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1. Introduction. The classical Gauss-

Bonnet Theorem implies that the only compact

Riemann surface with positive curvature is the

Riemann sphere. In the higher dimensional case, the

Frankel conjecture claims that a compact Kähler

manifold with positive bisectional curvature is the

projective space. This conjecture was solved by

Mori [12] and Siu-Yau [20], independently. Mori’s

proof is purely algebraic and he obtained a more

general result. In fact, he solved the Hartshorne

conjecture, which says that the projective space is

the only projective manifold with ample tangent

bundle [12]. After that, in complex geometry, Mok

proved the generalized Frankel conjecture on com-

pact Kähler manifolds with semipositive bisectional

curvature [11]. As a generalization of their works,

complex projective manifolds with nef tangent

bundle have been studied by many authors (for

instance, see [14]). By the result of Demailly,

Peternell and Schneider [4], the study can be

reduced to the case of Fano manifolds. Let us recall

the following conjecture posed by Campana and

Peternell.

Conjecture 1.1 ([2]). Any Fano manifold

with nef tangent bundle is rational homogeneous.

This conjecture holds if the dimension is at

most four [6], and this is also true for five-folds

whose Picard number greater than one [21]. Re-

cently Kanemitsu [9] proved the above conjecture

for five-folds of Picard number one. In this paper,

we will generalize a result of [21] to the higher

dimensional case. Our main result is

Theorem 1.2. Let X be a Fano manifold

with nef tangent bundle. Let m be the dimension, n

the Picard number and iX the pseudoindex of X.

Then we have

(GM): nðiX � 1Þ � m.

Furthermore, X is rational homogeneous if one of

the following holds:

(1) m � nðiX � 1Þ þ 1.

(2) m � nþ 3.

In general, it is expected that the above

inequality (GM) holds for any Fano manifold,

which is the so-called Generalized Mukai conjec-

ture [1]. It is easy to prove this inequality for Fano

manifolds with nef tangent bundle. So the main part

of this paper is to prove the homogeneity under the

above assumptions (1) and (2).

While preparing this note, Akihiro Kanemitsu

informed the author that he also proved the rational

homogeneity for the case of (2) in Theorem 1.2

independently and was preparing a manuscript for

publication. By using his result [9], he also proved

the rational homogeneity for the case of m ¼ nþ 4

very recently [23].

2. Preliminaries. Throughout this paper,

we work over the field of complex numbers. In this

section, we set up our notation and recall some

results on Fano manifolds.

2.1. Results on Fano manifolds. A projec-

tive manifold means a smooth projective variety. A

Fano manifold is a projective manifold whose

anticanonical divisor �KX is ample. Given a Fano

manifold X, we will denote by N1ðXÞ the vector

space of 1-cycles in X with real coefficients, modulo

numerical equivalence. The dimension of this vector

space, that we denote by �X, is called the Picard

number of X. The Kleiman-Mori cone of X is

defined as the closure NEðXÞ of the convex cone
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generated by effective 1-cycles. On the other hand,

a surjective morphism with connected fibers f :
X ! Y to a normal projective variety Y is called a

contraction of X. A contraction f is said to be of

fiber type if dimðXÞ > dimðY Þ. By the Contraction

Theorem, given an extremal face F of NEðXÞ, there

exists a contraction ’F : X ! Y satisfying that, for

every irreducible curve C � X, the numerical class

of C is in F � NEðXÞ if and only if ’F ðCÞ is a point.

A contraction ’F is called elementary if the

corresponding face F is one dimensional, i.e. if F

is an extremal ray.

For a Fano manifold X, the pseudoindex iX is

defined as

iX :¼ minf�KX � C j C � X rational curveg:

The pseudoindex is upper bounded for any

Fano manifold and the extremal cases are classified:

Theorem 2.1 ([3], [10]). Let X be a Fano

manifold of dimension m � 2. Then iX � mþ 1.

Furthermore,

(1) if iX ¼ mþ 1, then X is a projective space Pm;

(2) if iX ¼ m, then X is a smooth quadric hyper-

surface Qm.

The following theorem is also used in this

paper.

Theorem 2.2 ([8, Main Theorem]). Let f :

X ! Y be a surjective morphism from a rational

homogeneous manifold of � ¼ 1 to a projective

manifold of positive dimension. Then Y is isomor-

phic to Pm or X.

2.2. Fano manifolds with nef tangent bun-

dle. Here we overview some results on Fano

manifolds with nef tangent bundle. We begin by

defining the notion of CP-manifolds and FT-mani-

folds.

