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Non-norm-Euclidean fields in basic Z;-extensions
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Abstract:

We shall deal with infinite towers of cyclic fields of genus number 1 in which a

prime number [ > 5 is totally ramified. Our main result states that, if m is a positive divisor of
I —1 less than (I —1)/2, then for any positive integer n, the cyclic field of degree mi® with
conductor ["*! is not norm-Euclidean. In particular, it follows that, for any positive integer n, the

(real) cyclic field of degree I" with conductor

ln+1

is not norm-Euclidean and that the (imaginary)

cyclic field of degree 14 with conductor 49, whose class number is known to equal 1, is not norm-

Euclidean.

Key words:
Z-extension.

1. Introduction. Given any finite extension
F of the rational field @ in the complex field C,
we denote by N the norm map from F' to Q. The
field F' will be called norm-Euclidean if, for every
pair (a,3) of algebraic integers in F with 8 # 0,
there exists an algebraic integer v in F' such that
|INp(a —v8)| < |Np(B)|. As is well known, when F
is norm-Euclidean, the class number of F equals 1.
We call F' a cyclic field if F' is a cyclic extension
over Q.

Among interesting results of McGown [Mc]|,
Theorem 4.1 of the paper implies that, for any
prime number [ > 5, the cyclic field of degree [ with
conductor 2 is not norm-Euclidean. The proof of
the theorem, which is partly based on McGown’s
variant [Mc, Lemma 4.2] of Heilbronn’s criterion
(cf. [H]), enables us to extend the above assertion to
the following.

Proposition 1. Letl be a prime number not
less than 5, and m a positive divisor of [ —1 less
than (I —1)/2. Then, for any positive integer n, the
cyclic field of degree ml™ with conductor I"*! is not
norm-FEuclidean.

This result particularly implies that, if [ is a
prime number not less than 5, then for any positive
integer n, the cyclic field of degree I" with conductor
I"*! is not norm-Euclidean. On the other hand, the
real cyclic field of degree 2" with conductor 272 for
each n € {1,2,3} and the cyclic field of degree 3
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with conductor 9 are known to be norm-Euclidean
(cf. Cerri [C], Cohn and Deutsch [CD], Davenport
[D]). Furthermore, certain real cyclic fields whose
conductors are prime-powers, including all non-
norm-FEuclidean cyclic fields given by Proposition 1
for m =1, are expected to have class number 1;
indeed, there exist various known results that let us
hold such expectations (cf. Bauer [B], Buhler,
Pomerance and Robertson [BPR|, [HH], van der
Linden [Li], Masley [Ma], Miller [Mi], etc.). Prop-
osition 1 seems remarkable in view of the facts
mentioned above.

Throughout the rest of the present paper, we
fix a prime number [ > 5 and a positive divisor m
of [ — 1. Let k be the cyclic field of degree m with
conductor dividing I. We denote by Z; the ring of
l-adic integers, and by B, the unique abelian
extension of @ in C whose Galois group over @ is
topologically isomorphic to the additive group of
Z;. For each positive integer n, let B, denote the
subfield of B, of degree [". It then follows that
not only is [ totally ramified in the compositum kB,
(in C) but kB, is the cyclic field of degree ml" with
conductor ", Naturally k and kB, for all positive
integers n form an increasing sequence of the
intermediate fields between k and kB, other than
kBs. For each finite extension E of @ in C, the
compositum E B, is called the basic Z;-extension
over E, the extension EB./E being an abelian
extension with Galois group topologically isomor-
phic to the additive group of Z;. Thus Proposition 1
can be restated as follows: If m < (I—1)/2, then
kB, is not norm-Euclidean for any positive integer
n, namely, no finite extension of k other than k in
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the basic Z;-extension over k is norm-Euclidean.

2. Preliminaries and proof. For the cyclic
field B, of degree ! with conductor 12, let A/ denote
the set of the absolute norms of all non-zero integral
ideals of B;. To prove Proposition 1, we first give a
modification of [Mc, Lemma 4.2]:

Lemma 1. Let m' be a positive divisor of
l—1, and k¥ a cyclic field of degree m’ in which l is
totally ramified in the case m' > 1. Assume that
there exists a positive integer a < [ satisfying a ¢ N,
l—a¢ N,anda=g" (mod l) with some integer g.
Then k' B,, is not norm-Euclidean for any positive
integer n.

