathbf{C}) \simeq (\mathbf{C}^{\times})^3 \simeq X_{nr}(T_H)$. The Weyl group W_H of (H, T_H) acts on T_H by

$$w \cdot t := wtw^{-1} \quad (\forall w \in W_H, \forall t \in T_H).$$

The action is extended linearly to an action of W_H on $\mathbf{C}[T_H/T_H \cap K_H]$. The Satake transform ω : $\mathcal{H}(H,K_H) \to \mathbf{C}[T_H/T_H \cap K_H]$ is defined by

$$\omega(\varphi)(t) := \delta_{P_H}(t)^{1/2} \int_{N_H} \varphi(tn) dn \quad (\forall t \in T_H)$$

for all $\varphi \in \mathcal{H}(H, K_H)$. Here dn is the Haar measure of N_H with $\operatorname{vol}(N_H \cap K_H; dn) = 1$.

Theorem 2.2.1.

- i) The Satake transform ω is an algebra isomorphism from $\mathcal{H}(H, K_H)$ onto the subalgebra $\mathbf{C}[T_H/T_H \cap K_H]^{W_H}$ of $\mathbf{C}[T_H/T_H \cap K_H]$ consisting of the invariants of the Weyl group W_H ;
- ii) Any unitary homomorphism from $\mathcal{H}(H, K_H)$ to \mathbf{C} is of the form

$$\omega_{\chi}(\varphi) := \int_{T_H} \omega(\varphi)(t)\chi(t)dt \quad (\forall \varphi \in \mathcal{H}(H, K_H))$$

for some $\chi \in X_{nr}(T_H)$. Here dt is the Haar measure of T_H with $\operatorname{vol}(T_H \cap K_H; dt) = 1$. Moreover, we have $\omega_{\chi} = \omega_{\chi'}$ if and only if there exists $w \in W_H$ such that $\chi' = w\chi$. Here W_H acts on $X_{nr}(T_H)$ by $(w\chi)(t) := \chi(w^{-1} \cdot t)$. In particular, we have a bijection

$$X_{nr}(T_H)/W_H \xrightarrow{\sim} \mathrm{Hom}_{\mathbf{C}\text{-alg}}(\mathcal{H}(H,K_H),\mathbf{C}),$$

 $\chi \mapsto \omega_{\chi}.$

3. Shintani functions. In this section, we

introduce the unramified Shintani functions for (G, G_0) and state their explicit formula.

3.1. The definition of Shintani functions. For any $\xi \in X_{nr}(T_0), \Xi \in X_{nr}(T)$, we define $\mathcal{S}(\xi,\Xi)$ to be the **C**-vector space consisting of all continuous functions $S: G \to \mathbf{C}$ such that

$$[L(\phi)R(\Phi)S](x) := \int_{G_0} dg' \int_G dg \ \phi(g')S(g'^{-1}xg)\Phi(g)$$
$$= \omega_{\mathcal{E}}(\phi)\omega_{\Xi}(\Phi)S(x)$$

for all $(\phi, \Phi) \in \mathcal{H}(G_0, K_0) \times \mathcal{H}(G, K)$. Here dg (resp. dg') is the Haar measure of G (resp. G_0) with $\operatorname{vol}(K; dg) = 1$ (resp. $\operatorname{vol}(K_0; dg') = 1$). We call an element of $\mathcal{S}(\xi, \Xi)$ an unramified Shintani function of type (ξ, Ξ) , or simply a Shintani function. The following lemma immediately follows from the definition.

