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Abstract: This paper presents new characterization for a non-compact Hermitian

symmetric space G=K to be of tube type (or non-tube type) by multiplicities in some branching

laws and visible actions. The study in this paper gives an example of a kind of the Cartan

decomposition for non-symmetric homogeneous spaces.
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1. Introduction. Let us begin this paper

with two (apparently, quite different) facts on the

relationship between multiplicities of representa-

tions and geometry.

The first fact is proved by T. Kobayashi and T.

Oshima in [16]. Let bGad be the set of equivalence

classes of irreducible admissible representations of a

real reductive Lie group G. Here, a representation �

of G is admissible if dim HomKð�; �jKÞ <1 for any

irreducible representation � of a maximal compact

subgroup K of G. For a pair G � H of algebraic

reductive groups, the homogeneous space G=H is

real spherical if the dimension of intertwiners for

any irreducible admissible representation � 2 bGad

into the space C1ðG=HÞ of continuous functions on

G=H is finite, namely, dim HomGð�; C1ðG=HÞÞ <
1, and vice versa ([16, Theorem A]). Here, G=H is

real spherical if there exists an open P -orbit in G=H

where P is a minimal parabolic subgroup of G ([9]).

Moreover, the complexification GC=HC of G=H is

spherical, namely, GC=HC has an open Borel orbit,

if and only if the multiplicity is uniformly bounded

in the sense of sup
�2bGad

dim Homð�; C1ðG=HÞÞ <1
([16, Theorem B]).

The second fact is concerned with the complex

geometry. Let H be a Lie group. The space OðD;VÞ
of holomorphic sections of an H-equivariant Her-

mitian holomorphic vector bundle V ! D over a

complex manifold D defines a continuous represen-

tation of H with respect to the Fréchet topology.

Let H be a unitary representation of H which is

realized in OðD;VÞ, namely, there exists a contin-

uous and injective H-homomorphism from the

Hilbert space H into OðD;VÞ. Now, we consider

a general setting where the H-action on D is not

transitive, and also a basic question when H is

multiplicity-free. In general, the property of multi-

plicity-freeness of H is not fulfilled even though

each fiber Vx ðx 2 DÞ is multiplicity-free as a

representation of the isotropy subgroup Hx. How-

ever, this does hold if H acts on the base space D

in a strongly visible fashion in the sense of [11].

We say that this theory is propagation theory of

multiplicity-freeness which is established by T.

Kobayashi (see [12,17]). A part of the idea of proof

goes back to Gelfand–Kazhdan, S. Kobayashi [7],

and Faraut–Thomas [4].

Among irreducible bounded symmetric do-

main, there are two types: Hermitian symmetric

spaces of tube type; Hermitian symmetric spaces of

non-tube type. The Hermitian symmetric spaces

G=K ¼ SUðn; nÞ=SðUðnÞ � UðnÞÞ, SO�ð4nÞ=Uð2nÞ,
SO0ðn; 2Þ=ðSOðnÞ � SOð2ÞÞ, Spðn;RÞ=UðnÞ, and

E7ð�25Þ=ðE6 �TÞ are of tube type, whereas G=K ¼
SUðp; qÞ=SðUðpÞ � UðqÞÞ with p 6¼ q, SO�ð4nþ 2Þ=
Uð2nþ 1Þ, and E6ð�14Þ=ðSpinð10Þ �TÞ are of non-

tube type. We shall see in Theorem 1 below that

aforementioned two theories applied to the associ-

ated Stein manifolds GC=½KC; KC� will reveal sharp

differences between tube and non-tube types, giving

new characterization of tube type domains from the
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viewpoint of multiplicities in some branching laws

and also from the viewpoint of visibility of holo-

morphic actions.

2. Visible actions on complex mani-

folds. Let us review from [11] (see also [12]) the

notion of strongly visible actions on complex mani-

folds. A holomorphic action of a Lie group H on a

connected complex manifold D is called strongly

visible if there exist a real submanifold S in D and

an anti-holomorphic diffeomorphism � on D sat-

isfying the following conditions:

S meets every H-orbit in D;ðV.1Þ
�jS ¼ idS;ðS.1Þ
� preserves each H-orbit in D:ðS.2Þ

We say that the submanifold S is a slice. The

slice S is automatically a totally real submanifold

([12, Remark 3.3.2]).

