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Abstract: We discuss the resurgence of formal series solutions of nonlinear differential

and difference equations of level 1. We derive an estimate for iterated convolution products. We

describe the possible location of the singularities of their Borel transforms.
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1. Introduction. This is an announcement

of our forthcoming paper [10], the main subject of

which is the resurgence of the formal series solution

of

d’

dx
¼ F ðx�1; ’Þ;ð1Þ

with F ðx�1; ’Þ 2 Cnfx�1; ’g satisfying the condi-

tions

F ð0; 0Þ ¼ 0 and detð@’F ð0; 0ÞÞ 6¼ 0:

Such an equation has a unique formal solution of

the form ’ðxÞ ¼
P

k�1 ’kx
�k 2 x�1Cn½½x�1��. As is

mentioned in [5], [6] and [7], ’ðxÞ is resurgent, i.e.,

the formal Borel transform

’̂ð�Þ :¼
X1
j¼1

’j
�j�1

ðj� 1Þ!

of ’ðxÞ is analytically continuable along any path

avoiding locally discrete subsets in C. (Cf. [5], [6],

[7] and [8].) Further, in [4], finer resurgent structure

of ’ðxÞ and transseries solutions of (1) was studied

under non-resonance conditions using staircase

distributions. Correspondingly, the case of differ-

ence equations was discussed in [11]. (See also [1]

and [2].)

In this article, we study the singular locus of

’̂ð�Þ, including the resonant case, developing the

method in [9] (see also [3], [13], [14] and [12]): We

derive an estimate of iterated convolution products

(Theorem 2.4), which reflect an iteration proce-

dure for constructing ’̂ð�Þ. Since ’̂ð�Þ can be

written by a sum of iterated convolution products,

employing the estimates, we obtain the following

theorem.

Theorem 1.1. Let � ¼ f�LgL2R�0
be the

discrete filtered set defined by

�L ¼ f� 2 C j detð� þ @’F ð0; 0ÞÞ ¼ 0; j�j � Lg:ð2Þ

Then, the formal series solution ’ðxÞ 2 x�1Cn½½x�1��
of (1) is ��1-resurgent.

For the definition of ��1-resurgence, the read-

er is referred to [9]. This means that ’̂ð�Þ can be

analytically continued along any path which starts

from 0 and avoids f!1 þ � � � þ !r j r � 1; !j 2
�Lj ; L1 þ � � � þ Lr ¼ Lg, where L is the length of

the path. See Theorem 3.2 for the case of difference

equations.

2. Iterated convolution of endlessly con-

tinuable functions. In [9], we discussed analytic

properties of a convolution product �̂1 � � � � � �̂k of

endlessly continuable functions �̂1; � � � ; �̂k. How-

ever, this was not sufficient to handle actual

problems (including induction procedures in partic-

ular). In this section, we systematically study con-

volution products described by iteration diagrams,

which we call iterated convolution products.

2.1. Iteration diagram.

Definition 2.1. Let T ¼ ðV ;EÞ be a directed

tree diagram, where V (resp. E) is the set of vertices

(resp. edges) of T . We call T iteration diagram if

T satisfies the condition that any vertex v 2 V has

at most one outgoing edge. T denotes the set of

iteration diagrams.

Since T 2 T is connected and has no cycles, we

have

Lemma 2.2. Each T 2 T has a vertex u such
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that, for any vertex v 2 V n fug, there exists a path

v ¼ v1 ! v2 ! � � � ! vk ¼ u ðk � 2Þ.
Since such a vertex u in Lemma 2.2 is unique,

we call it root of T and denote it by v̂. We call a

vertex v leaf of T if v has no incoming edge and

denote the set of leaves of T by L. We assign each

vertex v a weight wv defined as the cardinal of fv0 2
L j 9 a path v0 ¼ v1 ! � � � ! vk ¼ v ðk � 2Þg if v =2 L
and wv ¼ 1 if v 2 L. We obtain from the definition

of the weight that wv̂ ¼ jLj. We set

T k :¼ fT 2 T j jT j ¼ kg ðk � 1Þ:

2.2. Iterated convolution. We follow the

notations in [9]. (See Section 3 of [9] for the

definitions of the �-endless Riemann surface p� :

ðX�; 0�Þ ! ðC; 0Þ and K�;L
� .) Let � be a discrete

filtered set and take entire functions ff̂vgv2V and

�-continuable functions f�̂vgv2V with T ¼ ðV ;EÞ 2
T k ðk � 1Þ. We construct f�̂vgv2V from ff̂vgv2V and

f�̂vgv2V by the following rule:

�̂v :¼ �̂v f̂v �
Y
u!v

�
�̂u

 !
ðv 2 V Þ;ð3Þ

where
Y
u!v

�
�̂u is the convolution product of �̂u over

all the vertices u 2 V that have an edge u! v and,

when v 2 L, we regard it as the unit �. We will

mostly be interested in �̂v̂. We set

�T :¼
n
ðsvÞv2V 2 Rk

�0

��� X
u!v

su � sv; sv̂ � 1
o

and ½�T � 2 E kðRkÞ denotes the corresponding inte-

gration current, where the sum
X
u!v

is taken over all

the vertices u 2 V that have an edge u! v. We

define the orientation of �T so thatZ
�T

^
v2V

dsv ¼
1

k!

holds. We fix � > 0 such that �2� ¼ � and set

U :¼ f� 2 C j j�j < 2�g:
We take a neighborhood Uv of 0�v

2 X�v
so that

p�v
jUv

: Uv !
�
U;

where �v :¼ ��wv ðv 2 V Þ. Let L v ¼ ðp�v
jUv
Þ�1 and

consider, for � 2 U , the map

~Dð�Þ : ðsvÞv2V 7! ðL vðsv�ÞÞv2V 2 XT
� :¼

Y
v2V

X�v

defined on a neighborhood of �T in Rk. We denote

by ~Dð�Þ#½�T � 2 E kðXT
�Þ the push-forward of ½�T � by

~Dð�Þ. Then, we obtain the following representation

of �̂v̂:

Lemma 2.3. Let T ¼ ðV ;EÞ 2 T k ðk � 1Þ
and define

�T :¼
Y
v2V
ðp��v

�̂vÞð�vÞf̂v �v �
X
u!v

�u

 ! ! ^
v2V

d�
v
;

where
^
v2V

d�
v

is the pullback of the k-form
^
v2V

d�v in

XT
� by

Y
v2V

p�v
: XT

� ! Ck and �v ¼ p�v
ð�
v
Þ ðv 2 V Þ.