Definition 2.3 (See [13, Definition 1]). A

Fano manifold is a CP-manifold if it has a nef

tangent bundle. Especially, a CP-manifold is said to

be an FT-manifold if any elementary contraction is

a P1-fibration.

Let us recall some classification results of CP-

manifolds and FT-manifolds.

Theorem 2.4. Let X be a CP-manifold of

Picard number 1. Then the following holds:

(1) if iX ¼ 2, then X is P1;

(2) if iX ¼ 3, then X is P2; Q3 or KðG2Þ, where

KðG2Þ is the 5-dimensional contact homoge-

neous manifold of type G2 (see [14, Example

2.17]).

Proof. The first statement is well known. For

instance, see [14, Proposition 2.10 (5)]. The second

statement was proved in [7, pp. 623–624]. One can

also find an alternative proof in [22, Theorem 1.3].

�

Theorem 2.5 (See [21, Theorem 3.1, Theo-

rem 4.1]). Let X be a CP-manifold of dimension

m � 5 and Picard number n. If m � 4, or m ¼ 5 and

n > 1, then X is rational homogeneous. In partic-

ular, if n ¼ 2, then X is one of the following

ðP2Þ2, P2 �P3, P2 �Q3, PðTP3Þ, PðSiÞ or Y �H,

where Si ði ¼ 1; 2Þ are the two spinor bundles on Q4

and H is an FT-manifold.

Remark 2.6. For the details of spinor bun-

dles Si, we refer the reader to [21, Example 3.7]. We

remark that PðS1Þ and PðS2Þ are isomorphic to the

flag manifold F ð1; 2;P3Þ parametrizing pairs ðl; P Þ,
where l is a line in a plane P � P3. Hence PðS1Þ ¼
PðS2Þ admits not only a P1-bundle structure over

Q4 but also a P2-bundle structure over P3.

Theorem 2.7 ([17, Theorem 1.2]). Let X be

a Fano manifold whose elementary contractions are

smooth P1-fibrations. Then X is isomorphic to a

complete flag manifold G=B, where G is a semisimple

algebraic group and B a Borel subgroup. In partic-

ular, any FT-manifold is rational homogeneous.

Proposition 2.8 ([13, Proposition 5]). Let

X be a CP-manifold admitting a contraction f :
X ! Y onto an FT-manifold Y . Then there exists a

projective manifold Z such that X ¼� Y � Z.

The next result tells us that the nefness of the

tangent bundle imposes strong restrictions on Fano

manifolds of Picard number greater than one.

Proposition 2.9 ([13, Proposition 4]). Let

X be a CP-manifold. Then the following properties

hold:

(1) Every contraction � : X ! Y is smooth and,

moreover, its image Y and every fiber ��1ðyÞ
are CP-manifolds.

(2) For every contraction � : X ! Y , the Picard

number of a fiber ��1ðyÞ equals �X � �Y . More-

over, being j : ��1ðyÞ ! X the inclusion and

j	 : N1ð��1ðyÞÞ ! N1ðXÞ the induced linear

map, we have j	ðNEð��1ðyÞÞÞ ¼ NEðXÞ \
j	ðN1ð��1ðyÞÞÞ.

(3) The Kleiman-Mori cone NEðXÞ is simplicial.

Notation 2.10. Along the rest of this paper,

we always assume that X is a CP-manifold of

dimension m and Picard number n. We will denote

by Ri, i ¼ 1; � � � ; n its extremal rays, and by �i a
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rational curve of minimal degree such that ½�i
 2 Ri.

If I is any subset of D :¼ f1; . . . ; ng we will denote

by RI the extremal face spanned by the rays Ri such

that i 2 I, by �I : X ! XI the corresponding ex-

tremal contraction. We will also denote by

�I : X ! XI the contraction of the face RI spanned

by the rays Ri such that i 2 D n I. For I � J � D
we will denote the contraction of the extremal

face �I	ðRJÞ � N1ðXIÞ by �I;J : XI ! XJ or by

�DnI;DnJ : XDnI ! XDnJ . The fiber of �I;J is denoted

by FI;J or FDnI;DnJ . If I is empty, the fiber of �I;J
will also be denoted by FJ or FDnJ .

3. Proof of Theorem 1.2. Here we intro-

duce two invariants for CP-manifolds.

