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An estimate on volumes of trajectory-balls for Kihler magnetic fields

By Qingsong SHI*) and Toshiaki ADACHI*™

(Communicated by Kenji FUKAYA, M.J.A., March 14, 2016)

Abstract:

By applying a comparison theorem on trajectory-harps, we give an estimate of

volumes of trajectory-balls for Kédhler magnetic fields from below under an assumption that
sectional curvatures of the underlying Kéhler manifold are bounded from above.
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1. Introduction. Let (M,J,(,)) be a com-
plete Kéhler manifold with complex structure J.
We say constant multiples of the Kahler form B on
M to be Kdihler magnetic fields ([1], see also [6,8]).
Under the action of a Ké&hler magnetic field
B, = kB (k € R), the motion of a charged particle
of unit mass and of unit speed is expressed as a
smooth curve v on M which is parameterized by its
arc-length and that satisfies V43 = xJ7¥, where V;
denotes the covariant differentiation along v with
respect to the Riemannian connection V. We call
such a smooth curve a trajectory for B,. Since
trajectories for the trivial magnetic field By = 0 are
geodesics, we may say that trajectories are extend-
ed objects of geodesics which are closely related
with the complex structure. Needless to say that
geodesics play quite an important role in the study
of Riemannian manifolds. We hence consider that
trajectories give us some clues to study Kéahler
manifolds from the Riemannian geometric point of
view.

In this paper we study volumes of trajectory-
balls which correspond to geodesic balls. In [4] Bai
and the second author studied volume elements of
trajectory-balls which are related with magnetic
Jacobi fields along trajectories. By use of compar-
ison theorems on magnetic Jacobi fields correspond-
ing to Rauchi’s comparison theorem ([2]), they gave
estimates of volume elements from above and from
below. We here study volumes of trajectory-balls by
another way. We consider the relationship between
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trajectories and geodesics through trajectory-harps.
A trajectory-harp is a variation of geodesics which
consists of a trajectory-segment and geodesics join-
ing initial point and points of the segment. We give
an estimate on volumes of trajectory-balls from
below with the aid of the comparison theorem on
string-lengths of trajectory-harps given in [3] and of
estimates on volumes of geodesic balls.

2. Trajectory-balls. Let M be a complete
Kahler manifold. For a unit tangent vector v € UM,
we denote by ~, the trajectory for a Kéhler
magnetic field B, with initial condition §(0) = v.
Given a point p € M, we define a magnetic expo-
nential map B,exp,:T,M — M on the tangent
space by

’Vw/”w“(”w”)v if w # Op7
D, if w= Op'

We call Bj(p) = {Bexp,(tv) |0 <t <r,veU,M}
a trajectory-ball of arc-radius r centered at p. Since
By exp, is the ordinary exponential map exp,, we
see that BY(p) is a geodesic ball of radius r.

At an arbitrary point p € M, we define the
B.-injectivity radius ¢x(p) at p by

B exp,(w) = {

te(p) = sup{r > 0 [ By exp,|[p () is injective}.

Clearly, to(p) is the ordinary injectivity radius at p.
On a simply connected Kéahler manifold M whose
sectional curvatures satisfy Riemj; <c¢ <0, it is
known that ¢, (p) = oo for k with |k| < /|¢| (see [3]).

Our interest lies on giving an estimation on
volumes of trajectory-balls of arc-radius less than
the By-injectivity radius. For constants x and ¢, we
define two functions

s.(t;0), cu(t;c) [0,27r/\/ K2 + c} —R

in the following manner:
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sﬁtc

(2/\/f-e2—+c> sin (\/n?—+ct/2)
¢ (t;¢) = cos (\/THt/Q),
when k% + ¢ > 0,
su(tic) =t, c(t;c) =1,
when k2 + ¢ = 0, and
(2/\/|Z|“—?2) sinh (mtﬁ)
¢ (t; ¢) = cosh (\/W t/2),

when k2?4 ¢ < 0. Here, we regard 27/Vk%+c as
infinity when k2 4+ ¢ < 0. These functions satisfy the
relation

s(t;c) =

(K2 4 ) {sx(t; 0)}* + 4{cu(t;0)}* = 4.

