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Abstract: In [1], Wilson defined holomorphic 1-cochains and combinatrial period matrices

of triangulated Riemann surfaces by using the combinatorial Hodge star operator, introduced

in [2]. In this paper, we define a matrix and call this matrix the associate matrix. Then, we prove

that among the three matrices, which are a period matrix, a combinatorial period matrix which is

introduced by Wilson [2] and an associate matrix, there exists a matrix equation. Then we also

show that an associate matrix is an element of the Siegel upper half space, so this means that a

trianguted Riemann surface gives three elements of the Siegel upper half space.
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1. Introduction. In [2], Wilson defined the

combinatorial Hodge star operator to define holo-

morphic 1-cochains of a triangulated Riemann

surface whose simplicial 1-cochains are equipped

with a non-degenerate inner product. In [1], Wilson

studied the periods of holomorphic 1-cochains and

defined the combinatorial period matrix. Using a

particularly nice inner product which is called the

Whitney inner product and written by h�; �iC ,

introduced in [8], Wilson proved that for a trian-

gulated Riemann surface, the combinatorial period

matrix converges to the (conformal) period matrix

as the mesh of the triangulation tends to zero.

In this paper, we will introduce a new matrix

and call this matrix the associate matrix. Then we

will show that among three matrices which are a

(conformal) period matrix, a combinatorial period

matrix and an associate matrix, there exists an

equation which is the main result. From this matrix

equation, we will show that an associate matrix is

an element of the Siegel upper half space as well as

a period matrix and a combinatorial period matrix.

Thus a triangulated Riemann surface gives three

elements of the Siegel upper half space.

In this paper, we define triangulated Riemann

surfaces as follow. Let M be a closed Riemann

surface of genus g, fa; bg :¼ fa1; � � � ; ag; b1; � � � ; bgg a

homology basis which satisfies the single relation

a1b1a
�1
1 b�1

1 � � � agbga�1
g b�1

g ¼ 1 and K a triangulation

of M. Then, we define a triangulated Riemann

surface by a triple ðM; fa; bg; KÞ. By the Riemann’s

bi-linear relations of forms (see [3]), we obtain the

canonical basis f�1; � � � ; �gg for holomorphic 1-forms

which satisfies
R
aj
�j ¼ 1 and

R
ak
�j ¼ 0 for j 6¼ k.

The canonical basis f�1; � � � ; �gg of holomorphic

1-forms gives the (conformal) period matrix �: � ¼
ð�jkÞ1�j;k�g, where �jk ¼

R
bk
�j.

In [1], Wilson defined combinatorial period

matrices by using the Whitney embedding W of

cochains into piecewise-linear differential forms,

introduced in [8]. By the Riemann’s bi-linear

relation of cochains, showed in [1], we obtain the

canonical basis f�1; � � � ; �gg for holomorphic 1-co-

chains which satisfies
R
aj
W�j ¼ 1 and

R
ak
W�j ¼ 0

for j 6¼ k. The canonical basis f�1; � � � ; �gg of holo-

morphic 1-cochains gives the combinatorial period

matrix �K : �K ¼ ð�KjkÞ1�j;k�g, where �Kjk ¼
R
bk
W�j.

Then, we will introduce the following matrix by

using the canonical basis f�1; � � � ; �gg for holomor-

phic 1-forms and the canonical basis f�1; � � � ; �gg for

holomorphic 1-cochains. We define a matrix �K by

�K ¼ ðhW�j; ?�ki�Þ1�j;k�g;

and call this matrix �K the associate matrix.

We will prove the following result:

Theorem 4.2. Let ðM; fa; bg; KÞ be a trian-

gulated Riemann surface with the period matrix �,

the combinatorial period matrix �K and the asso-

ciate matrix �K. Then, the following matrix equa-

tion holds:
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� ¼ �K � �K:

2. Period matrices of closed Riemann

surfaces. In this section, we review the construc-

tion of period matrices of closed Riemann surfaces.

