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Abstract: We prove that the class of log canonical rational singularities is closed under

the basic operations of the minimal model program. We also give some supplementary results on

the minimal model program for log canonical surfaces.
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1. Introduction. In this short note, we

prove the following theorems, which are missing

in [3]. This short note is a supplement to [3], [6],

and [4].

Theorem 1.1. Let ðX;�Þ be a log canonical

pair and let f : X ! Y be a projective surjective

morphism such that f�OX ’ OY and that

�ðKX þ�Þ is f-ample. Assume that X has only

rational singularities. Then Y has only rational

singularities.

We can easily prove Theorem 1.1 by the

relative Kodaira type vanishing theorem for log

canonical pairs and Kovács’s characterization of

rational singularities. Of course, the vanishing

theorem for log canonical pairs is nontrivial in the

classical minimal model program (see [10]). How-

ever, now we can freely use such a powerful

vanishing theorem for log canonical pairs (see, for

example, [3] and [5]). Note that we do not assume

that f is birational in Theorem 1.1.

Theorem 1.2. We consider a commutative

diagram

X
φ

f

X+

f+

Y

where ðX;�Þ and ðXþ;�þÞ are log canonical, f and

fþ are projective birational morphisms, and Y is

normal. Assume that

(i) f�� ¼ fþ� �þ,

(ii) �ðKX þ�Þ is f-ample, and

(iii) KXþ þ�þ is fþ-ample.

We further assume that X has only rational

singularities. Then Xþ has only rational singular-

ities.

Theorem 1.2 follows from the well-known neg-

ativity lemma (see, for example, [10, Lemma 3.38]

and [5, Lemma 2.3.27]) and the result on nonra-

tional centers of log canonical pairs due to Alexeev–

Hacon (see [1]), which can be obtained in the

framework of [3].

Remark 1.3. In Theorem 1.2, the log can-

onicity of ðXþ;�þÞ follows from the other condi-

tions of Theorem 1.2 by the negativity lemma

(see, for example, [10, Lemma 3.38] and [5, Lemma

2.3.27]). It is sufficient to assume that Xþ is a

normal variety and �þ is an effective R-divisor on

Xþ such that KXþ þ�þ is R-Cartier.

Note that the singularities of X are not always

rational when ðX;�Þ is only log canonical. More-

over, X is not necessarily Cohen–Macaulay. This is

one of the difficulties when we treat log canonical

pairs. We hope that Theorem 1.1 and Theorem 1.2

will be useful for the study of log canonical pairs.

1.4 (MMP for log canonical pairs with only

rational singularities). Let us discuss the minimal

model program for log canonical pairs with only

rational singularities.

Let ðX;�Þ be a log canonical pair and let � :

X ! S be a projective morphism onto a variety S.

Then we know that we can always run the minimal

model program starting from � : ðX;�Þ ! S (for

the details, see, for example, [3], [2], [9], [6], [5], and

so on). We further assume that X has only rational

singularities. Then, Theorem 1.1 and Theorem 1.2

say that every variety appearing in the minimal

model program starting from � : ðX;�Þ ! S has

only rational singularities.
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From now on, we will study a contraction

morphism more precisely. Let

f : ðX;�Þ ! Y

be a contraction morphism such that

(i) ðX;�Þ is a Q-factorial log canonical pair,

(ii) �ðKX þ�Þ is f-ample, and

(iii) �ðX=Y Þ ¼ 1.

Then we have the following three cases.

Case 1 (Divisorial contraction). f is diviso-

rial, that is, f is a birational contraction which

contracts a divisor. In this case, the exceptional

locus ExcðfÞ of f is a prime divisor on X and

ðY ;�Y Þ is a Q-factorial log canonical pair with

�Y ¼ f��. Moreover, if X has only rational singu-

larities, then Y has only rational singularities by

Theorem 1.1.

Case 2 (Flipping contraction). f is flipping,

that is, f is a birational contraction which is small.

In this case, we can take the flipping diagram:

X
ϕ

f

X+

f+

Y

where fþ is a small projective birational morphism

and

(i0) ðXþ;�þÞ is a Q-factorial log canonical pair

with �þ ¼ ’��,

(ii0) KXþ þ�þ is fþ-ample, and

(iii0) �ðXþ=Y Þ ¼ 1.