Our result is the following

Theorem 1. Let M be a complete Kdihler
manifold of complexr dimension n whose sectional
curvatures satisfy Riemy; < ¢ with some constant c.
Then at an arbitrary point p € M, for an arbitrary r
with 0 < r < (p), the volume of a trajectory-ball
Bi(p) of arc-radius r for a mnon-trivial Kdhler
magnetic field B, is estimated from below as follows:

(wWan—1)" " vol(B%(p))

> /0 r{s,{(t; Y e, (t: c){l - z{sn(t; c)}z}n_ldt,

where wo,_1 denotes the volume of a unit sphere
S52n=1 i R,

3. Trajectory-harps and proof of Theo-
rem 1. We study trajectory-balls by studying the
relationship between trajectories and geodesics. Let
v :[0,T] — M be a trajectory-segment for a Kdhler
magnetic field B,. Here, we may take T to be either
a positive constant or infinity. We suppose (t) #
~v(0) for all ¢ with 0 <t <T. We say a smooth
variation of geodesics a, : [0,7] x R — M to be a
trajectory-harp associated with ~ if it is defined as
follows:

i) a,(t,0) = 1(0),
ii) when ¢t =0, the curve s — a,(0,s) is the geo-

desic of initial vector 4(0),

iii) when ¢ # 0, the curve s — a,(t,s) is the geo-
desic of unit speed joining v(0) and ~(t).

We note that even if the trajectory-segment = is not

contained in the geodesic ball of the injectivity

radius at v(0) centered at v(0) we can define a

smooth variation of geodesics satisfying the above
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conditions. For small ¢t (0 <t < Tjp), the geodesic
s+ ay(t,s) is the minimal geodesic joining ~(0)
and v(t). We have a smooth curve [0,Ty) — U,M
into the unit tangent space. When ~(Tp) is not
a conjugate point of «(0) along the geodesic of
initial vector lim; 7 %% (t,0) € TpyM, as the ex-
ponential map exp, ) : Ty)M — M is a local diffeo-
morphism at this vector, we can extend this curve
smoothly.

In [3], the second author showed a comparison
theorem on trajectory-harps by applying Rauchi’s
comparison theorem on Jacobi fields. We say the
length £, (¢) of the geodesic segment s — «,(¢,s) of
~(0) to ~(t) the string-length of the trajectory-harp
a, at y(t). On a complex space form CM"(c) of
constant holomorphic sectional curvature ¢, which
is a complex projective space CP"(c), a complex
Euclidean space C" or a complex hyperbolic space
CH"(c) according as c is positive, zero or negative,
the function £, (¢;¢) of string-length of trajectory-
harps for a Kéhler magnetic field B, is given by
the relation so(4(t;¢);¢) =s.(t;¢) for 0<t<
T/VK? + c.

That is,

1) when ¢ > 0,

1 1 1 1
—sin=+/cl,(t;c) = ——=sin- VK% + ct,
Ve 2\/_ (t:c) VK2 +e 2

2) whenc:Oandn#O,

Li(t;c) =

—sin —

|ff|t
3) when ¢ < 0,
1
Vel
B 1
R
if |&| < +/]¢,
1 1
sinh —+/|c| s (t;¢) = =
Vied 2
Vlel, and
11
——sinh = /|| £ (t; ¢)
Vied 2
11
=——sin— k2 +ct,

VEZ+ec 2
if |k] > /]¢-

By these relations we find that the string-cosine

1
sinh§ Vel 4 (t;¢)
1
Sinh§ Vel — K2 t,

if |k| =
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dl,(t; c)/dt of trajectory-harps for B, on CM"(c) is
given as

dl(t;c)  VK*+e cos3 VK2 + ct
dt KQ—‘rCCOSQ%\//iQ—I—Ct
when k2 +¢ > 0,
dl.(t; c) 2

dt e+ 4’

when k% + ¢ =0, and
dl(t;e)  \/le| — K2 cosh VK% +ct
dt \/\C|cosh2%\/,‘i2—|—ct—/{2

when k2 4 ¢ > 0. Therefore, we have
dly(t;e) |4 — (K> +c){sa(t; o)}
e 4 — cfs,(t;0)}
2¢,(t; ¢)
4 — cfse(t;0)}”

The function of string-length of a trajectory-
harp is estimated from below by the function of
string-length of a trajectory-harp on a complex
space form.