We allow that S meets every H-orbit twice and

more than twice, namely, S is not necessary a

complete representative of H-orbits in D.

In Kobayashi’s original definition [12, Defini-

tion 3.3.1], the concept of strongly visible actions is

slightly wider, namely, he calls that this action is

strongly visible if a complex manifold D contains an

open set satisfying the conditions (V.1)–(S.2). For

an application to multiplicity-free representations,

this wider definition is sufficient. However, for

simplicity, we adopt the narrower one throughout

this paper.

3. Multiplicity-freeness and visible ac-

tion. Taking a pair Gu � K of compact Lie

groups as an example, the theory of visible actions

gives a geometric explanation for multiplicity-free

representations as follows: We want to under-

stand which irreducible representation � of K the

multiplicity-freeness holds in the sense that

dim HomKð�; �jKÞ � 1 for any irreducible represen-

tation � of Gu. By the Frobenius reciprocity, this

dimension is nothing but the one of intertwiners

from � to the space OðD;VÞ of holomorphic sections

for the GC-equivariant Hermitian holomorphic

vector bundle V ¼ GC �KC
� on D ¼ GC=KC.

Then, the multiplicity-freeness holds if the Gu-

action on D is strongly visible and � is multiplicity-

free as a representation of M, where M is the

stabilizer of a generic element of a slice for the

strongly visible Gu-action on D. If ðGu;KÞ is a

symmetric pair, then a slice can be taken as the

A-orbit under the Cartan decomposition GC ¼

GuAKC for symmetric GC=KC. Thus, M is the

centralizer of A in K.

Not only for finite-dimensional representations

of a compact Lie group but also for infinite-dimen-

sional representations of a non-compact real form,

we give an explanation of the multiplicity-freeness

by the complex geometric viewpoint. In fact, by

switching a compact real form Gu by a non-compact

one GR in the above example, we can show that the

Hilbert space L2ðGR=K; �Þ of square integrable

sections on the non-compact GR=K is multiplicity-

free as a representation of GR.

4. Characterization of tube type Hermi-

tian symmetric spaces. We are ready to state

our main results of this paper.

Let G=K be a non-compact irreducible Hermi-

tian symmetric space. Then, K has a one-dimen-

sional center, and hence the commutator subgroup

Ks :¼ ½K;K� is of codimension one in K. Therefore,

the homogeneous space G=Ks is not a symmetric

space. We note that the complexified GC=K
s
C of

G=Ks is a Stein manifold by Matsushima’s theorem.

Our main result characterizes tube type (or

non-tube type) among Hermitian symmetric spaces

by visible actions, and also by multiplicities in

branching laws, and is stated as follows:

Theorem 1. The following six conditions are

equivalent for a non-compact irreducible Hermitian

symmetric space G=K:

(i) G=K is of non-tube type.

(ii) GC=K
s
C is spherical.

(iii) The action of a compact real form Gu of GC on

GC=K
s
C is strongly visible.

(iv) The Ks-action on the Hermitian symmetric

space G=K is strongly visible.

(v) The restriction �jKs is Ks-admissible for a

(equivalently, for any) holomorphic discrete

series representation � of G.

(vi) For a (equivalently, for any) holomorphic

discrete series representation � of G of scalar

type, the restriction �jKs is multiplicity-free.

Concerning to (v) of Theorem 1, it follows from

the corollary of [10, Theorem 2.4.5] that the restric-

tion �jKs is Ks-admissible, namely, the irreducible

decomposition of �jKs contains only discrete spectra

and dim HomKsð�; �jKsÞ <1 holds for any � 2 cKs.

Our strategy of the proof of Theorem 1 is as

follows: Krämer’s classification of spherical affine

irreducible complex homogeneous spaces [18] shows

the equivalence (i) , (ii). The equivalence between
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(i) and (iii) is proved in [19]. We discuss the

equivalence (i) , (v) in Section 4.1; the implica-

tion (vi) ) (i) in Section 4.2; (i) ) (iv) in Sec-

tion 4.3; and (iv) ) (vi) in Section 4.4. We sum-

marize the strategy as follows:

(iii)

[19]

(ii)
[18]

(i)
§4.3

(iv)

§4.5 §4.1 §4.4
(v) §4.2 (vi)

4.1. Proof of (i) , (v). Our proof of the

equivalence (i) , (v) is based on Kobayashi’s

criterion for admissible restrictions of representa-

tions [10,13], namely, criterion for discretely de-

composability of the restriction with finite-multi-

plicities. We remark that the relation between (i)

and (v) was announced by Duflo–Vargas [1].

