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Abstract:

This paper presents new characterization for a non-compact Hermitian

symmetric space G/K to be of tube type (or non-tube type) by multiplicities in some branching
laws and visible actions. The study in this paper gives an example of a kind of the Cartan
decomposition for non-symmetric homogeneous spaces.
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1. Introduction. Let us begin this paper
with two (apparently, quite different) facts on the
relationship between multiplicities of representa-
tions and geometry.

The first fact is proved by T. Kobayashi and T.
Oshima in [16]. Let é\ad be the set of equivalence
classes of irreducible admissible representations of a
real reductive Lie group G. Here, a representation 7
of G is admissible if dim Hom (p, 7| ;) < oo for any
irreducible representation p of a maximal compact
subgroup K of G. For a pair G D H of algebraic
reductive groups, the homogeneous space G/H is
real spherical if the dimension of intertwiners for
any irreducible admissible representation m € @ad
into the space C*°(G/H) of continuous functions on
G/H is finite, namely, dim Homg(m, C*(G/H)) <
00, and vice versa ([16, Theorem A]). Here, G/H is
real spherical if there exists an open P-orbit in G/H
where P is a minimal parabolic subgroup of G ([9]).
Moreover, the complexification G¢/He of G/H is
spherical, namely, Gc/Hc has an open Borel orbit,
if and only if the multiplicity is uniformly bounded
in the sense of sup__ dim Hom(w, C*(G/H)) < 00
([16, Theorem B]).

The second fact is concerned with the complex
geometry. Let H be a Lie group. The space O(D,V)
of holomorphic sections of an H-equivariant Her-
mitian holomorphic vector bundle V — D over a
complex manifold D defines a continuous represen-
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tation of H with respect to the Fréchet topology.
Let ‘H be a unitary representation of H which is
realized in O(D,V), namely, there exists a contin-
uous and injective H-homomorphism from the
Hilbert space H into O(D,V). Now, we consider
a general setting where the H-action on D is not
transitive, and also a basic question when H is
multiplicity-free. In general, the property of multi-
plicity-freeness of H is not fulfilled even though
each fiber V, (z € D) is multiplicity-free as a
representation of the isotropy subgroup H,. How-
ever, this does hold if H acts on the base space D
in a strongly visible fashion in the sense of [11].
We say that this theory is propagation theory of
multiplicity-freeness which is established by T.
Kobayashi (see [12,17]). A part of the idea of proof
goes back to Gelfand-Kazhdan, S. Kobayashi [7],
and Faraut—Thomas [4].

Among irreducible bounded symmetric do-
main, there are two types: Hermitian symmetric
spaces of tube type; Hermitian symmetric spaces of
non-tube type. The Hermitian symmetric spaces
G/K = SU(n,n)/S(U(n) x U(n)), SO*(4n)/U(2n),
S0y(n,2)/(SO(n) x SO(2)), Sp(n,R)/U(n), and
Eq(_s5)/(Egs - T) are of tube type, whereas G/K =
SU(p,q)/S(U(p) x U(q)) with p #q, SO*(4n+2)/
U(2n+1), and Eg_14)/(Spin(10) - T) are of non-
tube type. We shall see in Theorem 1 below that
aforementioned two theories applied to the associ-
ated Stein manifolds G¢/[K¢, K¢] will reveal sharp
differences between tube and non-tube types, giving
new characterization of tube type domains from the
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viewpoint of multiplicities in some branching laws
and also from the viewpoint of visibility of holo-
morphic actions.

2. Visible actions on complex mani-
folds. Let us review from [11] (see also [12]) the
notion of strongly visible actions on complex mani-
folds. A holomorphic action of a Lie group H on a
connected complex manifold D is called strongly
visible if there exist a real submanifold S in D and
an anti-holomorphic diffeomorphism ¢ on D sat-
isfying the following conditions:

(V.1) S meets every H-orbit in D,
(S.1) olg = idg,
(S5.2) o preserves each H-orbit in D.