Lemma 3.1.1. Any Shintani function $S \in \mathcal{S}(\xi,\Xi)$ has the following properties:

- i) S(k'xk) = S(x) for all $k' \in K_0, x \in G, k \in K$;
- ii) $S(z_0xz) = \xi(z_0)^{-1}\Xi(z)S(x)$ for all $z_0 \in Z_0, x \in G, z \in Z$. In particular, we have $S(\xi,\Xi) = \{0\}$ if $(\xi\Xi)|_Z \not\equiv 1$.
 - 3.2. A Cartan type decomposition. We set

$$\Lambda^{+} := \{ \mu = (\mu_{1}, \mu_{2}, \mu_{3}) \in \mathbf{Z}^{3} | \ \mu_{1} \ge \mu_{2}, 2\mu_{2} \ge \mu_{3} \},$$

$$\Lambda_{0}^{++} := \{ \mu' = (\mu'_{1}, \mu'_{2}, \mu'_{1}) \in \mathbf{Z}^{3} | \mu'_{1} \ge 0, 2\mu'_{2} \ge \mu'_{1} \}$$

and

$$\eta := \begin{pmatrix} 1 & 1 & & 1 \\ & 1 & 1 & & \\ & & 1 & & \\ & & & -1 & 1 \end{pmatrix} \in G.$$

For all $\lambda = (\lambda_1, \lambda_2, \lambda_3) \in \mathbf{Z}^3$, we set $t(\lambda) := t(\varpi^{\lambda_1}, \varpi^{\lambda_2}, \varpi^{\lambda_3})$.

Theorem 3.2.1 (Cartan type decomposition).

$$G = \bigsqcup_{\substack{\mu \in \Lambda^+ \\ \mu' \in \Lambda_0^{++}}} K_0 g(\mu', \mu) K, \quad g(\mu', \mu) = t(\mu') \eta t(\mu).$$

This theorem is proved in the same way as [KMS, Theorem 5.2]. See [G] for more details. From Lemma 3.1.1 (i) and Theorem 3.2.1, it follows that the Shintani functions are determined by the values on the set $\{g(\mu',\mu) \mid \mu' \in \Lambda_0^{++}, \mu \in \Lambda^+\}$.

3.3. A relation between Shintani functions on $\operatorname{GSp}_4(F)$ and $\operatorname{SO}_5(F)$. As mentioned in Introduction, if F is not of characteristic 2, the unramified Shintani functions on $\operatorname{GSp}_4(F)$ are related to those on $\operatorname{SO}_5(F)$. To explain the relation-

ship, we first recall an accidental isomorphism between \mathbf{PGSp}_4 and \mathbf{SO}_5 . Here the split special orthogonal group \mathbf{SO}_n and an embedding $\mathbf{SO}_4(F) \hookrightarrow \mathbf{SO}_5(F)$ are defined exactly in the same way as [KMS, §3]. We consider an F-vector space

$$V = \{ X \in M_4(F) | XJ - J^t X = 0, Tr(X) = 0 \}$$

with a quadratic form $Q(X) = \text{Tr}(X^2)/4$. Then (V, Q) has the following basis $\{f_i\}_{i=1}^5$:

We identify V with F^5 via $f_i \mapsto {}^t(0, \dots, 0, \overset{\imath}{1}, 0, \dots, 0)$. Let $O(V, Q) \subset GL_5(F)$ be the orthogonal group of the quadratic space (V, Q). Then we have a group homomorphism $\gamma_5 : G \to O(V, Q)$ defined by

$$\gamma_5(g)X := w_2 g w_2^{-1} X (w_2 g w_2^{-1})^{-1} \ (\forall (g, X) \in G \times V),$$

where

$$w_2 := \left(\begin{array}{c|c} 1 & & & \\ \hline & & 1 \\ & -1 & \end{array}\right).$$

The above homomorphism induces an isomorphism $\overline{\gamma_5}: PGSp_4(F) = G/Z \stackrel{\sim}{\sim} \mathbf{SO}_5(F)$. In particular, we have $\overline{\gamma_5}(t(t_1,t_2,t_3)Z) = d_5(t_1t_2t_3^{-1},t_1t_2^{-1}) \in T_5$ for any $t(t_1,t_2,t_3) \in T$, where T_n is the maximal torus of $\mathbf{SO}_n(F)$ defined in [KMS, 3.2] and $d_5(s_1,s_2) := \operatorname{diag}(s_1,s_2,1,s_2^{-1},s_1^{-1})$.