Let M be a closed Riemann surface. The Hodge

star operator ? on the complex valued 1-forms of M

may be defined in local coordinates ðU; xþ iyÞ by

?dx ¼ dy and ?dy ¼ �dx and extended over C

linearly. This is well defined using the Cauchy-

Riemann equations for the coordinate interchanges.

The Hodge star operator restricts to an orthogonal

automorphism of complex valued 1-forms that

squares to �Id.
2.1. Holomorphic forms on closed Riemann

surfaces. Let �jðMÞ denote the set of smooth

complex valued differential forms of degree j on M.

Then, we define an inner product on �ðMÞ ¼
�j2f0;1;2g�jðMÞ as follows:

Definition 2.1. For !; � 2 �ðMÞ, we define

an inner product h�; �i� on �ðMÞ by

h!; �i� ¼
Z
M

! ^ ?�:

Definition 2.2. The adjoint operator of an

exterior derivative d, denoted by d�, is defined by

hd�!; �i� ¼ h!; d�i�.

These operators give rise to harmonic forms:

Definition 2.3. The space H�jðMÞ of har-

monic j-forms on M is defined to be

H�jðMÞ ¼ ! 2 �jðMÞjd! ¼ d�! ¼ 0
� �

:

The following theorem holds (see [6]):

Theorem 2.4 ([6]). There is an orthogonal

direct sum decomposition

�jðMÞ ¼ d�j�1ðMÞ �H�jðMÞ � d��jþ1ðMÞ:

The harmonic 1-forms split into an orthogonal

sum of holomorophic and anti-holomorphic 1-forms

corresponding to the �i and þi eigenspaces of the

Hodge star operator.

Definition 2.5. The space of holomorphic

1-forms on M is defined to be

H�1;0ðMÞ ¼ ! 2 H�1ðMÞj ? ! ¼ �i!
� �

;

and the space of anti-holomorphic 1-forms on M is

defined to be

H�0;1ðMÞ ¼ ! 2 H�1ðMÞj ? ! ¼ þi!
� �

:

Theorem 2.6 ([3]). The following hold:

(1) There exists the following orthogonal decom-

osition:

H�1ðMÞ ¼ H�1;0ðMÞ �H�0;1ðMÞ;

(2) dimH�1;0ðMÞ ¼ dimH�0;1ðMÞ ¼ g,
(3) Complex conjugation maps H�1;0ðMÞ to

H�0;1ðMÞ and vise versa.

2.2. Period matrices. For a closed Riemann

surface M of genus g, we choose a point p 2M and

denote by �1ðM; pÞ the fundamental group formed

by the homotopy classes of closed curves from p.

The group can be generated by 2g generators

a1; b1; � � � ; ag; bg which satisfy the single relation

a1b1a
�1
1 b�1

1 � � � agbga�1
g b�1

g ¼ 1. Any such ordered sys-

tem of generators is called a canonical homology

basis.

Given M and fa; bg ¼ fa1; � � � ; ag; b1; � � � ; bgg
there exists a unique holomorphic 1-form �j with

period 1 along ak and periods 0 along all am;m 6¼ k.
The period of �j along bj is denoted by �jk. These

numbers are elements of the period matrix �

associated with M and fa; bg.
Definition 2.7. For ! 2 H�1ðMÞ, we define

the A-periods !ðajÞ and B-periods !ðbjÞ by

!ðajÞ :¼
Z
aj

!; !ðbjÞ :¼
Z
bj

!;

where 1 � j � g.
Riemann showed that for any fixed canonical

homology basis these periods satisfy the so-called

Riemann’s bi-linear relations. See [3] for detail.

Lemma 2.8 ([3]). For !1, !2 2 H�1ðMÞ, the

following holds:

h?!1; !2i� ¼
Xg
j¼1

ð!1ðajÞ!2ðbjÞ � !1ðbjÞ!2ðajÞÞ:

Theorem 2.9 ([3] [Riemann’s bi-linear rela-

tion of forms]). For !1; !2 2 H�1;0ðMÞ, the follow-

ing holds:Xg
j¼1

ð!1ðajÞ!2ðbjÞ � !1ðbjÞ!2ðajÞÞ ¼ 0:

The Riemann’s bi-linear relations yields the

following properties:

Corollary 2.10 ([3]). Let ! be a holomor-

phic 1-form.