Proof. Let n be any positive integer, and let
F' = KB, For a contradiction, we suppose that F’
is norm-Euclidean, whence the class number of F” is
equal to 1. The condition on k' implies that [ is
totally ramified in F’. Let [ be the prime ideal of
F’ dividing [, and A an algebraic integer in F’
generating the principal ideal [. Since F’ is norm-
Euclidean, there exists an algebraic integer ~ in F”
which satisfies |Np(g—~A)| <|Np(A)|=1 We
put @ =g—~vA, so that we have a =g (mod I).
Hence N (o) = g™ (mod 1), i.e., Np(a) = ¢ =
g™ (mod I). Consequently, Ng(a)=a (mod l).
Since |Np(a)| <! and 0<a <, it follows that
Np(a) =a or Np(a) =a— 1. We thus deduce that
a or | — a coincides with the absolute norm of the
norm for F'/B; of the principal ideal of F’
generated by «. This contradicts the assumption
of the lemma. O

Lemma 2. Every integer b in N less than |
fulfills "1 =1 (mod 1?).

Proof. If a prime divisor v of an integer a in N
is not decomposed in By, then ¢ or [ divides a
according to whether v remains prime or is ramified
in By, so that one has a > [. Further, for any prime
number v/ # [, the order of v modulo 2 is equal to
the order of the decomposition group of v/ with
respect to the cyclotomic extension Q(eZ’Ti/ZQ)/Q.
Hence, for every integer bin A with 1 < b < [, every
prime divisor w of b is decomposed in B; and
therefore satisfies w'™! =1 (mod ?). In addition, it
is obvious that 1 € A and 1'"' =1 (mod ?). O

For each integer a relatively prime to I, let r(a)
denote the order of @ modulo [. Let R be the set of
positive integers a < [ satisfying a = ¢™ (mod 1) for
some integer g. We easily find that a positive
integer a < I belongs to R if and only if r(a) divides
the integer (I —1)/m.
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Lemma 3. Ifm < (I—1)/2, then {a,l —a}N
N = 0 with some element a of R.

Proof. Assume that m < (I—1)/2, ie., 2<
(I = 1)/m. Then there exists a prime number v such
that v* divides (I — 1)/m, where v* denotes 4 or v
according as v = 2 or v > 2. Simultaneously we can
choose a positive integer o' <1 with r(a’) = 0"
Since a’ belongs to R, the conclusion of the lemma
holds if ' ¢ N and | — o’ ¢ N'. We now consider the
case where an element b of {da’,l —a'} NN exists.
Note that {r(a’),r(l —a’)} = {v*,2v}. We take the
maximal integer j >0 with & <. Let a and c
be respectively the remainder and the quotient of
the division of »*! by I. Obviously, &' =a +Ic,
0<a<land ¢>0. As V' < ["*1/J we have ¢ <
'3, Furthermore, since [ > 5, it is clear that '/ <
[ —2if j > 2. In the case j = 1, the relation b/*! =
a+1(l—1) implies that l—a=({+0b)(—-0) >
I+ b, which is impossible. We thus obtain 1 <
¢ <1l—2. On the other hand, as Lemma 2 yields
b-'=1 (mod ?), we see that (a+Ilc)™
B =1 (mod 12), so that o' = (a+1lc) =a
le (mod 2); it then follows that (I—a) = —a! =
—a —lc (mod [?). Hence a' #a (mod?) and
(I—a)' #1—a (mod ). Therefore, by Lemma 2,
we have {a,l —a} NN = 0. As 1 belongs to N, this
implies that a ¢ {1,1— 1}, i.e., r(a) ¢ {1,2}. How-
ever, r(a) divides r(b), an element of {v*,2v}. Thus
r(a) equals v* or 2uv, i.e., {r(a),r(l —a)} = {v*,2v}.
Hence, replacing a by [ — a if necessary, we may
regard a as an element of R. (]

We add that the converse of Lemma 3 is also
true. In fact, if (I — 1)/m < 2, then R C {1,] — 1} or,
equivalently, {a,l —a} NN 31 for every element a
of R.