Let $\xi = (\xi_1, \xi_2, \xi_3) \in X_{nr}(T_0), \Xi = (\Xi_1, \Xi_2, \Xi_3) \in X_{nr}(T)$. In this subsection, we assume that $(\xi\Xi)|_Z \equiv 1$ (see Lemma 3.1.1). We fix an unramified character $\chi \in X_{nr}(F^{\times})$ such that $\chi(\varpi)^2 = \Xi(\varpi 1_4)$ and set $\widehat{\chi} := \chi \circ \nu : G \to \mathbf{C}^{\times}$. Then $\widehat{\chi}|_T$ is an unramified character of T. We note that $\widehat{\chi}$ is K-bi-invariant and $\widehat{\chi}^n = \widehat{\chi}^n$ for every $n \in \mathbf{Z}$. Since $\widehat{\chi}(t(t_1, t_2, t_3)) = \chi(t_3)$, $\widehat{\chi}$ is identified with $(1, 1, \chi) \in X_{nr}(F^{\times})^3$. We

set $\Xi_{\chi^{-1}} := \Xi \widehat{\chi}^{-1} = (\Xi_1, \Xi_2, \Xi_3 \chi^{-1})$ and $\xi_{\chi} := \xi \widehat{\chi} = (\xi_1, \xi_2, \xi_3 \chi)$. We note that any $S \in \mathcal{S}(\xi_{\chi}, \Xi_{\chi^{-1}})$ satisfies S(zx) = S(x) for all $(z,x) \in Z \times G$. Hence we can regard $S \in \mathcal{S}(\xi_{\chi}, \Xi_{\chi^{-1}})$ as a Shintani function on $\mathbf{SO}_5(F)$ via the accidental isomorphism. Indeed, $\mathcal{S}(\xi_{\chi}, \Xi_{\chi^{-1}})$ is naturally identified with $\mathcal{S}(\theta_{\xi,\chi}, \Theta_{\Xi,\chi^{-1}})_{\mathbf{SO}_5}$, where $\mathcal{S}(\theta_{\xi,\chi}, \Theta_{\Xi,\chi^{-1}})_{\mathbf{SO}_5}$ is the space of unramified Shintani functions on $\mathbf{SO}_5(F)$ considered in [KMS] and $(\theta_{\xi,\chi}, \Theta_{\Xi,\chi^{-1}}) := ((\xi_1 \xi_2 \xi_3 \chi, \xi_1 \xi_3 \chi), (\Xi_1 \Xi_2 \Xi_3 \chi^{-1}, \Xi_1 \Xi_3 \chi^{-1}))$ is an unramified character of $T_4 \times T_5$. For a Shintani function $S \in \mathcal{S}(\xi_{\chi}, \Xi_{\chi^{-1}})$, we set $S^{\natural} := \widehat{\chi}S$. We note that $S(1_4) = 1$ if and only if $S^{\natural}(1_4) = 1$.

$$\mathcal{S}(\theta_{\xi,\chi},\Theta_{\Xi,\chi^{-1}})_{\mathbf{SO}_5} = \mathcal{S}(\xi_\chi,\Xi_{\chi^{-1}}) \xrightarrow{\sim} \mathcal{S}(\xi,\Xi), \quad S \mapsto S^{\natural}.$$

Hence we can obtain an explicit formula of the unramified Shintani functions on $\mathbf{GSp}_4(F)$ from that on $\mathbf{SO}_5(F)$ if F is not of characteristic 2.