We say that the submanifold S is a slice. The
slice S is automatically a totally real submanifold
([12, Remark 3.3.2]).

We allow that S meets every H-orbit twice and
more than twice, namely, S is not necessary a
complete representative of H-orbits in D.

In Kobayashi’s original definition [12, Defini-
tion 3.3.1], the concept of strongly visible actions is
slightly wider, namely, he calls that this action is
strongly visible if a complex manifold D contains an
open set satisfying the conditions (V.1)—(S.2). For
an application to multiplicity-free representations,
this wider definition is sufficient. However, for
simplicity, we adopt the narrower one throughout
this paper.

3. Multiplicity-freeness and visible ac-
tion. Taking a pair G, D K of compact Lie
groups as an example, the theory of visible actions
gives a geometric explanation for multiplicity-free
representations as follows: We want to under-
stand which irreducible representation p of K the
multiplicity-freeness holds in the sense that
dim Hompg (i, A| ) < 1 for any irreducible represen-
tation A of G,. By the Frobenius reciprocity, this
dimension is nothing but the one of intertwiners
from A to the space O(D, V) of holomorphic sections
for the Gg-equivariant Hermitian holomorphic
vector bundle V=Ge¢ Xk, on D=Ge/Kc.
Then, the multiplicity-freeness holds if the G-
action on D is strongly visible and p is multiplicity-
free as a representation of M, where M is the
stabilizer of a generic element of a slice for the
strongly visible G,-action on D. If (G,,K) is a
symmetric pair, then a slice can be taken as the
A-orbit under the Cartan decomposition G¢ =
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G,AK¢ for symmetric Goc/Kc. Thus, M is the
centralizer of A in K.

Not only for finite-dimensional representations
of a compact Lie group but also for infinite-dimen-
sional representations of a non-compact real form,
we give an explanation of the multiplicity-freeness
by the complex geometric viewpoint. In fact, by
switching a compact real form G, by a non-compact
one Gr in the above example, we can show that the
Hilbert space L*(Gr/K,u) of square integrable
sections on the non-compact Ggr/K is multiplicity-
free as a representation of Gg.

4. Characterization of tube type Hermi-
tian symmetric spaces. We are ready to state
our main results of this paper.

Let G/K be a non-compact irreducible Hermi-
tian symmetric space. Then, K has a one-dimen-
sional center, and hence the commutator subgroup
K* := [K, K] is of codimension one in K. Therefore,
the homogeneous space G/K® is not a symmetric
space. We note that the complexified G¢/K{ of
G/K? is a Stein manifold by Matsushima’s theorem.

Our main result characterizes tube type (or
non-tube type) among Hermitian symmetric spaces
by visible actions, and also by multiplicities in
branching laws, and is stated as follows:

Theorem 1. The following six conditions are
equivalent for a non-compact irreducible Hermitian
symmetric space G/ K:

(i) G/K is of non-tube type.

(ii) Ge/KE tis spherical.
(iii) The action of a compact real form G, of Gc on
Gc /K¢ is strongly visible.
The K?-action on the Hermitian symmetric
space G/ K is strongly visible.
(v) The restriction 7|y, is K°-admissible for a
(equivalently, for any) holomorphic discrete
series representation w of G.

For a (equivalently, for any) holomorphic
discrete series representation m of G of scalar
type, the restriction | . is multiplicity-free.
Concerning to (v) of Theorem 1, it follows from
the corollary of [10, Theorem 2.4.5] that the restric-
tion 7|y, is K®-admissible, namely, the irreducible
decomposition of 7| . contains only discrete spectra
and dim Hompgs (p, 7| ) < 0o holds for any p € K.