(1) If all the !ðajÞ or all the !ðbjÞ vanish, then

! ¼ 0.

(2) If all the !ðajÞ and all the !ðbjÞ are real, then

! ¼ 0.
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By Corollary 2.10 (1), a basis f�1; � � � ; �gg is

uniquely determined by a pair ðM; fa; bgÞ. We

call this basis the canonical basis for holomorphic

1-forms.

Definition 2.11. Let M be a closed

Riemann surface of genus g and fa; bg a canonical

homology basis. Let f�1; � � � ; �gg be the canonical

basis for holomorphic 1-forms, so �jðakÞ ¼ �jk. We

define the period matrix � ¼ ð�jkÞ1�j;k�g to be the

ðg� gÞ matrix of B-periods:

�jk :¼ �kðbjÞ:

Note that period matrices lie in the Siegel

upper half space. See [3] for detail.

3. Combinatorial Hodge theory on trian-

gulated Riemann surfaces. Let K be a C1

triangulation of M whose ordering of the vertices

are fixed. Also, we assume that all simplices in K

have nice shape. This means that the shapes do not

too thin. Let CjðKÞ the set of the simplicial

cochains of degree j of K with values in C. We

denote the i-th vertex of K by pi. Since M is

compact, we can identify the cochains and chains of

K. For c 2 CjðKÞ write c ¼
P

� c� � � where c� 2 C

and the sum is over all j-simplices � of K. We

write � ¼ ½pi0 ; pi1 ; � � � ; pij � of K with the vertices in

an increasing sequence with respect to the ordering

of vertices in K. We assume our triangulation K

is a subdivision of the cellular decomposition given

by the canonical homology basis. Each element of

the canonical basis is represented as a sum of

1-simplices in K (see [1]).

Definition 3.1. Under the above settings,

we call a triple ðM; fa; bg; KÞ a triangulated

Riemann surface.

Definition 3.2. We define the mesh � of K

by

�ðKÞ ¼ sup rðp; qÞ;

where r means the geodesic distance in M and the

supremum is taken over all pairs of vertices p, q of a

1-simplex in K.

3.1. Whitney forms. Now we review some

definitions and results of Whitney forms. Given the

ordering of the vertices of K, we have a coboundary

operator � : Cj ! Cjþ1.

Let �i define the barycentric coordinate corre-

sponding to the i-th vartex pi of K as follows:

Definition 3.3. The barycentric coordinates

�i corresponding to each pi are defined by the

following properties: for each simplex � in K,

(1) �i : � ! ½0; 1�,
(2)

P
i �iðpÞ ¼ 1,

(3) p ¼
P

i �iðpÞpi for p 2 � .

We write c ¼
P

� c� � � where c� 2 C and the

sum is over all j-simplices � of K. We now define the

Whitney embedding of cochains into piecewise-

linear differential forms.

Definition 3.4. For � as above, we define

W� ¼ j!
Xj
k¼0

ð�1Þk�kd�0 ^ � � � ^ d�k�1

^ d�kþ1 ^ � � � ^ d�j:
W is defined on all of Cj by extending linearly.

Note that the coordinates �k are not even of

class C1, but they are C1 on the interior of any

n-simplex of K. Hence, d�k is defined and W� is well

defined. By the same consideration, dW is also well

defined, where d denotes exterior derivative.

Several properties of the map W are given

below.

Proposition 3.5 ([5]). The following hold:

(1) W� ¼ 0 on MnStð�Þ,
(2) dW ¼W�,

where St denotes the open star and Stð�Þ is the

closure of Stð�Þ.
Now we define a particularly nice inner product

on CðKÞ ¼ �jCjðKÞ:
Definition 3.6. An inner product h�; �iC on

CðKÞ is defined as follows:

h�; �iC ¼ hW�;W�i� for �; � 2 CðKÞ:

This inner product h�; �iC is called the Whitney inner

product.