3.4. An explicit formula of Shintani functions. We define a rational function $c_S(\xi,\Xi)$ on $X_{nr}(T_0) \times X_{nr}(T) \simeq (\mathbf{C}^{\times})^3 \times (\mathbf{C}^{\times})^3$ by

$$c_S(\xi,\Xi) := \frac{\mathbf{b}(\xi,\Xi)}{\mathbf{d}'(\xi)\mathbf{d}(\Xi)},$$

where

$$\mathbf{d}(\Xi) := (1 - \Xi_1 \Xi_2)(1 - \Xi_1 \Xi_2^{-1})(1 - \Xi_1)(1 - \Xi_2),$$

$$\mathbf{d}'(\xi) := (1 - \xi_1)(1 - \xi_2),$$

$$\mathbf{b}(\xi, \Xi) := (1 - q^{-1/2} \xi_1 \xi_3 \Xi_1 \Xi_3)(1 - q^{-1/2} \xi_2 \xi_3 \Xi_1 \Xi_3)$$

$$\times (1 - q^{-1/2} \xi_1 \xi_2 \xi_3 \Xi_1 \Xi_3)(1 - q^{-1/2} \xi_1 \xi_2 \xi_3 \Xi_2 \Xi_3)$$

$$\times (1 - q^{-1/2} \xi_1 \xi_3 \Xi_1 \Xi_2 \Xi_3)(1 - q^{-1/2} \xi_2 \xi_3 \Xi_1 \Xi_2 \Xi_3)$$

$$\times (1 - q^{-1/2} \xi_3 \Xi_1 \Xi_2 \Xi_3)(1 - q^{-1/2} \xi_1 \xi_2 \xi_3 \Xi_1 \Xi_2 \Xi_3).$$

Then the main result of [G] is as follows:

Theorem 3.4.1. Let (ξ, Ξ) be any element of $X_{nr}(T_0) \times X_{nr}(T)$. Then we have

$$\dim_{\mathbf{C}} \mathcal{S}(\xi,\Xi) = \begin{cases} 1 & (if \ (\xi\Xi)|_Z \equiv 1), \\ 0 & (otherwise). \end{cases}$$

If $(\xi\Xi)|_Z \equiv 1$, for any nonzero Shintani function $S \in \mathcal{S}(\xi,\Xi)$ we have $S(1_4) \neq 0$, and the Shintani function $W_{\xi,\Xi} \in \mathcal{S}(\xi,\Xi)$ with $W_{\xi,\Xi}(1_4) = 1$ is given by

$$W_{\xi,\Xi}(g(\lambda',\lambda)) = \frac{(\Xi_1 \Xi_2 \Xi_3^2)^{\lambda_3}}{(1-q^{-2})^2} \sum_{\substack{w \in W \\ w' \in W}} c_S(w'\xi, w\Xi)$$

$$\times ((w\Xi)^{-1}\delta^{1/2})(t(\lambda))((w'\xi)^{-1}\delta_0^{1/2})(t(\lambda'))$$

for all $(\lambda', \lambda) \in \Lambda_0^{++} \times \Lambda^+$. Here δ (resp. δ_0) is the modulus character of P (resp. P_0).

If F is not of characteristic 2, Theorem 3.4.1 is reduced to a special case of [KMS, Theorem 10.9] by Proposition 3.3.1. However, since Theorem 3.4.1 in the case where F is of characteristic 2 is not reduced to their results, we do their proof all over again. See [G] for a proof which contains the case where F is of characteristic 2.

Remark 3.4.2. There are several papers studying (Whittaker–) Shintani functions on $\mathbf{GSp}_4(F)$ or related groups other than [KMS]. For instance, Whittaker–Shintani functions for $(\mathbf{Sp}_{2n}(F), \mathbf{Jacobi\ group})$ were studied by Murase [M] for n=2. Later Murase's result was generalized to any n by Shen [S]. Also, Bump–Friedberg–Furusawa [BFF] studied Bessel functions on $\mathbf{GSp}_4(F)$ and Hironaka [H] studied Shintani functions for $(\mathbf{Sp}_4(F), \mathbf{SL}_2(F) \times \mathbf{SL}_2(F))$.