Our strategy of the proof of Theorem 1 is as
follows: Kramer’s classification of spherical affine
irreducible complex homogeneous spaces [18] shows
the equivalence (i) < (ii). The equivalence between

(iv)

(vi)
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(i) and (iii) is proved in [19]. We discuss the
equivalence (i) < (v) in Section 4.1; the implica-
tion (vi) = (i) in Section 4.2; (i) = (iv) in Sec-
tion 4.3; and (iv) = (vi) in Section 4.4. We sum-
marize the strategy as follows:

(iii)

(9] ¢
a 2o %o
§4.5 Xy §4.1 IS | §44
(v) sa2 (vi)

4.1. Proof of (i) & (v). Our proof of the
equivalence (i) < (v) is based on Kobayashi’s
criterion for admissible restrictions of representa-
tions [10,13], namely, criterion for discretely de-
composability of the restriction with finite-multi-
plicities. We remark that the relation between (i)
and (v) was announced by Duflo-Vargas [1].

First, we summarize his criterion briefly, see
[13, Section 6.2]. Let € be the Lie algebra of a
compact Lie group K. We fix a maximal torus t; of
£y and a positive system AT (€, ty). We write C; C
V-1 1t for the corresponding closed Weyl chamber.
We regard the unitary dual T as a lattice of \/—t*
and put A, := TN C.. For a representation w of G,
we define the K-support of w by

Suppg (@) = {A € Ay : Homg(my, @|) # 0},

and the asymptotic K-support of w introduced by
Kashiwara—Vergne [6], see also [10],

(1) ASg(w) := Suppg (@)oo

which is a closed cone in C, . Here, the asymptotic
cone Soo for a subset S in a vector space RV is
defined by
Soo := {y € R" : there exists a sequence
{(yn,&n)} € S x Ry such that

lim ype, =y, lim &, = 0}.
n—oo n—oo

Let L be a closed subgroup of K and [y the Lie
algebra of L. The inclusion [y <— &, defines the
natural projection pr: ¢ — [. We set [& := ker pr
and define a closed cone C(L) in v—1t; by

(2) Ck(L) == Cy NV-1Ad"(K)It

The criterion for admissible restrictions of
representations is written by two closed cones (1),
(2) in C4 as follows:

Lemma 2 ([13, Theorem 6.3.3]). The re-
striction w|; is L-admissible if and only if ASk(w) N
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Ck(L) ={0}.

Next, we return to our setting of (v). Let £ be
the Lie algebra of K*®, which coincides with the
derived ideal [y, %] of €. In view of the natural
projection pr: €& — (€)", the kernel (E‘a)L
morphic to the dual c(EO)* of the center c()) in €.
Then, \/_Ad*( ) (& ) \/—C(EO) from which

we obtain
(3) Cx(K*)=C NV —1c(t)"

An explicit formula of the asymptotic K-sup-
port ASk(m) is given for a holomorphic discrete
series representation 7 of G of scalar type as follows:
Let Z € ¢(¥)) be the characteristic element such
that g:=g)®r C=%t+p, +p_ is the eigenspace
decomposition of ad(Z) with eigenvalues 0, v/—1,
—v/—1, respectively. Let vi,...,v, be strongly
orthogonal roots in A(p,) such that v is the
highest root among A(p,) and that vy, is the
highest root in A(p,) strongly orthogonal to
v1,...,v; where r = rank G/K. By using the K-type
formula [20] of = and the stability of ASk(w)
[10, Lemma 3.1] under the tensor product, we have:

Lemma 3. ASg(m) is expressed by

ASk(m {ZaM ap > ax > -'Za,,zo}.

Combining [2,3] with Lemma 3, we have:

Lemma 4. {d av;:a1>a3>-+->a,>0}N
V—=1c(8)" = {0} if and only if G/K is of non-tube
type.

Now, we are ready to give a proof of the
equivalence (i) < (v).