3.2. Holomorphic cochains. Now suppose

that CðKÞ are equipped with the Whitney inner

product. Then one can define further structures on

the cochains.

Definition 3.7. The adjoint of �, denoted by

��, is defined by h���; �iC ¼ h�; ��iC .

These operators �, �� give rise to harmonic

cochains:

Definition 3.8. Harmonic j-cochains of K

are defined to be

HC1ðKÞ ¼ � 2 CjðKÞj�� ¼ ��� ¼ 0
� �

:

The following theorem is due to Eckmann [7]:

Theorem 3.9 ([7]). For CðKÞ equipped with

the Whitney inner product, there is an orthogonal

direct sum decomposition
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CjðKÞ ¼ �Cj�1ðKÞ �HCjðKÞ � ��Cjþ1ðKÞ:

Next, we recall the definition of the combina-

torial Hodge star operatorF, defined by Wilson [2]:

Definition 3.10. For � 2 CjðKÞ, we define

F� 2 C2�jðKÞ by

hF�; �iC ¼
Z
M

W� ^W� for � 2 C2�jðKÞ:

By F, a harmonic 1-cochains can be splited

into two part. The one is called the holomorphic

1-cochain and the another is called anti-holomor-

phic 1-cochains (see [1]).

Definition 3.11. The space of holomoro-

phic 1-cochains HC1;0ðKÞ is defined by the span

of the eigenvectors for non-positive imaginary

eigenvalues of F and the space of anti-holomorphic

1-cochains HC0;1ðKÞ is defined by the span of the

eigenvectors for non-negative imaginary eigenval-

ues of F.

The following theorem is due to [1]:

Theorem 3.12 ([1]). The following hold:

(1) There exists the following orthogonal decom-

position:

HC1ðKÞ ¼ HC1;0ðKÞ �HC0;1ðKÞ;

(2) dimHC1;0ðKÞ ¼ dimHC0;1ðKÞ ¼ g,
(3) Complex conjugation maps HC1;0ðKÞ to

HC0;1ðKÞ and vise verse.

3.3. Combinatorial period matrices. Now

we review the construction of combinatorial period

matrices, introduced by Wilson [1].

In [1], Wilson showed that there exists the

Riemann’s bi-linear relation of cochains and one can

take the canonical basis for holomorphic 1-cochains,

which is uniquely determined by a triangulated

Riemann surface. A combinatrial period matrix

is defined by the canonical basis for holomorphic

1-cochains of a triangulated Riemann surface.

Wilson also showed that the combinatrial period

matrix of a triangulated Riemann surface converges

to the period matrix, as the mesh of the triangu-

lation tends to zero.

Definition 3.13. For � 2 HC1ðKÞ, we de-

fine the combinatorial A-periods �ðajÞ and combi-

natorial B-periods �ðbjÞ by

�ðajÞ :¼
Z
aj

W�; �ðbjÞ :¼
Z
bj

W�;

where 1 � j � g.

Wilson [1] showed that the Riemann’s bi-linear

relation holds for harmonic 1-cochains with respect

to the Whitney inner product:

Theorem 3.14 ([1] [Riemann’s bi-linear rela-

tions of cochains]). For �1, �2 2 HC1;0ðKÞ, the

following holds:Xg
j¼1

ð�1ðajÞ�2ðbjÞ � �1ðbjÞ�2ðajÞÞ ¼ 0:

One can define the canonical basis for holo-

morphic 1-cochains (see [1]):

Definition 3.15. For a triangulated

Riemann surface ðM; fa; bg; KÞ of genus g, the

canonical basis f�1; � � ��gg for holomorphic 1-co-

chains is defined as follows: �jðakÞ ¼ �jk.
By Riemann’s bi-linear relation of cochains,

the canonical basis for holomorphic 1-cochains is

uniquely determined by a triangulated Riemann

surface. See [1] for detail.

