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Abstract: Let G be a real reductive Lie group and H a closed subgroup of G which is

reductive in G. In our earlier work it was shown that, if the homomorphism i : H�ðgC; hC; CÞ !
H�ðgC; ðkHÞC; CÞ is not injective, there does not exist a compact manifold locally modelled on

G=H. In this paper, we give a classification of the semisimple symmetric spaces G=H for which i

is not injective. We also study the case when G cannot be realised as a linear group.

Key words: Local model; ðG;XÞ-structure; Clifford–Klein form; symmetric space; relative
Lie algebra cohomology; invariant polynomial.

1. Introduction and preliminary re-

sults. Let G be a real reductive Lie group and

H a closed subgroup of G which is reductive in

G. We say that G=H is a homogeneous space of

reductive type. A manifold M is said to be locally

modelled on G=H, or said to admit a

ðG;G=HÞ-structure, if it is covered by open sets

that are diffeomorphic to open sets of G=H and the

transition functions are locally given by trans-

lations by elements of G. We always assume that

the transition functions verify the cocycle condi-

tion. This assumption is harmless: if G=H is

connected and G acts transitively on G=H, it is

automatically satisfied.

A typical example of a manifold locally mod-

elled on G=H is the following: if � is a discrete

subgroup of G acting properly discontinuously and

freely on G=H, the projection � : G=H ! �nG=H is

a covering map and �nG=H is locally modelled on

G=H. �nG=H is called a Clifford–Klein form of

G=H and � is called a discontinuous group for G=H.

Since Kobayashi [9] initiated a systematic study

of Clifford–Klein forms of homogeneous spaces of

reductive type in general setting, the determination

of all G=H admitting compact Clifford–Klein forms

has been one of the central problems in the theory of

discontinuous group. There are various obstruc-

tions for the existence of compact Clifford–Klein

forms (e.g. [2], [11], [18], [21]), and also for the

existence of compact manifolds locally modelled

on G=H ([3], [14], [17]). See [7], [12], [13], [15], [16]

for surveys on this topic.

Remark 1.1. To the best knowledge of the

author, it is not known if there is a homogeneous

space of reductive type admitting a compact mani-

fold locally modelled thereon, but not admitting a

compact Clifford–Klein form. In the following two

cases, any compact manifold locally modelled on

G=H is automatically a Clifford–Klein form.

. G is an adjoint group and H is a maximal

compact subgroup KG of G (by the Hopf–

Rinow theorem).

. G=H ¼ Oðnþ 1; 1Þ=Oðn; 1Þ; Oðn; 2Þ=Oðn; 1Þ [8].

Extending the idea of Kobayashi–Ono [14], we

obtained the following obstruction:

Theorem 1.2 ([19, Theorem 1.3]). Let G be

a real reductive Lie group, H a closed subgroup of G

which is reductive in G, and KH a maximal compact

subgroup of H. We write g for the Lie algebra of

G and gC for its complexification. If the following

condition (A) is satisfied, there does not exist a

compact manifold locally modelled on G=H:

(A) The homomorphism of relative Lie algebra

cohomology

i : H�ðgC; hC; CÞ ! H�ðgC; ðkHÞC; CÞ is not in-

jective.

Remark 1.3. (1) (A) is rewritten as follows:

(A0) The homomorphism of relative Lie algebra

cohomology i : H�ðg; h; RÞ ! H�ðg; kH ; RÞ is

not injective.

(2) Following [3] and [12, Notes 3.13] we gen-
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eralised [19, Theorem 1.3] to an arbitrary manifold

locally modelled on a homogeneous space. But we

do not know if this is an essential generalisation (see

Remark 1.1).

(3) [19, Theorem 1.3] was stated in terms of

cohomology of the associated compact homogene-

ous space H�ðGU=HU ; CÞ. We replaced it by relative

Lie algebra cohomology since it is well-defined

even if G cannot be realised as a linear group (see

Section 4).

We note that, given G=H, it is not so easy to

verify directly whether (A) holds or not. Instead,

we use the following proposition to find examples of

G=H that satisfies (A).

Proposition 1.4 ([19, Proposition 3.2]). We

keep the notation of Theorem 1.2. Denote by

PolðhCÞhC the algebra of hC-invariant polynomials

on hC and define JðgC;hCÞ to be the ideal of PolðhCÞhC

generated by

fP jhC
: P 2 PolðgCÞgC ;

the constant term of P is zerog:
Consider the following condition:

(B) There exists an element Q of PolðhCÞhC such

that Q =2 JðgC;hCÞ and QjðkHÞC ¼ 0.