First, we summarize his criterion briefly, see

[13, Section 6.2]. Let k0 be the Lie algebra of a

compact Lie group K. We fix a maximal torus t0 of

k0 and a positive system �þðk0; t0Þ. We write Cþ 	ffiffiffiffiffiffiffi
�1
p

t�0 for the corresponding closed Weyl chamber.

We regard the unitary dual bT as a lattice of
ffiffiffiffiffiffiffi
�1
p

t�0
and put �þ :¼ bT \ Cþ. For a representation $ of G,

we define the K-support of $ by

SuppKð$Þ :¼ f� 2 �þ : HomKð��;$jKÞ 6¼ 0g;

and the asymptotic K-support of $ introduced by

Kashiwara–Vergne [6], see also [10],

ASKð$Þ :¼ SuppKð$Þ1ð1Þ

which is a closed cone in Cþ. Here, the asymptotic

cone S1 for a subset S in a vector space RN is

defined by

S1 :¼ fy 2 RN : there exists a sequence

fðyn; "nÞg 	 S �Rþ such that

lim
n!1

yn"n ¼ y; lim
n!1

"n ¼ 0g:

Let L be a closed subgroup of K and l0 the Lie

algebra of L. The inclusion l0 ,! k0 defines the

natural projection pr : k
�
0 ! l�0. We set l?0 :¼ ker pr

and define a closed cone CKðLÞ in
ffiffiffiffiffiffiffi
�1
p

t�0 by

CKðLÞ :¼ Cþ \
ffiffiffiffiffiffiffi
�1
p

Ad�ðKÞl?0 :ð2Þ

The criterion for admissible restrictions of

representations is written by two closed cones (1),

(2) in Cþ as follows:

Lemma 2 ([13, Theorem 6.3.3]). The re-

striction $jL is L-admissible if and only if ASKð$Þ \

CKðLÞ ¼ f0g.
Next, we return to our setting of (v). Let k

s
0 be

the Lie algebra of Ks, which coincides with the

derived ideal ½k0; k0� of k0. In view of the natural

projection pr : k
�
0 ! ðks0Þ

�, the kernel ðks0Þ
? is iso-

morphic to the dual cðk0Þ� of the center cðk0Þ in k0.

Then,
ffiffiffiffiffiffiffi
�1
p

Ad�ðKÞðks0Þ
? ¼

ffiffiffiffiffiffiffi
�1
p

cðk0Þ�, from which

we obtain

CKðKsÞ ¼ Cþ \
ffiffiffiffiffiffiffi
�1
p

cðk0Þ�:ð3Þ

An explicit formula of the asymptotic K-sup-

port ASKð�Þ is given for a holomorphic discrete

series representation � of G of scalar type as follows:

Let Z 2 cðk0Þ be the characteristic element such

that g :¼ g0 
R C ¼ kþ pþ þ p� is the eigenspace

decomposition of adðZÞ with eigenvalues 0,
ffiffiffiffiffiffiffi
�1
p

,

�
ffiffiffiffiffiffiffi
�1
p

, respectively. Let �1; . . . ; �r be strongly

orthogonal roots in �ðpþÞ such that �1 is the

highest root among �ðpþÞ and that �jþ1 is the

highest root in �ðpþÞ strongly orthogonal to

�1; . . . ; �j where r ¼ rankG=K. By using the K-type

formula [20] of � and the stability of ASKð�Þ
[10, Lemma 3.1] under the tensor product, we have:

Lemma 3. ASKð�Þ is expressed by

ASKð�Þ ¼
Xr
i¼1

ai�i : a1 � a2 � � � � � ar � 0

( )
:

Combining [2,3] with Lemma 3, we have:

Lemma 4. f
P
ai�i : a1� a2� � � � � ar � 0g \ffiffiffiffiffiffiffi

�1
p

cðkÞ� ¼ f0g if and only if G=K is of non-tube

type.

Now, we are ready to give a proof of the

equivalence (i) , (v).