Definition 3.1. Given a CP-manifold as in

2.10, we define two invariants as follows:

fðXÞ :¼
Xn
i¼1

dimFi; sðXÞ :¼
Xn
i¼1

ð�KX � �i � 1Þ:

Lemma 3.2. Let X be a CP-manifold as in

2.10. For a partition D ¼ I1 t � � � t Il, we set

Jk :¼ I1 [ � � � [ Ik. Then we have the following

(1) The restriction of �Jk�1
defines a finite mor-

phism FIk ! FJk�1;Jk .

(2) We have inequalities

. m ¼
Xl
k¼1

dimFJk�1;Jk �
Xl
k¼1

dimFIk , and

. m � fðXÞ � sðXÞ � nðiX � 1Þ.

Proof. Let us consider the commutative dia-

gram

X XIk

XJk–1 XJk
:

Then, by Proposition 2.9 (2), we have a finite

morphism FIk ! FJk�1;Jk . In particular, dimFIk �
dimFJk�1;Jk . On the other hand, by Proposition 2.9

(1), we have

m ¼
Xl
k¼1

dimFJk�1;Jk :

Hence we obtain the first inequality as desired. In

particular, we have m � fðXÞ. The remaining part

follows from Theorem 2.1. �

Proposition 3.3. Let X be a CP-manifold as

in 2.10. Then

nðiX � 1Þ � m

with equality if and only if X is isomorphic to

ðPiX�1Þn.

Proof. The inequality follows from Lemma 3.2.

To prove the latter part, we assume that m ¼
nðiX � 1Þ. Then Lemma 3.2 tells us that dimFi þ
1 ¼ �KX � �i ¼ iX for any i. Let V i be a family of

rational curves on X containing �i, which is unsplit

and covering by the minimality of �KX � �i and the

nefness of the tangent bundle of X. By Proposi-

tion 2.9 (3), the numerical classes of V 1; � � � ; V n

are linearly independent in N1ðXÞ. Applying [16,

Theorem 1.1], we see that X is isomorphic to

ðPiX�1Þ�X . �

Remark 3.4. The inequality nðiX � 1Þ � m
also follows from Proposition 2.9 (3) and [1,

Corollaire 5.3].

By Lemma 3.2, we have the following

Lemma 3.5. Let X be a CP-manifold as in

2.10. Assume that m ¼ nðiX � 1Þ þ 1. Then we have

ðfðXÞ; sðXÞÞ ¼ ðm;mÞ; ðm;m� 1Þ or ðm� 1;m� 1Þ:

Proposition 3.6. Let X be a CP-manifold as

in 2.10. Assume that m ¼ fðXÞ ¼ sðXÞ ¼ nðiX �
1Þ þ 1. Then X is isomorphic to ðPiX�1Þn�1 �PiX .

Proof. By Lemma 3.2, there exists an integer

s 2 D such that

�KX � �i ¼
iX ði 6¼ sÞ
iX þ 1 ði ¼ sÞ

�
:

Applying the same argument as in the proof of

Proposition 3.3, X is isomorphic to ðPiX�1Þn�1 �
PiX . �

Proposition 3.7. Let X be a CP-manifold

as in 2.10. Assume that m ¼ fðXÞ ¼ sðXÞ þ 1 ¼
nðiX � 1Þ þ 1. Then X is isomorphic to ðPiX�1Þn�1 �
QiX .

Proof. We proceed by induction on n. If n ¼ 1,

then it follows from Theorem 2.1 that X is isomor-

phic to QiX . So suppose our assertion for n� 1.

By Lemma 3.2, we have �KX � �i ¼ iX for any

i, and

dimFi ¼
iX � 1 ði 6¼ sÞ
iX ði ¼ sÞ

�

for some s 2 D. Without loss of generality, we may

assume that s ¼ n. By Theorem 2.1, Fi ¼� PiX�1ði 6¼
nÞ and Fn ¼� QiX . Set Ik :¼ f1; 2; � � � ; kg � D. By

Lemma 3.2, we have dimFk ¼ dimFIk�1;Ik : Since

�Ik�1
jFk : Fk ! FIk�1;Ik is a finite morphism, it is

surjective. Applying Theorem 2.2, Xn ¼ FIn�1;In is
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isomorphic to PiX or QiX , and FIk�1;Ik is isomorphic

to PiX�1 for any k 6¼ n. In a similar way, we see that

X1 is isomorphic to PiX�1. Since Xn is rational, its

Brauer group is trivial. Hence �In�2;In�1
: XIn�2

!
XIn�1

¼ Xn is a projective bundle (see, for instance,

[21, Proposition 2.5]). This implies that XIn�2
is also

rational. By applying this argument repeatedly to

�Ik�1;Ik : XIk�1
! XIk , we see that �1 : X ! X1 is a

PiX�1-bundle. Since we have seen that X1 is

isomorphic to PiX�1, [15, Lemma 4.1] concludes

that X ¼� PiX�1 � F 1. From the induction hypoth-

esis, we see that X is isomorphic to ðPiX�1Þn�1 �
QiX . �

Proposition 3.8. Let X be a CP-manifold as

in 2.10. Assume that m ¼ fðXÞ þ 1 ¼ sðXÞ þ 1 ¼
nðiX � 1Þ þ 1: Then X is isomorphic to PðTPiX Þ �
ðPiX�1Þn�2.