Proposition 1 ([3]). Let~v:[0,T] — M be a
trajectory-segment v for a Kdhler magnetic field B,
on a Kahler manifold M. If sectional curvatures of
M satisfy Riemy; < ¢ with some constant ¢ and ~y lies
in the geodesic ball B?o(y(o))(V(O)) centered at v(0)
and of injectivity radius at v(0), then the function
£,(t) of string-length of the trajectory-harp associ-
ated with v is estimated as £,(t) > {.(t;c) for
0 <t <min(T,n/VK?+c).

Even if v is not contained in the closure of the
geodesic ball B?U(W(O))(’Y(O))’ the argument in [3] goes
through if we have a smooth trajectory-harp
associated with v. Thus, we can weaken a condition
on the trajectory-segment ~.

We now show Theorem 1. Proposition 1 guar-
antees that the trajectory-ball Bf(p) contains the
geodesic ball B) .. (p). Since r<iy(p), we see
Li(r;¢) < 19(p), hence we have

vol(Bi(p)) > vol(BY . (p))-

On the other hand, as we have Riem,; < ¢, Bishop’s
comparison theorem on volumes of geodesic balls
shows that
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¢
vol(Bg(P)) > wgn,l/ {50(5;40)}2”71(&
0
for 0 < £ < ty(p) (see [5,7], for example). Here, we

note that

(1/4/c) sin/cs, if ¢>0,
so(s;4e) = ¢ s, ifc=0,

(1/4/]¢]) sinh+/|c|s, if ¢ <O,

= s0(s;¢)c(s;¢)
=sp(s;¢)4/1 — 2 {s0(s;¢)}2

Therefore, by putting s = £,(t; ¢) we obtain

(W277,71)71 VOI(B¢ (p))

> (wan1) VOI(BZ(T;C) (p))
2n—1

> [tsor {1 Sator) o

- [steutepoy

(2n-1)/2 dgh

— dt

x {1 _2{50(@(75;(:);@}2} dt

2n—1

= /or{ﬁﬂ(“c)}%l{l Z{sﬂ,(t;C)}Z} : Cif: dt

- /or{s”(tE C)}Q"_l{l - 2 {s.(t; C)}Q}n_1

9 1/2
x {1 _= :c{sm(t;c)}Q} dt,

and get the assertion of Theorem 1.

When M is compact, we can give the following
by making use of Gromov’s comparison theorem on
volumes of geodesic balls (see [7], for example).

Theorem 2. Let M be a compact Kdihler
manifold of diameter R and of complex dimension n.
Suppose its sectional curvatures satisfy Riemy; < ¢
with some constant c. Then at an arbitrary point
p € M, for an arbitrary r with 0 <r < .(p), the
volume of a trajectory-ball Bf (p) of arc-radius r for
a non-trivial Kdahler magnetic field B, is estimated
from below as follows:
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vol(B;(p))
vol(M)

Z =R
/0 (s0(s:40) 12" ds
X (/Or{sK(t;C)}?"1 ¢u(t; c)

« {1 - fault c)}z}nldt)

We should note that in this theorem we can
take r so that r < ¢,(p). This point is different from
Theorem 1.

For the sake of comparison, we here recall a
result in [4].

Proposition 2 ([4]). Let M be a complete
Kahler manifold of complex dimension n. Suppose
its sectional curvatures satisfy Riemy; < c with some
constant c. Then at an arbitrary pointp € M, for an
arbitrary r with 0 < r < 1,,(p), we have

vol(B;(p))

> Wap—1 / SH(t; C) Cﬁ(t; C) {5n(t§ 40)}2n—2dt.
0

We note that the assumption on r for Propo-
sition 2 is weaker than the assumption in Theo-
rem 1. But we can not say clearly which estimate is
sharper. When ¢=0 or when n =1, these two
estimates are equivalent. For the function s, (t;c)
we have the following: If ¢; < ¢, we see s,(t;c1) >
s, (t;¢) for 0 <t < w/VK?+ co. Also, [4] gives an
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estimate of volumes of trajectory-balls from above.
But we can not give a similar estimate from above
when n > 2, because we do not have a comparison
theorem on string-length from above.
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