Proof of (i) , (v). Since the Ks-admissibility

is presented by taking the tensor product

with finite-dimensional representations [8, Corol-

lary 1.3], it is sufficient for the proof to deal with

the case where � is of scalar type. By Lemma 2,

the restriction �jKs is Ks-admissible if and only if

ASKð�Þ \ CKðKsÞ ¼ f0g. It follows from the equal-

ity (3) and Lemma 3 that ASKð�Þ \ CKðKsÞ ¼
f
P
ai�i : a1 � a2 � � � � � ar � 0g \

ffiffiffiffiffiffiffi
�1
p

cðkÞ� \ Cþ.

Applying Lemma 4 to the right-hand side, we

conclude that ASKð�Þ \ CKðKsÞ ¼ f0g if and only

if G=K is of non-tube type. Therefore, the equiv-

alence (i) , (v) has been proved. �

4.2. Proof of (vi) ) (i). The equivalence

(i) , (v) brings us to the implication (vi) ) (i) as

follows:

Proof of (vi) ) (i). Suppose that G=K is of
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tube type. By the equivalence (i) , (v), the

restriction �jKs is not Ks-admissible, in particular,

not multiplicity-free for any holomorphic discrete

series representation � of G. This is the contra-

position of the implication (vi) ) (i). �

4.3. Proof of (i)) (iv). The key of the proof

for the implication (i) ) (iv) is to construct a slice

for the Ks-action on G=K explicitly.

Let g0, k0, and k
s
0 be the Lie algebras of G, K,

and Ks, respectively. We write g0 ¼ k0 þ p0 for the

corresponding Cartan decomposition. Let a0 be a

maximal abelian subspace in p0 and A :¼ exp a0.

Then, we have the Cartan decomposition

G ¼ KAK:ð4Þ

Let m0 be the centralizer of a0 in k0. We recall:

Lemma 5 (cf. [5, Lemma 3.1]). G=K is of

tube type if and only if m0 	 k
s
0.

Proof of (i) ) (iv). Suppose that G=K is of

non-tube type. By Lemma 5, m0 is not contained in

k
s
0. We take X 2 m0 such that X =2 k

s
0. Then,

k0 ¼ k
s
0 þRX;ð5Þ

because k
s
0 is of codimension one in k0. Thus, we

obtain

K ¼ Ksðexp RXÞ ¼ ðexp RXÞKs:ð6Þ

Combining (4) and (6), we get

G ¼ KAK
¼ Ksðexp RXÞAK
¼ KsAðexp RXÞK ð* X 2 m0Þ
¼ KsAK ð* exp RX 	 KÞ:

This implies that the real submanifold S :¼ AK=K
meets every Ks-orbit in G=K.

The existence of an anti-holomorphic diffeo-

morphism � on G=K satisfying (S.1) and (S.2) for

the Ks-action on G=K with S follows from [15, Lem-

mas 2.2 and 2.4].

Hence, the Ks-action on G=K is strongly

visible. In particular, one can take a slice S for this

action to be dimS ¼ rankG=K. �

As a corollary of our proof, we get a new

decomposition for the non-symmetric pair ðG;KsÞ
as follows:

Theorem 6. For a non-tube type Hermitian

symmetric space G=K, one can find an abelian

subgroup A of G with dimA ¼ rankG=K such that

the following group decomposition holds:

G ¼ KsAK:

4.4. Proof of (iv) ) (vi). The idea of the

proof of the implication (iv) ) (vi) is based on that

of [15, Corollary 6.3].

Let ð�;HÞ be a holomorphic discrete series

representation of G. It is known that there is a

natural injective continuous G-homomorphism

from the Hilbert space H to the Fréchet space

OðG=K;VÞ consisting of holomorphic sections over

a holomorphic line bundle V ¼ G�K � for some

� 2 bK. In order to prove the multiplicity-freeness

property of the restriction �jKs , it is sufficient to

show that OðG=K;VÞ is multiplicity-free as a

representation of Ks.

Proof of (iv) ) (vi). Let � be of scalar type.

Then, each fiber Vx is one-dimensional. In partic-

ular, the representation of the isotropy subgroup

Ks
x on the fiber Vx is obviously multiplicity-free. If

the Ks-action on G=K is strongly visible, then the

assumption of propagation theory of multiplicity-

freeness property [17] is satisfied, from which we

conclude that OðG=K;VÞ is multiplicity-free as a

representation of Ks.

Therefore, the implication (iv) ) (vi) has been

proved. �

As a conclusion, the proof of Theorem 1 has

been completed.