Proof. We proceed by induction on n. Under

our assumption, Theorem 2.1 tells us that n > 1.

If n ¼ 2, then our assertion follows from

[18, Theorem 2] directly. We assume that n > 2.

Then we have

�KX � �i ¼ iX and dimFi ¼ �KX � �i � 1 for any i:

Hence, by Theorem 2.1, Fi is isomorphic to PiX�1.

Set Ik :¼ fi1; i2; � � � ; ikg � D (is 6¼ it if s 6¼ t). Then

there exists s 2 D such that

dimFIk;Ikþ1
¼

iX � 1 ðk 6¼ sÞ
iX ðk ¼ sÞ:

�

Since FIn�1;In ¼ Xin , we see that dimXi ¼ iX or iX �
1 for any i. From the commutative diagram

XIs XIs+1

Xs+1 {∗} ;
we obtain a finite morphism FIs;Isþ1

! Xsþ1. Since

dimFIs;Isþ1
¼ iX, we see that dimXsþ1 ¼ iX. By

reordering, we may assume dimX1 ¼ iX. We claim

that there exits i 6¼ 1 such that dimXi ¼ iX. To

prove this, we set ij :¼ j for any j. Then we may find

s0 2 D such that dimFIs0 ;Is0þ1
¼ iX, and this implies

that dimXs0þ1 ¼ iX. Consequently, by reordering

again, we may assume dimX1 ¼ dimX2 ¼ iX. Let

us prove that X is isomorphic to PðTPiX Þ �
ðPiX�1Þn�2.

It follows from [18, Theorem 2] that X1;2 is

isomorphic to PðTPiX Þ. Then X1;2;3 ! X1;2 is a

smooth PiX�1-fibration. Since the Brauer group of

PðTPiX Þ is trivial, there exists a vector bundle E
of rank iX on X1;2 such that X1;2;3 ! X1;2 is a

PiX�1-bundle PðEÞ ! X1;2. On the other hand,

PðEjF f1;2g;jÞ is a CP-manifold which satisfies the

assumption as in Proposition 3.3 for j ¼ 1; 2. So it is

isomorphic to ðPiX�1Þ2. Hence we may assume

EjF f1;2g;j ¼� O
iX
PiX�1 for j ¼ 1; 2. By applying Grauert’s

theorem [5, III. Corollary 12.9], we see that

ð�f1;2g;1Þ	ðEÞ is a rank iX vector bundle on X1 ¼�
PiX , and for any point x 2 F f1;2g;1 we have

ð�f1;2g;1Þ	ðð�f1;2g;1Þ	ðEÞÞ � kðxÞ ¼� H0ðF f1;2g;1; EjF f1;2g;1Þ.
Then the natural map

ð�f1;2g;1Þ	ðð�f1;2g;1Þ	ðEÞÞ ! E

is surjective. As a consequence, we see that

ð�f1;2g;1Þ	ðð�f1;2g;1Þ	ðEÞÞ ¼� E:

By restricting this isomorphism to F f1;2g;2, we have

ðð�f1;2g;1Þ	ðEÞÞj�f1;2g;1ðF f1;2g;2Þ ¼� EjF f1;2g;2 :

Since �f1;2g;1ðF f1;2g;2Þ is a hyperplane in X1 ¼� PiX ,

the Horrocks’s splitting criterion and Van de Ven’s

Theorem (for example see [19, Chap. 1. Theorem

2.3.2, Chap. 2. Theorem 2.2.2]) conclude that

ð�f1;2g;1Þ	ðEÞ is trivial, and thus so is E. This implies

X1;2;3 ¼� PðTPiX Þ �PiX�1. In particular, we see

that X3 is isomorphic to PiX�1. By applying

[15, Lemma 4.1], we see that X ¼� PiX�1 � Z for

some CP-manifold Z. By the induction hypothesis,

our assertion holds. �

Summing up, we have proved the rational

homogeneity for the case of (1) in Theorem 1.2.

