A remark on the decomposition theorem for direct images of canonical sheaves tensorized with semipositive vector bundles

By Taro Fujisawa
Department of Mathematics, School of Engineering, Tokyo Denki University, 5 Senju-Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan
(Communicated by Masaki Kashiwara, M.J.A., June 13, 2016)

Abstract

The purpose of this short note is to give a remark on the decomposition theorem for direct images of canonical sheaves tensorized with Nakano semipositive vector bundles. Although our result is a direct consequence of Takegoshi's work in [3], it was not stated explicitly in [3]. Here we give the precise statement and the proof.

Key words: Decomposition theorem; semipositive vector bundles.

The decomposition theorem for direct images of canonical sheaves was proved by J. Kollár [1, Theorem 3.1]. Inspired by the work of S . Matsumura [2], here we note that the decomposition theorem also holds for direct images of canonical sheaves tensorized with Nakano semipositive vector bundles. Although Theorem 1 below is a direct consequence of Takegoshi's results in [3], it was not stated explicitly there. Therefore we give the precise statement of the decomposition theorem and prove it explicitly here. We remark that Theorem 1 below immediately implies the weaker form of the decomposition theorem [3, I Decomposition Theorem] (cf. Corollary 2).

Theorem 1. Let X be a Kähler manifold of pure dimension, Y a complex analytic space and $f: X \longrightarrow Y$ a proper surjective morphism such that all the connected components of X are mapped surjectively to Y. For a Nakano semipositive vector bundle (E, h) on X, we have an isomorphism

$$
\bigoplus_{q} R^{q} f_{*}\left(\omega_{X} \otimes E\right)[-q] \simeq R f_{*}\left(\omega_{X} \otimes E\right)
$$

in the derived category of \mathcal{O}_{Y}-modules.
Proof. The sheaf of E-valued $C^{\infty}(p, q)$-forms on X is denoted by $\mathcal{A}_{X}^{p, q}(E)$. Then we have the Dolbeault quasi-isomorphism

$$
\omega_{X} \otimes E \longrightarrow\left(\mathcal{A}_{X}^{n, \bullet}(E), \bar{\partial}\right)
$$

which is an f_{*}-acyclic resolution of $\omega_{X} \otimes E$. There-

[^0]fore we have an isomorphism
$$
R f_{*}\left(\omega_{X} \otimes E\right) \simeq\left(f_{*} \mathcal{A}_{X}^{n, \bullet}(E), \bar{\partial}\right)
$$
in the derived category of \mathcal{O}_{Y}-modules.
In the proof of Theorem 6.4 in [3], Takegoshi defined an \mathcal{O}_{Y}-subsheaf $R^{0} f_{*} \mathcal{H}^{n, q}(E)$ of $\operatorname{Ker}(\bar{\partial}$: $\left.f_{*} \mathcal{A}_{X}^{n, q}(E) \rightarrow f_{*} \mathcal{A}_{X}^{n, q+1}(E)\right)$ such that the canonical inclusion
$$
R^{0} f_{*} \mathcal{H}^{n, q}(E) \longrightarrow \operatorname{Ker}\left(\bar{\partial}: f_{*} \mathcal{A}_{X}^{n, q}(E) \rightarrow f_{*} \mathcal{A}_{X}^{n, q+1}(E)\right)
$$
induces an isomorphism of \mathcal{O}_{Y}-modules
\[

$$
\begin{equation*}
R^{0} f_{*} \mathcal{H}^{n, q}(E) \xrightarrow{\simeq} R^{q} f_{*}\left(\omega_{X} \otimes E\right) \tag{1.1}
\end{equation*}
$$

\]

for every q. The composite of the inclusions

$$
\begin{aligned}
R^{0} f_{*} \mathcal{H}^{n, q}(E) & \longrightarrow \operatorname{Ker}\left(\bar{\partial}: f_{*} \mathcal{A}_{X}^{n, q}(E) \rightarrow f_{*} \mathcal{A}_{X}^{n, q+1}(E)\right) \\
& \longrightarrow f_{*} \mathcal{A}_{X}^{n, q}(E)
\end{aligned}
$$

is denoted by φ^{q}. Then φ^{q} defines a morphism of complexes

$$
R^{0} f_{*} \mathcal{H}^{n, q}(E)[-q] \longrightarrow f_{*} \mathcal{A}_{X}^{n, \bullet}(E)
$$

for every q. Since we have the isomorphism (1.1) for every q, we obtain a quasi-isomorphism

$$
\bigoplus_{q} \varphi^{q}: \bigoplus_{q} R^{0} f_{*} \mathcal{H}^{n, q}(E)[-q] \longrightarrow f_{*} \mathcal{A}_{X}^{n, \bullet}(E)
$$

by taking the direct sum for all q. Combining with the isomorphism

$$
\bigoplus_{q} R^{q} f_{*}\left(\omega_{X} \otimes E\right)[-q] \longleftarrow \bigoplus_{q} R^{0} f_{*} \mathcal{H}^{n, q}(E)[-q],
$$

we obtain an isomorphism
$\bigoplus_{q} R^{0} f_{*} \mathcal{H}^{n, q}(E)[-q]$

$$
\bigoplus_{q} R^{q} f_{*}\left(\omega_{X} \otimes E\right)[-q] \quad f_{*} \mathcal{A}_{X}^{n, \bullet}(E) \simeq R f_{*}\left(\omega_{X} \otimes E\right)
$$

in the derived category as desired.
As a corollary of the theorem above, we have the following:

Corollary 2. In addition to the situation in Theorem 1, let $g: Y \longrightarrow Z$ be any morphism of complex analytic spaces. Then we have

$$
\bigoplus_{p+q=n} R^{p} g_{*} R^{q} f_{*}\left(\omega_{X} \otimes E\right) \simeq R^{n}(g \cdot f)_{*}\left(\omega_{X} \otimes E\right)
$$

for every n. In particular, we have

$$
\begin{equation*}
\bigoplus_{p+q=n} \mathrm{H}^{p}\left(Y, R^{q} f_{*}\left(\omega_{X} \otimes E\right)\right) \simeq \mathrm{H}^{n}\left(X, \omega_{X} \otimes E\right) \tag{2.1}
\end{equation*}
$$

for every n.
Remark 3. For the case of X being compact, the decomposition (2.1) of the cohomology groups is proved by S. Matsumura [2, Corollary 1.2].

Acknowledgments. The author would like to thank Professor Osamu Fujino and Professor Shin-ichi Matsumura for their helpful discussion.

References

[1] J. Kollár, Higher direct images of dualizing sheaves. II, Ann. of Math. (2) 124 (1986), no. 1, 171-202.
[2] S. Matsumura, A vanishing theorem of KollárOhsawa type, Math. Ann. (2016), DOI: 10.1007/s00208-016-1371-8.
[3] K. Takegoshi, Higher direct images of canonical sheaves tensorized with semi-positive vector bundles by proper Kähler morphisms, Math. Ann. 303 (1995), no. 3, 389-416.

[^0]: 2010 Mathematics Subject Classification. Primary 14F05; Secondary 32J25.