By Theorem 1.2, we see that Xþ has only rational

singularities when X has only rational singularities.

For the existence of log canonical flips, see

[2, Corollary 1.2] and [9, Corollary 1.8].

Case 3 (Fano contraction). f is a Fano con-

traction, that is, dimY < dimX. Then Y is Q-fac-

torial and has only log canonical singularities by [6].

Moreover, if X has only rational singularities, then

Y has only rational singularities by Theorem 1.1.

Therefore, the class of Q-factorial log canonical

rational singularities is closed under the minimal

model program.

Let ðX;�Þ be a projective log canonical pair

such that KX þ� is a semiample big Q-Cartier

divisor. Unfortunately, the log canonical model of

ðX;�Þ may have nonrational singularities even

when X has only rational singularities (see Exam-

ple 5.1). This causes some undesirable phenomena

(see Example 5.3).

In this paper, we also give some supplementary

results on the minimal model program for (not

necessarily Q-factorial) log canonical surfaces. We

have:

Theorem 1.5 (see Theorem 4.1). Let ðX;�Þ
be a log canonical surface and let f : X ! Y be a

projective birational morphism onto a normal sur-

face Y . Assume that �ðKX þ�Þ is f-ample. Then

the exceptional locus ExcðfÞ of f passes through no

nonrational singular points of X.

By Theorem 1.5, the minimal model program

for log canonical surfaces discussed in [4, Theorem

3.3] becomes independent of the classification of

numerically lc surface singularities in [10, Theorem

4.7] (see Remark 4.4). When a considered surface

is not Q-factorial, the original proof of [4, Theorem

3.3] uses the fact that a numerically lc surface is

a log canonical surface (see [4, Proposition 3.5 (2)]).

For the proof of this fact, we need a rough

classification of numerically lc surface singularities

in [10, Theorem 4.7] (see the proof of [4, Proposition

3.5 (2)]).

We will work over C, the complex number

field, throughout this short note. We will freely use

the basic notation of the minimal model program as

in [3].

2. Preliminaries. Let us recall the notion of

singularities of pairs. For the details, see [3], [5], and

so on.

2.1 (Singularities of pairs). A pair ðX;�Þ
consists of a normal variety X and an effective

R-divisor � on X such that KX þ� is R-Cartier. A

pair ðX;�Þ is called kawamata log terminal (resp.

log canonical) if for any projective birational

morphism f : Y ! X from a normal variety Y ,

aðE;X;�Þ > �1 (resp. � �1) for every E, where

KY ¼ f�ðKX þ�Þ þ
X
E

aðE;X;�ÞE:

Let ðX;�Þ be a log canonical pair and let W be a

closed subset of X. Then W is called a log canonical

center of ðX;�Þ if there are a projective birational

morphism f : Y ! X from a normal variety Y and

a prime divisor E on Y such that aðE;X;�Þ ¼ �1

and that fðEÞ ¼W . Let ðX;�Þ be a log canonical

pair. If there exists a projective birational mor-

phism f : Y ! X from a smooth variety Y such

that the f-exceptional locus ExcðfÞ and ExcðfÞ [
Supp f�1

� � are simple normal crossing divisors on Y

and that aðE;X;�Þ > �1 for every f-exceptional
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divisor E, then ðX;�Þ is called a divisorial log

terminal pair.

For surfaces, we can define aðE;X;�Þ without

assuming that KX þ� is R-Cartier. Then we can

define numerically lc surfaces and numerically dlt

surfaces (see [10, Notation 4.1]). Precisely speaking,

we have:

2.2 (Numerically lc and dlt due to Kollár–Mori

(see [10, Notation 4.1])). Let X be a normal

surface and let � be an R-divisor on X whose

coefficients are in ½0; 1�. Let f : Y ! X be a projec-

tive birational morphism from a smooth variety Y

with the exceptional divisor E ¼
P

i Ei. Then the

system of linear equations

Ej �
X
i

aiEi

 !
¼ Ej � ðKY þ f�1

� �Þ

for any j has a unique solution. We write this as

KY þ f�1
� � �

X
i

aðEi;X;�ÞEi

with aðEi;X;�Þ ¼ ai. In this situation, we say that

ðX;�Þ is numerically lc if aðEi;X;�Þ � �1 for

every exceptional curve Ei and every resolution

of singularities f : Y ! X. We say that ðX;�Þ is

numerically dlt if there exists a finite set Z � X
such that X n Z is smooth, Supp �jXnZ is a simple

normal crossing divisor, and aðE;X;�Þ > �1 for

every exceptional curve E which maps to Z.