- 4. Local zeta integrals of Murase–Sugano type. In this section, we introduce a local zeta integral of Murase–Sugano type for (G, G_0) and prove that the local zeta integral represents the local spin L-factor of \mathbf{GSp}_4 . Details will appear in a forthcoming paper.
- **4.1.** Iwasawa decomposition of $\mathbf{GSpin_6}$. In order to define a local zeta integral of Murase–Sugano type, we consider the Iwasawa decomposition of the split general spin group $\mathbf{GSpin_6}$. But, for simplicity, in this paper we consider a group G_1 defined as follows instead of $\mathbf{GSpin_6}(F)$:

$$G_1 := \{ g \in GL_4(F) | \det(g) \in (F^{\times})^2 \}.$$

Remark 4.1.1. The split general spin group $\mathbf{GSpin}_6(F)$ is realized as follows:

GSpin₆(F) = {
$$(g, r) \in GL_4(F) \times F^{\times} | \det(g) = r^2$$
 }.

Hence we have an isomorphism

$$\mathbf{GSpin}_6(F)/\{(1_4,\pm 1)\} \xrightarrow{\sim} G_1.$$

Let P_{22} be a maximal parabolic subgroup of G_1 given by

$$P_{22} = \left\{ \begin{pmatrix} * & * & * & * \\ & * & * & * \\ \hline * & * & * & * \\ & * & * & * \end{pmatrix} \in G_1 \right\} = M_{22}N_{22}.$$

Here M_{22} is a Levi subgroup of P_{22} given by

$$M_{22} = \left\{ \mathbf{m}_1(a, b) \mid a, b \in GL_2(F), \det(ab) \in (F^{\times})^2 \right\},$$

$$\mathbf{m}_1(a,b) := \begin{pmatrix} 1 & & & \\ & 1 & \\ & -1 & \\ & & 1 \end{pmatrix} \begin{pmatrix} a & \\ & b \end{pmatrix} \begin{pmatrix} 1 & & \\ & 1 & \\ & -1 & \\ & & 1 \end{pmatrix}^{-1},$$

and N_{22} is the unipotent radical of P_{22} . We note that every $\mathbf{m}_1(a,b) \in M_{22}$ has a factorization

$$\mathbf{m}_1(a,b) = \mathbf{m}_1(\alpha^{-1} \cdot a, b) \mathbf{m}_1(\alpha \cdot 1_2, 1_2), \ \alpha^2 = \frac{\det(a)}{\det(b)}$$

Namely, for any $m_1 \in M_{22}$ we have a factorization

$$m_1 = \beta(m_1) \operatorname{diag}(\alpha(m_1), 1, \alpha(m_1), 1)$$

for some $(\beta(m_1), \alpha(m_1)) \in G_0 \times F^{\times}$. We note that such a factorization of m_1 is not unique. We set $K_1 := G_1 \cap GL_4(\mathfrak{o})$. Then every $g \in G_1$ has an Iwasawa decomposition

$$g = m_1(g)n_1(g)k_1(g)$$

$$=\beta(m_1(g))\operatorname{diag}(\alpha(m_1(g)),1,\alpha(m_1(g)),1)n_1(g)k_1(g)$$

for some $(m_1(g), n_1(g), k_1(g)) \in M_{22} \times N_{22} \times K_1$. For all $g \in G_1$, we fix such a factorization of g and set $\beta(g) = \beta(m_1(g))$ and $\alpha(g) = \alpha(m_1(g))$. The following lemma is easily checked by direct calculation.