Proof of Proposition 1. Under the assumption
of the proposition, Lemma 3 shows that there exists
a positive integer a < [ satisfying a¢ N, l —a ¢ N,
and a = ¢™ (mod l) for some integer g. Since [ is
totally ramified in & in the case m > 1, we can take
m and k respectively as m’ and k' of Lemma 1.
Therefore Lemma 1 completes the proof. O

3. Associated results. Let 6 = cos(27/49) x
cos(117/49) cos(367/49). Since By = Q(0) if [ =7,
we see from Proposition 1 that Q(6,v/—7), the
cyclic field of degree 14 with conductor 49, is not
norm-Euclidean. Meanwhile, in [Y], Yamamura
determined all imaginary finite abelian extensions
over Q in C with class number 1. The theorem
of [Y], together with the last table of [Y], tells

[
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us that Q(,v/—7) is the unique imaginary cyclic
field of class number 1 to which Proposition 1 is
applicable.

Next let § be a finite abelian extension over Q
in C. Let §* denote the maximal abelian extension
over @, in the Hilbert class field over § (in C), that
contains §. Then §* coincides with the genus field
(Geschlechterkorper) of § in the sense of Leopoldt
[Le] or the maximal real subfield of this genus field
of § according to whether § is imaginary or real.
The genus number of § is defined as the degree of
§*/F (cf. Furuta [F]), so that the genus number of §
divides the class number of §. Hence § is not norm-
Euclidean if the genus number of § exceeds 1. On
the other hand, § is a cyclic field of genus number 1
if the conductor of § is a power of [ > 5.

From now on, let us deal with cyclic fields of
genus number 1 in which [ is totally ramified and
further a prime number other than [ is ramified. We
denote by t the highest power of 2 dividing [ — 1.
Naturally ¢ > 2 since [ > 5. We denote by U the
union of {4,8} and the set of prime numbers not
equal to [ but congruent to 3 modulo 4. Let K& be
a cyclic field, not contained in the cyclotomic field
Q(e*™/1), such that [ is totally and tamely ramified
in K. Then, essentially by the genus theory of
[Le], the following three conditions turn out to be
equivalent (cf. also [F], Iyanaga and Tamagawa
T)):

(1) the genus number of R is equal to 1,
(2) & is the compositum of a cyclic field in Q(e*™/!)
of odd degree and a real cyclic field of degree

t whose conductor is the product of [ and an

element of U,

(3) for every positive integer n, the genus number

of the cyclic field B, is equal to 1.

Under the condition (2), the ramification index for
R/ Q of the prime number other than [ dividing the
conductor of K coincides with 2, whence R is a real
quadratic extension over a subfield of Q(cos(27/1)).

Proposition 2. Assume that (I —1)/(2m) is
an odd integer greater than 1. Let q be any element
of U, and let K be the compositum of the mazimal
subfield of k with odd degree and the real cyclic field
of degree t with conductor lq. Then KB, is not
norm-FEuclidean for any positive integer n.

Proof. We first note that, by the hypothesis
and the fact stated just above the proposition, the
real cyclic field K is a quadratic extension over k.
As (I —1)/m > 2, Lemma 3 shows that there exists
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an element b of R with {b,] — b} NN = (). When the
divisor r(b) of (I — 1)/m is even, we have r(l — b) =
r(b)/2 since (I —1)/(2m) is an odd integer. Hence
r(b) or r(l —b) divides (I —1)/(2m), namely, b or
[ — bis congruent to ¢°" modulo [ for some integer g.
Furthermore, [ is totally and tamely ramified in K.
The proposition thus holds by Lemma 1 for the case
where m’ = 2m and ¥ = K. O

In the above, K = k(v/Ig) if m is odd. This fact
leads us to state an immediate consequence of
Proposition 2, as follows:

Proposition 3. Take any prime number p #
I with p# 1 (mod 4). Suppose that | =3 (mod 4),
m is odd, and 1> 6m + 1. Then neither kB, (V1)
nor kB,(\/Ip) is norm-Euclidean for any positive
integer n.

We now take a positive integer n. In the case
where [ =1 (mod 4) and [ > 13, Proposition 1 for
m = 2 asserts that B, (V1) is not norm-Euclidean.
In the case where [ =3 (mod 4) and [ > 7, Propo-
sition 3 for m = 1 implies that B, (/) is not norm-
Euclidean. The following simple result is therefore
obtained.

Proposition 4. Whenever 1 > 17, B,,,(\ﬁ) 18
not norm-FEuclidean for any positive integer n.
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