Let us recall the basic operations and notation

for R-divisors.

2.3 (R-divisors). Let D ¼
P
aiDi be an R-

divisor on a normal variety X. Note that Di is a

prime divisor for every i and that Di 6¼ Dj for i 6¼ j.
Of course, ai 2 R for every i. We put bDc ¼P
baicDi and call it the round-down of D. Note

that, for every real number x, bxc is the integer

defined by x� 1 < bxc 	 x. We also put dDe ¼
�b�Dc and call it the round-up of D. The fractional

part fDg denotes D� bDc. We put

D¼1 ¼
X
ai¼1

Di and D<1 ¼
X
ai<1

aiDi:

Let B1 and B2 be two R-Cartier divisors on a

normal variety X. Then B1 is R-linearly equivalent

to B2, denoted by B1 
R B2, if

B1 ¼ B2 þ
Xk
i¼1

riðfiÞ

such that fi 2 CðXÞ and ri 2 R for every i. We note

that ðfiÞ is a principal Cartier divisor associated to

fi. Let f : X ! Y be a morphism to a variety Y . If

there is an R-Cartier divisor B on Y such that

B1 
R B2 þ f�B;

then B1 is said to be relatively R-linearly equivalent

to B2. It is denoted by B1 
R;f B2 or B1 
R;Y B2.

3. Proof of theorems. In this section, we

prove Theorem 1.1 and Theorem 1.2. Let us prove

Theorem 1.1.

Proof of Theorem 1.1. By Kodaira type

vanishing theorem for log canonical pairs (see, for

example, [3, Theorem 8.1] and [5, Theorem 5.6.4]),

we have Rif�OX ¼ 0 for every i > 0. Therefore, we

have Rf�OX ’ OY . Then, by Kovács’s character-

ization of rational singularities (see [11, Theorem 1]

and [5, Theorem 3.12.5]), we obtain that Y has only

rational singularities. When f is birational, see also

Lemma 3.1 below. �

The following lemma is obvious by the defini-

tion of rational singularities.

Lemma 3.1. Let f : X ! Y be a proper

birational morphism between normal varieties. As-

sume that Rif�OX ¼ 0 for every i > 0. Then X has

only rational singularities if and only if Y has only

rational singularities.

Here, we give a proof of [1, Theorem 1.2], which

is a main ingredient of Theorem 1.2, for the reader’s

convenience.

Theorem 3.2 ([1, Theorem 1.2]). Let ðX;�Þ
be a log canonical pair and let f : Y ! X be a

resolution of singularities. Then every associated

prime of Rif�OY is the generic point of some log

canonical center of ðX;�Þ for every i > 0.

Note that Rif�OY is independent of the reso-

lution f : Y ! X.

Proof. Without loss of generality, we may

assume that X is quasi-projective by shrinking X.

We take a dlt blow-up g : ðZ;�ZÞ ! ðX;�Þ (see, for

example, [5, Theorem 4.4.21] and [3, Section 10]).

This means that g is a projective birational mor-

phism such that KZ þ�Z ¼ g�ðKX þ�Þ and that

ðZ;�ZÞ is a divisorial log terminal pair. It is well

known that Z has only rational singularities. We

take a projective birational morphism h : Y ! Z

such that KY þ�Y ¼ h�ðKZ þ�ZÞ, Y is smooth,

and Supp �Y is a simple normal crossing divisor on

Y . We may assume that h is an isomorphism over

the generic point of any log canonical center of

ðZ;�ZÞ by Szabó’s resolution lemma (see, for
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example, [5, Remark 2.3.18 and Lemma 2.3.19]).

Then we have

KY þ f�Y g þ�¼1
Y þ b�<1

Y c ¼ KY þ�Y 
R;f 0;

where f ¼ g � h : Y ! X. We put E ¼ d��<1
Y e.