Then we have the implication (B)) (A).

The proof of Proposition 1.4 is based on H.

Cartan’s algebraisation of Chern–Weil theory and

its application to relative Lie algebra cohomology

[6, §10].

In [19] we gave some examples of a homoge-

neous space that satisfies (A). In this paper we give

a classification of all semisimple symmetric spaces

satisfying (A) (see Theorem 2.1). The details of the

proof will appear elsewhere.

2. Main result. By a semisimple symmetric

space we mean a homogeneous space G=H such that

G is a real semisimple Lie group and H is an open

subgroup of a fixed point set G� of some involution

� on G. In this section we assume G to be linear. If

g is simple or ðg; hÞ is isomorphic to ðl� l;�lÞ (l:

simple Lie algebra), a semisimple symmetric space

G=H is called irreducible. At the Lie algebra level

ðg; hÞ, any semisimple symmetric space is uniquely

decomposed into irreducible ones. The complete

classification of irreducible symmetric spaces up

to possibly outer automorpihsms of g is given by

Berger [4].

The main result of this paper is the following:

Theorem 2.1. Let G=H be a semisimple

symmetric space. Then the above conditions (A)

and (B), and the following condition (C) are all

equivalent:

(C) ðg; hÞ has an irreducible factor ðg0; h0Þ satisfying

rank h
0 > rank kH 0 and isomorphic to none of the

following:

. ðl� l;�lÞ ðl : simple Lie algebraÞ

. ðlC; lÞ ðl : simple Lie algebraÞ

. ðslð2nþ 1;CÞ; soð2nþ 1;CÞÞ ðn > 1Þ

. ðslð2n;CÞ; spðn;CÞÞ ðn > 1Þ

. ðsoð2n;CÞ; soð2n� 1;CÞÞ ðn > 3Þ

. ðe6;C; f4;CÞ
Remark 2.2. Theorem 2.1 says, in particu-

lar, that (A) and (B) are equivalent for the

semisimple symmetric spaces. We do not know

whether it is true for any homogeneous space of

reductive type. In particular, we do not have a

direct proof of the equivalence for the semisimple

symmetric spaces. Note that the implication (B))
(A) holds for any homogeneous space of reductive

type (Proposition 1.4).

Among Berger’s classification of the irreducible

symmetric spaces [4], we list all irreducible sym-

metric pairs ðg; hÞ satisfying (C):

type A

? ðslð2n;CÞ; soð2n;CÞÞ (n > 1)

� ðslðpþ q;CÞ; slðp;CÞ � slðq;CÞ �CÞ (p; q > 1)

?? ðslðpþ q;RÞ; soðp; qÞÞ (p; q: odd)

? ðsuðp; qÞ; soðp; qÞÞ (p; q: odd)

� ðsuðn; nÞ; slðn;CÞ �RÞ (n > 2)

?? ðslð2n;RÞ; slðn;CÞ � uð1ÞÞ (n > 2)

? ðslðn;HÞ; slðn;CÞ � uð1ÞÞ (n > 2)

� ðslðpþ q;RÞ; slðp;RÞ � slðq;RÞ �RÞ (p; q > 1)

� ðslðpþ q;HÞ; slðp;HÞ � slðq;HÞ �RÞ (p; q > 1)

type B and type D

? ðsoðpþ q;CÞ; soðp;CÞ � soðq;CÞÞ
(p; q > 2 or p: even, q ¼ 1)

� ðsoð2n;CÞ; slðn;CÞ �CÞ (n > 2)

?? ðsoðn; nÞ; soðn;CÞÞ (n > 2)

? ðso�ð2nÞ; soðn;CÞÞ (n > 2)

?? ðsoðpþ r; q þ sÞ; soðp; qÞ � soðr; sÞÞ
(p; q: odd and r > 1)

� ðsoðn; nÞ; slðn;RÞ �RÞ (n > 2)

� ðso�ð4nÞ; slðn;HÞ �RÞ (n > 1)

type C

� ðspðn;CÞ; slðn;CÞ �CÞ (n > 1)

? ðspðpþ q;CÞ; spðp;CÞ � spðq;CÞÞ (p; q > 1)

� ðspð2n;RÞ; spðn;CÞÞ (n > 1)