Lemma 4.1.2. The subgroup $P_{22} \cap K_1$ of G_1 is equal to the intersection of K_1 and

$$\begin{pmatrix} 1 & & & \\ & 1 & \\ & -1 & \\ & & 1 \end{pmatrix} \begin{pmatrix} GL_2(\mathfrak{o}) & M_2(\mathfrak{o}) \\ & GL_2(\mathfrak{o}) \end{pmatrix} \begin{pmatrix} 1 & & & \\ & 1 & \\ & -1 & \\ & & 1 \end{pmatrix}^{-1}.$$

4.2. Unramified local zeta integrals of Murase–Sugano type. Let $(\xi,\Xi) \in X_{nr}(T_0) \times X_{nr}(T)$ such that $(\xi\Xi)|_Z \equiv 1$. For any Shintani function $S \in \mathcal{S}(\xi,\Xi)$, we define a local zeta integral of Murase–Sugano type by

$$Z_{MS}(s;S) := \int_{G_0 \setminus G} S(\beta(g)^{-1}g) |\alpha(g)|^s d\dot{g}$$

where $d\dot{g}$ is the right invariant measure of $G_0 \setminus G$ and $|\cdot|$ is the \mathfrak{p} -adic absolute value normalized so that $|\varpi| = q^{-1}$.

Remark 4.2.1. The local zeta integral $Z_{MS}(s; S)$ is a local component of a certain global zeta integral (*cf.* [MS]). Details will appear in a forthcoming paper.

Since any Shintani function $S \in \mathcal{S}(\xi, \Xi)$ can be regarded as a function on $K_0 \backslash G/K$, it follows from Lemma 4.1.2 that the value $S(\beta(g)^{-1}g)|\alpha(g)|^s$ is independent of a choice of the Iwasawa decomposition of $g \in G \subset G_1$. For any $\chi = (\chi_1, \chi_2, \chi_3) \in (\mathbf{C}^{\times})^3$ and $s \in \mathbf{C}$, we set

$$L(\chi;s) := (1 - \chi_3 q^{-s})^{-1} (1 - \chi_1 \chi_3 q^{-s})^{-1} (1 - \chi_2 \chi_3 q^{-s})^{-1} (1 - \chi_1 \chi_2 \chi_3 q^{-s})^{-1}.$$

We prove the following theorem as an application of Theorem 3.4.1.

Theorem 4.2.2. Let $(\xi,\Xi) \in X_{nr}(T_0) \times X_{nr}(T)$ such that $(\xi\Xi)|_Z \equiv 1$. For the Shintani function $S \in \mathcal{S}(\xi,\Xi)$ with $S(1_4) = 1$, the local zeta integral $Z_{MS}(s;S)$ is absolutely convergent if $\operatorname{Re}(s) > s_\Xi := \max\{\log_q \|\Xi_3\|, \log_q \|\Xi_1\Xi_3\|, \log_q \|\Xi_1\Xi_2\Xi_3\|\}$. Here $\|\cdot\|$ is the usual absolute value on \mathbf{C} . If $\operatorname{Re}(s) > s_\Xi$, the zeta integral $Z_{MS}(s;S)$ can be evaluated as

$$Z_{MS}(s;S) = \frac{L(\Xi;s)}{L(\xi^{-1};s+1/2)}.$$

Remark 4.2.3. Theorem 4.2.2 is generalization of [MS, Theorem 1.6] for the pair $(\mathbf{SO}_5(F), \mathbf{SO}_4(F))$ of split special orthogonal groups. While they proved their result without using the explicit formula of Shintani functions for $(\mathbf{SO}_5(F), \mathbf{SO}_4(F))$, we compute the local zeta integral $Z_{MS}(s;S)$ using that for (G,G_0) .

4.3. Evaluation of the unramified local zeta integrals. In this subsection, we evaluate the local zeta integral $Z_{MS}(s;S)$ by using the explicit formula of $S \in \mathcal{S}(\xi,\Xi)$. First we state the following theorem.

Theorem 4.3.1. We have the decomposition

$$G = \bigsqcup_{l \ge 0} G_0 a(l) K.$$

Here a(l) := g((0,0,0),(l,l,l)).