Then E is effective, h-exceptional, and E 
R;f KY þ
f�Y g þ�¼1

Y . Therefore, we obtain Rh�OY ðEÞ ’ OZ
since Rih�OY ðEÞ ¼ 0 for every i > 0 by the vanish-

ing theorem of Reid–Fukuda type (see, for exam-

ple, [3, Lemma 6.2] and [5, Theorem 3.2.11]) and

h�OY ðEÞ ’ OZ. Note that Rh�OY ’ OZ since Z has

only rational singularities. Thus, we obtain

Rf�OY ðEÞ ’ Rg�Rh�OY ðEÞ ’ Rg�OZ
’ Rg�Rh�OY ’ Rf�OY :

By [3, Theorem 6.3 (i)] (see also [5, Theorem 3.16.3

(i)]), we have that every associated prime of

Rif�OY ðEÞ ’ Rif�OY is the generic point of some

log canonical center of ðX;�Þ for every i > 0. �

Let us prove Theorem 1.2.

Proof of Theorem 1.2. Let g : Z ! Xþ be

a resolution of singularities. Let ExcðfþÞ be the

exceptional locus of fþ : Xþ ! Y . By Theorem 1.1,

we know that Y has only rational singularities.

Therefore, Xþ n ExcðfþÞ has only rational singu-

larities. Thus, SuppRig�OZ � ExcðfþÞ for every

i > 0. By the negativity lemma (see, for example,

[10, Lemma 3.38] and [5, Lemma 2.3.27]), there are

no log canonical centers of ðXþ;�þÞ contained in

ExcðfþÞ. By Theorem 3.2, every associated prime of

Rig�OZ is the generic point of some log canonical

center of ðXþ;�þÞ for every i > 0. Thus, we have

Rig�OZ ¼ 0 for every i > 0. This means that Xþ has

only rational singularities. �

4. On log surfaces. In this section, we give

some results on the minimal model program for

log canonical surfaces (see [4], [8], and [13]). This

section is a supplement to [4].

The following theorem is the main result of this

section.

Theorem 4.1. Let ðX;�Þ be a log canonical

surface and let f : X ! Y be a projective birational

morphism onto a normal surface Y . Assume that

�ðKX þ�Þ is f-ample. Then the exceptional locus

ExcðfÞ of f passes through no nonrational singular

points of X. In particular, every f-exceptional curve

is a Q-Cartier divisor. Moreover, if the relative

Picard number �ðX=Y Þ ¼ 1, then ExcðfÞ is an

irreducible curve and KY þ�Y , where �Y ¼ f��,

is R-Cartier.

Proof. By shrinking Y , we may assume that

fðExcðfÞÞ ¼ P and that ðY ;�Y Þ, where �Y ¼ f��,

is numerically dlt by the negativity lemma (see, for

example, [10, Lemma 3.41] and [5, Lemma 2.3.25]).

Therefore, Y has only rational singularities (see

[10, Theorem 4.12]). By the Kodaira type vanishing

theorem as in the proof of Theorem 1.1 (see also

[8, Theorem 6.2]), we obtain Rif�OX ¼ 0 for every

i > 0. Thus, X has only rational singularities in

a neighborhood of ExcðfÞ by Lemma 3.1. This

means that X is Q-factorial around ExcðfÞ (see,

for example, [12, Proposition (17.1)] and [13, Prop-

osition 20.2]). Therefore, every f-exceptional curve

is a Q-Cartier divisor. From now on, we assume

that �ðX=Y Þ ¼ 1. We take an irreducible f-excep-

tional curve E. Then E2 < 0 and E � C < 0 for

every f-exceptional curve C. This means that E ¼
ExcðfÞ. We can take a real number a such that

ðKX þ�þ aEÞ � E ¼ 0. Then, by the contraction

theorem (see [4, Theorem 3.2] and [13, Theorem

17.1]), we can check that KY þ�Y is R-Cartier

and KX þ�þ aE ¼ f�ðKY þ�Y Þ. �

As an easy consequence of Theorem 4.1, we

have:

Corollary 4.2. In the minimal model pro-

gram for log canonical surfaces, the number of

nonrational log canonical singularities never de-

creases.

