A remark on the decomposition theorem for direct images of canonical sheaves tensorized with semipositive vector bundles

By Taro FUJISAWA

Department of Mathematics, School of Engineering, Tokyo Denki University, 5 Senju-Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan

(Communicated by Masaki KASHIWARA, M.J.A., June 13, 2016)

Abstract: The purpose of this short note is to give a remark on the decomposition theorem for direct images of canonical sheaves tensorized with Nakano semipositive vector bundles. Although our result is a direct consequence of Takegoshi's work in [3], it was not stated explicitly in [3]. Here we give the precise statement and the proof.

Key words: Decomposition theorem; semipositive vector bundles.

The decomposition theorem for direct images of canonical sheaves was proved by J. Kollár [1, Theorem 3.1]. Inspired by the work of S. Matsumura [2], here we note that the decomposition theorem also holds for direct images of canonical sheaves tensorized with Nakano semipositive vector bundles. Although Theorem 1 below is a direct consequence of Takegoshi's results in [3], it was not stated explicitly there. Therefore we give the precise statement of the decomposition theorem and prove it explicitly here. We remark that Theorem 1 below immediately implies the weaker form of the decomposition theorem [3, I Decomposition Theorem] (cf. Corollary 2).

Theorem 1. Let X be a Kähler manifold of pure dimension, Y a complex analytic space and $f: X \longrightarrow Y$ a proper surjective morphism such that all the connected components of X are mapped surjectively to Y. For a Nakano semipositive vector bundle (E, h) on X, we have an isomorphism

$$\bigoplus_{q} R^{q} f_{*}(\omega_{X} \otimes E)[-q] \simeq R f_{*}(\omega_{X} \otimes E)$$

in the derived category of \mathcal{O}_Y -modules.

Proof. The sheaf of *E*-valued $C^{\infty}(p,q)$ -forms on *X* is denoted by $\mathcal{A}_X^{p,q}(E)$. Then we have the Dolbeault quasi-isomorphism

$$\omega_X \otimes E \longrightarrow (\mathcal{A}_X^{n,\bullet}(E), \overline{\partial}),$$

which is an f_* -acyclic resolution of $\omega_X \otimes E$. There-

fore we have an isomorphism

$$Rf_*(\omega_X \otimes E) \simeq (f_*\mathcal{A}_X^{n,\bullet}(E),\partial)$$

in the derived category of \mathcal{O}_Y -modules.

In the proof of Theorem 6.4 in [3], Takegoshi defined an \mathcal{O}_Y -subsheaf $R^0 f_* \mathcal{H}^{n,q}(E)$ of $\operatorname{Ker}(\overline{\partial}: f_* \mathcal{A}_X^{n,q}(E) \to f_* \mathcal{A}_X^{n,q+1}(E))$ such that the canonical inclusion

$$R^0 f_* \mathcal{H}^{n,q}(E) \longrightarrow \operatorname{Ker}(\overline{\partial} : f_* \mathcal{A}^{n,q}_X(E) \to f_* \mathcal{A}^{n,q+1}_X(E))$$

induces an isomorphism of \mathcal{O}_Y -modules

(1.1)
$$R^0 f_* \mathcal{H}^{n,q}(E) \xrightarrow{\simeq} R^q f_*(\omega_X \otimes E)$$

for every q. The composite of the inclusions

$$R^{0}f_{*}\mathcal{H}^{n,q}(E) \longrightarrow \operatorname{Ker}(\overline{\partial}: f_{*}\mathcal{A}_{X}^{n,q}(E) \to f_{*}\mathcal{A}_{X}^{n,q+1}(E))$$
$$\longrightarrow f_{*}\mathcal{A}_{X}^{n,q}(E)$$

is denoted by φ^q . Then φ^q defines a morphism of complexes

$$R^0 f_* \mathcal{H}^{n,q}(E)[-q] \longrightarrow f_* \mathcal{A}^{n,\bullet}_X(E)$$

for every q. Since we have the isomorphism (1.1) for every q, we obtain a quasi-isomorphism

$$\bigoplus_{q} \varphi^{q} : \bigoplus_{q} R^{0} f_{*} \mathcal{H}^{n,q}(E)[-q] \longrightarrow f_{*} \mathcal{A}_{X}^{n,\bullet}(E)$$

by taking the direct sum for all q. Combining with the isomorphism

$$\bigoplus_{q} R^{q} f_{*}(\omega_{X} \otimes E)[-q] \longleftarrow \bigoplus_{q} R^{0} f_{*} \mathcal{H}^{n,q}(E)[-q],$$

we obtain an isomorphism

²⁰¹⁰ Mathematics Subject Classification. Primary 14F05; Secondary 32J25.

$$\bigoplus_{q} R^{0} f_{*} \mathcal{H}^{n,q}(E)[-q]$$

$$\swarrow$$

$$\bigoplus_{q} R^{q} f_{*}(\omega_{X} \otimes E)[-q] \qquad f_{*} \mathcal{A}_{X}^{n,\bullet}(E) \simeq R f_{*}(\omega_{X} \otimes E)$$

in the derived category as desired.

As a corollary of the theorem above, we have the following:

Corollary 2. In addition to the situation in Theorem 1, let $g: Y \longrightarrow Z$ be any morphism of complex analytic spaces. Then we have

$$\bigoplus_{p+q=n} R^p g_* R^q f_*(\omega_X \otimes E) \simeq R^n (g \cdot f)_* (\omega_X \otimes E)$$

for every n. In particular, we have

(2.1)
$$\bigoplus_{p+q=n} \mathrm{H}^{p}(Y, R^{q}f_{*}(\omega_{X} \otimes E)) \simeq \mathrm{H}^{n}(X, \omega_{X} \otimes E)$$

for every n.

Remark 3. For the case of X being compact, the decomposition (2.1) of the cohomology groups is proved by S. Matsumura [2, Corollary 1.2].

Acknowledgments. The author would like to thank Professor Osamu Fujino and Professor Shin-ichi Matsumura for their helpful discussion.

References

- J. Kollár, Higher direct images of dualizing sheaves. II, Ann. of Math. (2) **124** (1986), no. 1, 171–202.
- [2] S. Matsumura, A vanishing theorem of Kollár-Ohsawa type, Math. Ann. (2016), DOI: 10.1007/s00208-016-1371-8.
- [3] K. Takegoshi, Higher direct images of canonical sheaves tensorized with semi-positive vector bundles by proper Kähler morphisms, Math. Ann. 303 (1995), no. 3, 389–416.

No. 7]