Proof of (i) < (v). Since the K*-admissibility
is presented by taking the tensor product
with finite-dimensional representations [8, Corol-
lary 1.3], it is sufficient for the proof to deal with
the case where m is of scalar type. By Lemma 2,
the restriction 7|y, is K*-admissible if and only if
ASk(m) N Cx(K®) = {0}. It follows from the equal-
ity (3) and Lemma 3 that ASk(w)NCg(K®) =
{Yaw;:a1>ay> -~ >a,>0}NV~1c(€) ' NC,.
Applying Lemma 4 to the right-hand side, we
conclude that ASg(w) N Cx(K?®) = {0} if and only
if G/K is of non-tube type. Therefore, the equiv-
alence (i) < (v) has been proved. O

4.2. Proof of (vi) = (i). The equivalence
(i) & (v) brings us to the implication (vi) = (i) as
follows:

Proof of (vi) =

is iso-

(i). Suppose that G/K is of



No. 5]

tube type. By the equivalence (i) < (v), the
restriction 7. is not K*®-admissible, in particular,
not multiplicity-free for any holomorphic discrete
series representation 7 of G. This is the contra-
position of the implication (vi) = (i). O

4.3. Proofof (i) = (iv). The key of the proof
for the implication (i) = (iv) is to construct a slice
for the K*-action on G/K explicitly.

Let gy, £, and € be the Lie algebras of G, K,
and K*, respectively. We write g, = € + p, for the
corresponding Cartan decomposition. Let ay be a
maximal abelian subspace in p, and A :=expay.
Then, we have the Cartan decomposition

(4) G = KAK.

Let mg be the centralizer of ay in €. We recall:

Lemma 5 (cf. [5, Lemma 3.1]). G/K is of
tube type if and only if mg C €.

Proof of (i) = (iv). Suppose that G/K is of
non-tube type. By Lemma 5, my is not contained in
£. We take X € m such that X ¢ €. Then,

(5) b=t +RX,

because £ is of codimension one in €. Thus, we
obtain

(6) K =K’(expRX) = (expRX)K”.
Combining (4) and (6), we get

G =KAK
= K’(expRX)AK
= K°AlexpRX)K (. X emy)
=K'AK (. expRX C K).

This implies that the real submanifold S := AK/K
meets every K*®-orbit in G/K.

The existence of an anti-holomorphic diffeo-
morphism ¢ on G/K satisfying (S.1) and (S.2) for
the K*-action on G/K with S follows from [15, Lem-
mas 2.2 and 2.4].

Hence, the K*®-action on G/K is strongly
visible. In particular, one can take a slice .S for this
action to be dim .S = rank G/ K. O

As a corollary of our proof, we get a new
decomposition for the non-symmetric pair (G, K*)
as follows:

Theorem 6. For a non-tube type Hermitian
symmetric space G/K, one can find an abelian
subgroup A of G with dim A = rank G/K such that
the following group decomposition holds:
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G =K°AK.

4.4. Proof of (iv) = (vi). The idea of the
proof of the implication (iv) = (vi) is based on that
of [15, Corollary 6.3].

Let (m,H) be a holomorphic discrete series
representation of G. It is known that there is a
natural injective continuous G-homomorphism
from the Hilbert space H to the Fréchet space
O(G/K,V) consisting of holomorphic sections over
a holomorphic line bundle V =G xg p for some
uw e K. In order to prove the multiplicity-freeness
property of the restriction 7|g., it is sufficient to
show that O(G/K,V) is multiplicity-free as a
representation of K*.

Proof of (iv) = (vi). Let m be of scalar type.
Then, each fiber V, is one-dimensional. In partic-
ular, the representation of the isotropy subgroup
K7 on the fiber V, is obviously multiplicity-free. If
the K*-action on G/K is strongly visible, then the
assumption of propagation theory of multiplicity-
freeness property [17] is satisfied, from which we
conclude that O(G/K,V) is multiplicity-free as a
representation of K*.

Therefore, the implication (iv) = (vi) has been
proved. U

As a conclusion, the proof of Theorem 1 has
been completed.