Remark 4.3. Theorem 4.1 and Corollary

4.2 hold true over any algebraically closed field k.

This is because the vanishing theorems for bira-

tional morphisms from log surfaces hold true even

when the characteristic of k is positive (see, for

example, [8, Theorem 6.2]).

We give an important remark on [4].

Remark 4.4. In [4], we used the fact that a

numerically lc surface is a log canonical surface (see

[4, Proposition 3.5 (2)]) for the proof of the minimal

model program for (not necessarily Q-factorial)

log canonical surfaces (see [4, Theorem 3.3]). Note

that the proof of [4, Proposition 3.5 (2)] more or

less depends on the classification of numerically lc

surface singularities in [10, Theorem 4.7]. By using

Theorem 4.1, we can check that KXi
þ�i is R-

Cartier in the proof of [4, Theorem 3.3] without

using [4, Proposition 3.5 (2)]. This means that the

minimal model program for log canonical surfaces

in [4, Theorem 3.3] is independent of the classifica-

tion of (numerically) lc surface singularities (see

[10, Theorem 4.7]).
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5. Examples. In this section, we will see

that nonrational singularities sometimes may cause

undesirable phenomena.

Note that the log canonical model of a log

canonical surface may have nonrational singular-

ities.

Example 5.1. Let C � P2 be an elliptic

curve and let V � P3 be a cone over C � P2. Let

p : X ! V be the blow-up at the vertex P of V . Note

that P is an isolated log canonical Gorenstein

singularity and p is the minimal resolution. We

take a general very ample smooth Cartier divisor

�V on V such that KV þ�V is very ample. We put

KX þ� ¼ p�ðKV þ�V Þ. Then X is smooth, ðX;�Þ
is log canonical, and KX þ� is big. Note that

p ¼ �jKXþ�j : X ! V by construction. We also note

that ðV ;�V Þ is log canonical and that the singu-

larity P 2 V is not rational. Of course, ðV ;�V Þ is

the log canonical model of ðX;�Þ.
A finite étale morphism between kawamata log

terminal pairs of log general type induces a natural

finite étale cover of their log canonical models in

any dimension.

Theorem 5.2. Let X be a normal projective

variety and let � be an effective Q-divisor on X such

that ðX;�Þ is kawamata log terminal. Let f : Y ! X

be a finite étale morphism such that KY þ�Y ¼
f�ðKX þ�Þ. Assume that KX þ� is big. Then we

have a commutative diagram

Y

f

q
Yc

fc

X
p

Xc

where p and q are birational maps, ðXc;�cÞ (resp.

ðYc;�YcÞ) is the log canonical model of ðX;�Þ (resp.

ðY ;�Y Þ), fc is a finite étale morphism, and

KYc þ�Yc ¼ f�c ðKXc
þ�cÞ.

Proof. The proof of [7, Theorem 4.5] works

with some suitable modifications. Note that Xc

and Yc have only rational singularities since

ðXc;�cÞ and ðYc;�YcÞ are both kawamata log

terminal pairs. We leave the details as an exercise

for the reader. �

Unfortunately, Theorem 5.2 does not hold for

log canonical pairs. This is because log canonical

models of log canonical pairs sometimes have

nonrational singularities.

Example 5.3. Let p : X ! V be as in Ex-

ample 5.1 and let E be the p-exceptional divisor on

X. Note that there is a natural P1-bundle structure

� : X ! C and E is a section of �. We take a

nontrivial finite étale cover D! C. We put Y ¼
X �C D and F ¼ E �C D. We put KY þ�Y ¼
f�ðKX þ�Þ, where f : Y ! X is the natural in-

duced étale morphism. Let W be the log canonical

model of ðY ;�Y Þ. Then we have the following

commutative diagram

Y
q

f

W

h

X
p

V

such that f is étale and h is finite. Note that q

contracts F to an isolated normal singular point

Q of W such that h�1ðP Þ ¼ Q since f�1ðEÞ ¼ F .

Therefore, h is not étale by degh > 1 and h�1ðP Þ ¼
Q. We also note that the singularities of V and W

are not rational since E and F are elliptic curves.

This example says that Theorem 5.2 does not

always hold for log canonical pairs.
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