Finally we complete the proof of Theorem 1.2. In

fact, we shall show the following

Theorem 3.9. Let X be a CP-manifold as in

2.10. Then X is a rational homogeneous manifold

provided that m � nþ 3.

Proof. We proceed by induction on n. By

Theorem 2.5, we may assume that m � 6. Then it

turns out that n � 3, because we have nþ 3 � m.

From now on, we assume that our assertion holds

when the Picard number is less than n. Set m ¼
nþ r ð0 � r � 3Þ.

If X dominates an FT-manifold Y , then it

follows from Proposition 2.8 that X is isomorphic

to Y � Z for some CP-manifold Z. Since we have

dimZ � �Z þ r and �Z < n, we see that Z is rational

homogeneous by the induction hypothesis. Hence

we may assume that X does not dominate any FT-

manifold.

92 K. WATANABE [Vol. 91(A),



By Lemma 3.2, for any j; k; l, we have

m ¼ nþ r � dimXj;k;l þ ðn� 3Þ
� dimXk;l þ ðn� 2Þ:

This implies that

dimXk;l � rþ 2 � 5 and dimXj;k;l � rþ 3 � 6:

Since X does not dominate any FT-manifold, it

follows from Theorem 2.5 that Xk;l is one of the

following

ðP2Þ2;P2 �P3;P2 �Q3;PðTP3Þ or PðSiÞ:

If dimXk;l ¼ 5 for any two distinct integers

k; l 2 f1; 2; 3g, we see that X1;2;3 is an FT-manifold.

This is a contradiction. Hence there exists k; l 2
f1; 2; 3g such that Xk;l is isomorphic to ðP2Þ2.
Without loss of generality, we may assume that

X1;2 ¼� ðP2Þ2. Since X1 and X2 are P2, X1;3 and X2;3

are isomorphic to P2 � V , where V is P2, P3 or Q3.

We claim that V is P2. Assume by contradiction

that V is P3 or Q3. Then we see that F f1;2;3g;f1;2g ¼�
P2 and F f1;2;3g;fi;3g ¼� P1 for i ¼ 1; 2. Then a CP-

manifold F f1;2;3g;f1g admits a smooth P1-fibration

structure over V and a smooth P2-fibration struc-

ture over P2. However this contradicts Theorem

2.5. Hence V is P2.

Now X1;2;3 has three smooth P2-fibration

structures over ðP2Þ2. By [21, Proposition 2.5],

these fibrations are nothing but projective bundles.

Applying [15, Lemma 4.1], we see that X1;2;3 is

isomorphic to ðP2Þ3. If n > 3, the same argument

implies that Xj;k;l ¼� ðP2Þ3 for any j; k; l 2 f1; 2; 3g.
Then X1;2;3;4 is an FT-manifold. This is a contra-

diction. Hence X is isomorphic to ðP2Þ3. �

Acknowledgement. The author was par-

tially supported by JSPS KAKENHI Grant Num-

ber 26800002.

References

[ 1 ] L. Bonavero, C. Casagrande, O. Debarre and S.
Druel, Sur une conjecture de Mukai, Comment.
Math. Helv. 78 (2003), no. 3, 601–626.

[ 2 ] F. Campana and T. Peternell, Projective mani-
folds whose tangent bundles are numerically
effective, Math. Ann. 289 (1991), no. 1, 169–
187.

[ 3 ] K. Cho, Y. Miyaoka and N. I. Shepherd-Barron,
Characterizations of projective space and ap-
plications to complex symplectic manifolds, in
Higher dimensional birational geometry (Kyoto,
1997), 1–88, Adv. Stud. Pure Math., 35, Math.
Soc. Japan, Tokyo, 2002.

[ 4 ] J.-P. Demailly, T. Peternell and M. Schneider,
Compact complex manifolds with numerically
effective tangent bundles, J. Algebraic Geom. 3
(1994), no. 2, 295–345.

[ 5 ] R. Hartshorne, Algebraic geometry, Springer, New
York, 1977.

[ 6 ] J.-M. Hwang, Geometry of minimal rational
curves on Fano manifolds, in School on Vanish-
ing Theorems and Effective Results in Algebraic
Geometry (Trieste, 2000), 335–393, ICTP Lect.
Notes, 6, Abdus Salam Int. Cent. Theoret.
Phys., Trieste, 2001.

[ 7 ] J.-M. Hwang, Rigidity of rational homogeneous
spaces, in International Congress of Mathema-
ticians. Vol. II, Eur. Math. Soc., Zürich, 2006,
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