Then

ð1 � �̂v̂Þð�Þ ¼ ~Dð�Þ#½�T �ð�T Þ

holds for � 2 U.

The following estimate is essential in the proof

of the resurgence of formal series solutions of (1):

Theorem 2.4. Let � be a discrete filtered set

and let �; L > 0 be reals such that �2� ¼ �. Then

there exist c; �0 > 0 such that �0 � � and, for every

T 2 T and for every entire functions ff̂vgv2V and

�-continuable functions f�̂vgv2V , the function �̂v̂

defined by the rule (3) belongs to R̂�v̂
and satisfies

the following estimates:

sup
K�;L

�v̂

jp��v̂
ð1 � �̂v̂Þj

� ck

k!
sup

ðLv=LÞv2V
2�T

Y
v2V

sup
K�0 ;Lv

�v

jp��v
�̂vj sup

j�j�Lv
jf̂vj:

Remark 2.5. Since there exists a natural

morphism qv : X�v
! X� and qvðK

�0;Lv
�v
Þ 	 K�0;Lv

� , we

have

sup
K�0 ;Lv

�v

jp��v
�̂vj � sup

K�0 ;Lv
�

jp���̂vj:

3. Resurgence of formal series solu-

tions. In this section, we discuss the resurgence

of the formal series solution

’ ¼
’ð1Þ

..

.

’ðnÞ

0
BB@

1
CCA 2 x�1Cn½½x�1��

of (1). Regarding (1) as an equation for ~’ðxÞ :¼
x’ðxÞ � ’1, we may assume without loss of general-

ity that

@‘’F ð0; 0Þ ¼ 0

for ‘ ¼ ð‘1; � � � ; ‘nÞ 2 Zn
�0 with j‘j :¼ ‘1 þ � � � þ ‘n �

2. We decompose
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F ðx�1; ’Þ ¼ F0ðx�1Þ þ @’F ð0; 0Þ � ’þ
X
j‘j�1

F‘ðx�1Þ’‘

with F0ð0Þ ¼ F‘ð0Þ ¼ 0. We set P ð�Þ :¼ �� �
@’F ð0; 0Þ. Applying the Borel transform, (1) is

rewritten as follows:

P ð�Þ’̂ ¼ F̂0 þ
X
j‘j�1

F̂‘ � ’̂�‘:ð4Þ

We inductively determine ’̂k ðk � 1Þ by

’̂1 :¼ P�1F̂0;

’̂kþ1 :¼ P�1
Xk
j¼1

X
j‘j¼j

F̂‘ �
X

k1þ���þkj
¼k

’̂
ð‘Þ
k1;���;kj ;

where ’̂
ð‘Þ
k1;���;kj is a convolution product of

’̂
ðmÞ
ki

��� 1þ
Xm�1

p¼1

‘p � i �
Xm
p¼1

‘p; 1 � m � n
( )

:

Then, ’̂ ¼
X
k�1

’̂k gives a solution of (4). We use the

following finer decomposition of ’̂:

Lemma 3.1. There exists a decomposition of

’̂k ¼
XNk

j¼1

’̂k;j such that the following properties are

satisfied:

(a) To each component of ’̂k;j, there exists T ¼
ðV ;EÞ 2 T k such that ’̂k;j is written by �̂v̂ as in

Theorem 2.4 with f�̂vgv2V (resp. ff̂vgv2V ) com-

ponents of P�1 (resp. F̂‘ ðj‘j � k� 1Þ).

(b) There exists a constant C > 0 such that Nk �
Ck ðk � 1Þ.
Let � ¼ f�LgL2R�0

be the discrete filtered set

defined by (2). Since all the components of P�1

(resp. F̂‘) are �-continuable (resp. entire), we

obtain from Theorem 2.4 and Lemma 3.1 the fol-

lowing estimates: There exists C > 0 such that

sup
K�;L

��k

jp���k ’̂kj �
Ck

k!

holds for k � 1. Therefore, p
�
��1 ’̂ ¼

X1
k¼1

p
�
��1 ’̂k con-

verges on K�;L
��1 for every �; L > 0, and hence

��1-resurgence of ’ follows.

By totally the same discussion, we obtain the

resurgence of a formal series solution ’ðxÞ 2
x�1Cn½½x�1�� of

’ðxþ 1Þ ¼ F ðx�1; ’ðxÞÞ;ð5Þ

where F ðx�1; ’Þ 2 Cnfx�1; ’g satisfying the condi-

tions

F ð0; 0Þ ¼ 0 and detð1� @’F ð0; 0ÞÞ 6¼ 0:

Theorem 3.2. Let � ¼ f�LgL2R�0
be a dis-

crete filtered set defined by

�L ¼ f� 2 C j detðe�� � @’F ð0; 0ÞÞ ¼ 0; j�j � Lg:

Then, a formal series solution ’ðxÞ 2 x�1Cn½½x�1��
of (5) is ��1-resurgent.
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