� ðspðn; nÞ; spðn;CÞÞ (n > 1)
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� ðspðn;RÞ; slðn;RÞ �RÞ (n > 1)

� ðspðn; nÞ; slðn;HÞ �RÞ (n > 1)

type E6

? ðe6;C; spð4;CÞÞ
? ðe6;C; slð6;CÞ � slð2;CÞÞ
� ðe6;C; soð10;CÞ �CÞ
? ðe6ð6Þ; slð6;RÞ � slð2;RÞÞ
?? ðe6ð6Þ; slð3;HÞ � suð2ÞÞ
? ðe6ð�26Þ; slð3;HÞ � suð2ÞÞ
� ðe6ð6Þ; soð5; 5Þ �RÞ
� ðe6ð�26Þ; soð9; 1Þ �RÞ

type E7

? ðe7;C; slð8;CÞÞ
? ðe7;C; soð12;CÞ � slð2;CÞÞ
� ðe7;C; e6;C �CÞ
� ðe7ð7Þ; slð8;RÞÞ
� ðe7ð7Þ; slð4;HÞÞ
� ðe7ð�25Þ; slð4;HÞÞ
� ðe7ð7Þ; e6ð6Þ �RÞ
� ðe7ð�25Þ; e6ð�26Þ �RÞ

type E8

? ðe8;C; soð16;CÞÞ
? ðe8;C; e7;C � slð2;CÞÞ

type F4

? ðf4;C; spð3;CÞ � slð2;CÞÞ
? ðf4;C; soð9;CÞÞ

type G2

? ðg2;C; slð2;CÞ � slð2;CÞÞ.
Here, the signs ??, ? and � signify

??: The nonexistence of compact Clifford–Klein

forms of G=H is seems to be new.

?: The nonexistence of compact Clifford–Klein

forms of G=H was known earlier by [19], but

not for locally modelled case (see Remark 1.1).

�: The nonexistence of compact manifolds locally

modelled on G=H was known earlier by [19].

Note that we saw the nonexistence of compact

Clifford–Klein forms of ?? in [19, Corollary 1.4]

except ðe6ð6Þ; slð3;HÞ � suð2ÞÞ.
Remark 2.3. There are many examples of

an irreducible symmetric space that does not admit

compact Clifford–Klein forms but does not satisfy

(A)–(C) (see [2], [9], [11], [20]). For example,

SUðp; qÞ=SOðp; qÞ (p; q > 1) does not admit a

Clifford–Klein form by [9, Corollary 4.4].

3. Outline of proof. ðg; hÞ satisfies (A),

(B) or (C) if and only if ðg; hÞ has an irreducible

factor satisfying (A), (B) or (C), respectively.

Hence we may assume that a symmetric space G=H

is irreducible. By Proposition 1.4, it is enough to

prove (A)) (C) and (C)) (B).

(A)) (C): If ðg; hÞ ¼ ðl� l;�lÞ, (A) is not

satisfied since a group manifold ðL� LÞ=�L admits

a compact Clifford–Klein form [9, Example 4.8].

If rankH ¼ rankKH or ðg; hÞ ¼ ðlC; lÞ, (A) is not

satisfied by [19, Proposition 6.2]. Thus suppose

ðg; hÞ is

. ðslð2nþ 1;CÞ; soð2nþ 1;CÞÞ ðn > 1Þ,

. ðslð2n;CÞ; spðn;CÞÞ ðn > 1Þ,

. ðsoð2n;CÞ; soð2n� 1;CÞÞ ðn > 3Þ, or

. ðe6;C; f4;CÞ.
In these cases, (A) is not satisfied by the

following proposition:

Proposition 3.1. Let G=H be a semisimple

symmetric space. If the restriction map

ðSðgCÞ�ÞgC ! ðSðhCÞ�ÞhC is surjective (or equiva-

lently, ðSðgÞ�Þg ! ðSðhÞ�Þh is surjective), then G=H

does not satisfy (A).

Proposition 3.1 follows from [6, §10] as Propo-

sition 1.4.

(C)) (B): We give some sufficient condition

for (B) that do not depend on the embedding of H

into G, but on G and H themselves only:

Proposition 3.2. Let G be a real semisimple

Lie group and H a closed subgroup which is

reductive in G. If the identity component of the

centre of H is noncompact, G=H satisfies (B).