For any integrable function $F: G_0 \backslash G \to \mathbf{C}$ which is right K-invariant, Theorem 4.3.1 yields

$$\int_{G_0 \setminus G} F(g) d\dot{g} = \sum_{l=0}^{\infty} F(a(l)) v_l,$$

where

$$v_l := \text{vol}(G_0 \cap a(l)Ka(l)^{-1}; dg')^{-1}.$$

We note that the integrand $S(\beta(g)^{-1}g)|\alpha(g)|^s$ of the local zeta integral $Z_{MS}(s;S)$ is a function on $G_0\backslash G/K$. Hence we have

$$Z_{MS}(s;S) = \sum_{l=0}^{\infty} S(\beta(a(l))^{-1}a(l))|\alpha(a(l))|^{s}v_{l}$$
$$= \sum_{l=0}^{\infty} S(\beta(a(l))^{-1}a(l))v_{l}q^{-ls}.$$

Since $\beta(a(l))^{-1}a(l) \in K_0a(l)K$, it is enough to compute the volume v_l and the value

$$S(\beta(a(l))^{-1}a(l)) = S(a(l)).$$

Proposition 4.3.2. For $l \geq 0$, we have

$$v_l = \begin{cases} 1 & (if \ l = 0), \\ q^{3l}(1 - q^{-2}) & (if \ l > 0). \end{cases}$$

In particular, the generating function for the sequence $\{v_l\}_{l\geq 0}$ is given by

$$\sum_{l=0}^{\infty} v_l t^l = \frac{1 - qt}{1 - q^3 t} \,.$$

The domain of convergence of the above power series is $||t|| < q^{-3}$.

From Theorem 3.4.1 and Proposition 4.3.2, we obtain Theorem 4.2.2.

Remark 4.3.3. Murase–Sugano obtained Proposition 4.3.2 as a corollary of computation of their local zeta integral (see [MS, Lemma 1.12]). However we can also prove Proposition 4.3.2 by directly computing the index $[K_0^{(l)}:K_0^{(l+1)}]$ for all $l \ge 0$. Here $K_0^{(l)}:=G_0 \cap a(l)Ka(l)^{-1}$.

Acknowledgments. The author would like to express his gratitude to Prof. Tomonori

Moriyama for his valuable comments. This work was supported by JSPS KAKENHI Grant Number JP15J01163.

References

- [BFF] D. Bump, S. Friedberg and M. Furusawa, Explicit formulas for the Waldspurger and Bessel models, Israel J. Math. **102** (1997), 125–177.
- [C] P. Cartier, Representations of p-adic groups: a survey, in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, 111–155, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979.
- [G] K. Gejima, An explicit formula of the unramified Shintani functions for $(\mathbf{GSp_4}, \mathbf{GL_2} \times_{\mathbf{GL_1}} \mathbf{GL_2})$, J. Number Theory 183 (2018), 84–132.
- H] Y. Hironaka, Spherical functions on Sp₂ as a spherical homogeneous $\mathrm{Sp}_2 \times (\mathrm{Sp}_1)^2$ -space, J. Number Theory **112** (2005), no. 2, 238–286.
- [KMS] S. Kato, A. Murase and T. Sugano, Whittaker– Shintani functions for orthogonal groups, Tohoku Math. J. (2) 55 (2003), no. 1, 1–64.
- M] A. Murase, On an explicit formula for Whittaker-Shintani functions on Sp₂, Abh. Math. Sem. Univ. Hamburg **61** (1991), 153– 162.
- [MS] A. Murase and T. Sugano, Shintani function and its application to automorphic *L*-functions for classical groups. I. The case of orthogonal groups, Math. Ann. **299** (1994), no. 1, 17–56.
- S] X. Shen, The Whittaker-Shintani functions for symplectic groups, Int. Math. Res. Not. IMRN 2014, no. 21, 5769-5831.