4.5. Remark. Here is a direct proof of (ii) )
(v).

Suppose that GC=K
s
C is spherical. It follows

from the theory of spherical manifolds [16, Theo-

rem B] that there exists a constant C > 0 such that

dim HomGð�; C1ðG=Ks;G�K �ÞÞ � C

for any � 2 bGad and � 2 cKs. Since the left-hand side

of this inequality is given by dim HomKsð�; �jKsÞ by

the Frobenius reciprocity, it follows that the

restriction �jKs is admissible.

5. Generalization of Cartan decomposi-

tion to non-symmetric GC=K
s
C. Let us explain

our construction of a slice S satisfying (V.1) for

non-tube type G=K from the group theoretic view-

point, which is an essential part of the proof for the

implication (i) ) (iii) of Theorem 1. More precise-

ly, we find a subset B giving a decomposition

GC ¼ GuBK
s
C;ð7Þ

which implies that S :¼ BKs
C=K

s
C meets every

Gu-orbit in GC=K
s
C (see (11) below).
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The key ingredients are as follows: One is that

we have a Cartan decomposition for any (not

necessary Riemannian) symmetric space G=H of

a reductive Lie group G, namely, there exists

an abelian subgroup A of G such that G ¼ KAH
owing to Flensted–Jensen [5]. In the case where H

coincides with a maximal compact subgroup K of

G, the decomposition G ¼ KAK is nothing but the

classical Cartan decomposition (see (4) in Section

4.3). The other is to apply the herringbone stitch

method [14] for our setting via the symmetric

subgroup KC (see Fig. 1).

Let us retain the notation as in Section 4.3.

According to our strategy, we first focus on the

symmetric space GC=KC. Then, the Cartan decom-

position for symmetric pairs [5] gives the following

decomposition

GC ¼ GuAKC;ð8Þ

where A :¼ exp a0 and a0 is a maximal abelian

subspace in p0.

Next, we treat the one-dimensional complex

manifold KC=K
s
C. As G=K is of non-tube type,

we have the decomposition (5) for some X 2 m0

satisfying X =2 k
s
0 (see Lemma 5). Then, the com-

plexification k ¼ k0 
R C is decomposed as follows:

k ¼ k
s þRX þ

ffiffiffiffiffiffiffi
�1
p

RXð9Þ

where k
s ¼ k

s
0 
R C. We set ZT ¼ exp RX and ZR ¼

exp
ffiffiffiffiffiffiffi
�1
p

RX. Then, the decomposition (9) gives rise

to a global decomposition as follows:

KC ¼ Ks
CZTZR ¼ ZTZRK

s
C:ð10Þ

We are ready to apply the herringbone stitch

method to our setting. As X 2 m0, three Lie groups

ZT; ZR; A commute with one another. Since ZT is a

subgroup of Gu, we get

GC ¼ GuAKC ð* ð8ÞÞ
¼ GuAðZTZRK

s
CÞ ð* ð10ÞÞ

¼ GuZTðAZRÞKs
C ð* AZT ¼ ZTAÞ

¼ GuðAZRÞKs
C ð* ZT 	 GuÞ:

Therefore, (7) holds if we set

B :¼ AZR ¼ ZRA:ð11Þ

The point is that our B is still abelian even

though GC=K
s
C is not symmetric, from which S is a

submanifold in D. In this sense, (7) is a general-

ization of the Cartan decomposition known for

semisimple symmetric spaces [5] to some non-

symmetric spherical homogeneous spaces. Conse-

quently, we have proved:

Theorem 7. For a non-tube type Hermitian

symmetric space G=K, one can find an abelian

subgroup B of GC with dimB ¼ rankG=K þ 1 such

that the following group decomposition holds:

GC ¼ GuBK
s
C:

In particular, B is given by (11).

6. Conclusion. Finally, we summarize the

relationship between the multiplicity-freeness of

representation and the complex geometry in our

setting. If GC=K
s
C is spherical, or equivalently,

G=K is of non-tube type, then we have a generalized

Cartan decomposition GC ¼ GuBK
s
C. Then, our

slice for the Gu-action on GC=K
s
C is given by

S :¼ BKs
C=K

s
C. Applying the propagation theory of

multiplicity-freeness, we obtain another proof for

OðGC=K
s
CÞ to be multiplicity-free as a representa-

tion of GC.
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