Proposition 3.3. Let G be a complex reduc-

tive Lie group and H a closed complex subgroup

which is reductive in G. Decompose g and h into

direct sums of their ideals:

g ¼ g1 � � � � � gk �Cp; h ¼ h1 � � � � � hl �Cq;

where g1; . . . ; gk; h1; . . . ; hl are complex simple Lie

algebras. If one of the following conditions holds,

G=H satisfies (B):

(1) p < q.

(2) k < l.

(3) min
16i6k

d2ðgiÞ > min
16j6l

d2ðhjÞ.
Here, d2ðgiÞ is the second smallest number in the

degrees of generators of ðSðgiÞ�Þgi :

d2ðgiÞ ¼

3 if gi ’ slðn;CÞ ðn > 3Þ,
4 if gi ’ spðn;CÞ ðn > 2Þ or

soðn;CÞ ðn > 7Þ,
5 if gi ’ e6;C,

6 if gi ’ e7;C; f4;C; g2;C,

8 if gi ’ e8;C,

1 if gi ’ slð2;CÞ.

8>>>>>>>>>>><
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Proposition 3.4. Let G be a real reductive

Lie group and H a closed subgroup of G which is

reductive in G. Assume the following two conditions:

. h has a factor of slðl;RÞ ðl > 3Þ, slðl;CÞ ðl > 3Þ,
or slðl;HÞ ðl > 2Þ.

. gC does not have a factor of slðk;CÞ for any

k > 3.

Then G=H satisfies (B).

Proposition 3.5 ([19, Corollary 6.1]). Let G

be a real reductive Lie group and H a closed

subgroup of G which is reductive in G. Denote by

KG, KH the maximal compact groups of G, H,

respectively. If rankG ¼ rankH and rankKG >

rankKH, then G=H satisfies (B).

Remark 3.6. Proposition 3.2 is a general-

isation of [10, Corollary 4] and similar to [3, Cor-

ollaire 1, Corollaire 3]. Proposition 3.5 is a slight

generalisation of [14, Corollary 5] and [9, Propo-

sition 4.10].

By using Propositions 3.2, 3.3, 3.4 and 3.5,

we can prove (C)) (B) for most cases, including

all exceptional ones. It remains to check that (B) is

satisfied when ðg; hÞ is one of the following

. ðslð2n;CÞ; soð2n;CÞÞ (n > 3)

. ðslðpþ q;RÞ; soðp; qÞÞ (p; q: odd)

. ðsuðp; qÞ; soðp; qÞÞ (p; q: odd)

. ðslð2n;RÞ; slðn;CÞ � uð1ÞÞ (n > 2)

. ðslðn;HÞ; slðn;CÞ � uð1ÞÞ (n > 2)

. ðsoð2nþ 1;CÞ; soð2n;CÞÞ (n > 3)

. ðsoð2nþ 1; 2nþ 1Þ; soð2nþ 1;CÞÞ (n > 1)

. ðso�ð4nþ 2Þ; soð2nþ 1;CÞÞ (n > 1)

. ðsoðpþ r; q þ sÞ; soðp; qÞ � soðr; sÞÞ
(p; q: odd, rþ s: even and r > 1).

A direct calculation shows that these indeed satisfy

(B).

4. Nonlinear case. By A. Borel’s theorem

[5], for any linear real semisimple Lie group G, a

Riemannian symmetric space G=KG of noncompact

type admits a compact Clifford–Klein form. Let � :
~G! G be a covering map and put gKG ¼ ��1ðKGÞ.
If ~G is not linear, the proof of [5] does not work for
~G=gKG because of the following two reasons:

. We cannot use Selberg’s lemma to control the

freeness of the action.

. If � is an infinite covering map, gKG is non-

compact. Hence a discrete subgroup of ~G may

not act properly discontinuously on ~G=gKG.

The following result shows that the compact-

ness of KG is crucial:

Corollary 4.1. Let G=KG be a Hermitian

symmetric space of noncompact type and � : ~G! G

be a universal covering map. Put gKG ¼ ��1ðKGÞ.
Then there does not exist a compact manifold locally

modelled on ~G=gKG.

In particular, there does not exist a discrete

subgroup of ~G acting properly discontinuously,

freely, and cocompactly on ~G=gKG.

Corollary 4.1 follows from Proposition 3.2.

Remark 4.2. [1] applied A. Borel’s theorem

to construct the discrete series representations of

a semisimple Lie group with finite centre. In its

erratum nonlinear case is discussed. Unfortunately,

our method gives no information for finite centre

case.
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