4.5. Remark. Here is a direct proof of (ii) =

(v).

Suppose that G¢/K§ is spherical. It follows
from the theory of spherical manifolds [16, Theo-
rem B] that there exists a constant C' > 0 such that

dim Homg (7, C*(G/K*,G x i u)) < C

for any 7 € éad and p € K. Since the left-hand side
of this inequality is given by dim Homy: (p, 7|5+ ) by
the Frobenius reciprocity, it follows that the
restriction |g. is admissible.

5. Generalization of Cartan decomposi-
tion to non-symmetric G¢/K¢. Let us explain
our construction of a slice S satisfying (V.1) for
non-tube type G/K from the group theoretic view-
point, which is an essential part of the proof for the
implication (i) = (iii) of Theorem 1. More precise-
ly, we find a subset B giving a decomposition

(7) Gc = G,BKE,

which implies that S:= BK{/K{ meets every
Gy-orbit in Go/K§ (see (11) below).
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Fig. 1. Herringbone stitch method

The key ingredients are as follows: One is that
we have a Cartan decomposition for any (not
necessary Riemannian) symmetric space G/H of
a reductive Lie group G, namely, there exists
an abelian subgroup A of G such that G = KAH
owing to Flensted—Jensen [5]. In the case where H
coincides with a maximal compact subgroup K of
G, the decomposition G = KAK is nothing but the
classical Cartan decomposition (see (4) in Section
4.3). The other is to apply the herringbone stitch
method [14] for our setting via the symmetric
subgroup K¢ (see Fig. 1).

Let us retain the notation as in Section 4.3.
According to our strategy, we first focus on the
symmetric space G¢/Kc. Then, the Cartan decom-
position for symmetric pairs [5] gives the following
decomposition

(8) Gc = G, AKc,

where A :=expay and ay is a maximal abelian
subspace in py.

Next, we treat the one-dimensional complex
manifold K¢/K§. As G/K is of non-tube type,
we have the decomposition (5) for some X € my
satisfying X ¢ ¥ (see Lemma 5). Then, the com-
plexification € = ¢y ®g C is decomposed as follows:

(9) =t +RX +V-IRX

where £° = ¢ ®r C. We set Zt = expRX and Zr =
exp v —1RX. Then, the decomposition (9) gives rise
to a global decomposition as follows:

(10) Kc = K217 = ZrZr K.

We are ready to apply the herringbone stitch
method to our setting. As X € my, three Lie groups
Zr, Zr, A commute with one another. Since Zt is a
subgroup of G, we get

GC = GuAKc ( (8))

= GuA(ZrZrKg) (0 (10)
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=G Zr(AZR)KL (0 AZr = Z1A)
=Gu(AZr)KL (0 Zr C Gy).
Therefore, (7) holds if we set
(11) B:= AZp = ZRA.

The point is that our B is still abelian even
though G¢ /K¢ is not symmetric, from which S'is a
submanifold in D. In this sense, (7) is a general-
ization of the Cartan decomposition known for
semisimple symmetric spaces [5] to some non-
symmetric spherical homogeneous spaces. Conse-
quently, we have proved:

Theorem 7. For a non-tube type Hermitian
symmetric space G/K, one can find an abelian
subgroup B of Gc with dim B = rank G/K + 1 such
that the following group decomposition holds:

Gc = G,BKY,.

In particular, B is given by (11).

6. Conclusion. Finally, we summarize the
relationship between the multiplicity-freeness of
representation and the complex geometry in our
setting. If G¢/K¢ is spherical, or equivalently,
G/ K is of non-tube type, then we have a generalized
Cartan decomposition G¢ = G, BK¢E. Then, our
slice for the G,-action on G¢/K¢ is given by
S = BK}/K{,. Applying the propagation theory of
multiplicity-freeness, we obtain another proof for
O(Gc/KY) to be multiplicity-free as a representa-
tion of G¢.
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