Next, we define combinatorial period matrices

introduced in [1]:

Definition 3.16. Let ðM; fa; bg; KÞ be a tri-

angulated Riemann surface of genus g, and let

f�1; � � � ; �gg be the canonical basis for holomorphic

1-cochains of ðM; fa; bg; KÞ. The combinatorial

period matrix �K is defined by

�K :¼ ð�Kij Þ1�i;j�g where �Kij :¼ �iðbjÞ:

A combinatorial period matrix satisfies some

following properties.

Theorem 3.17 ([1]). Let �K be the combi-

natorial period matrix of a triangulated Riemann

surface ðM; fa; bg; KÞ. Then, �K is an element of the

Siegel upper half space.

Wilson showed that if complex valued simpli-

cial cochains of a triangulated Riemann surface are

equipped with the Whitney inner product, the all of

these structures provide a good approximation to

the analogues (see [4,5]). In particular, the holo-

morphic and anti-holomorphic 1-cochains converge

to the holomorphic and anti-holomorphic 1-forms,

and the combinatorial period matrix converges to

the period matrix of the associated Riemann sur-

face, as the mesh of the triangulation tends to zero.

Hence, a period matrix is a limit point of a sequence

of combinatorial period matrices.

Theorem 3.18 ([1]). Let M be a closed

Riemann surface and K a triangulation of M. We

set a sequence fKngn2N of subdivisions of K which

satisfies
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lim
n!1

�ðKnÞ ¼ 0;

where �ðKnÞ is the mesh of Kn.

Then,

lim
n!1

�Kn
¼ �;

where � is the period matrix and �Kn
is the

combinatorial period matrix of a triangulated

Riemann surface ðM; fa; bg; KnÞ.
4. Main results. For a triangulated

Riemann surface, we checked the definitions of

period matrices and the combinatorial period ma-

trices. In general, it is unclear whether or not the

two matrices coincide.
In this section, we will introduce a new matrix

which is uniquely determined by a triangulated

Riemann surface as well as a period matrix and a

combinatorial period matrix and call this new

matrix the associate matrix of a triangulated

Riemann surface. Then we will show that a matrix

equation is holding among the period matrix, the

combinatorial period matrix and the associate

matrix of a triangulated Riemann surface.

Definition 4.1. Let ðM; fa; bg; KÞ be a

triangulated Riemann surface of genus g. Let

f�1; � � � ; �gg be the canonical basis for holomorphic

1-forms and f�1; � � � ; �gg the canonical basis for

holomorphic 1-cochains of ðM; fa; bg; KÞ. We define

the associate matrix �K of ðM; fa; bg;KÞ by

�K :¼ ðhW�j; ?�ki�Þ1�j;k�g:

Note that the associate matrix is well defined

by choosing any Riemannian metric in the con-

formal class of the Riemann surface. Since

f�1; � � � ; �gg and f�1; � � � ; �gg are uniquely deter-

mined by a triangulated Riemann surface

ðM; fa; bg; KÞ, so �K is uniquely determined.

Next theorem is the main result of this paper:

Theorem 4.2. Let ðM; fa; bg; KÞ be a trian-

gulated Riemann surface with the period matrix �,

the combinatorial period matrix �K and the asso-

ciate matrix �K. Then, the following matrix equa-

tion holds:

� ¼ �K � �K:

Proof. Set

eCK :¼
1

2i
ð�� �KÞðIm �Þ�1;

and

CK :¼ E � eCK;
where E is the ðg� gÞ identity matrix.

Note that since Im � is positive definite, there exists

ðIm �Þ�1.

We compute
�K ¼ �� 2i eCK Im �

¼ ðCK þ eCKÞ�� 2i eCK Im �

¼ CK�þ eCK�:

Let cjk be the ðj; kÞ-entry of CK and ecjk the

ðj; kÞ-entry of eCK .

Then, for each j, k, we haveZ
bk

W�j ¼
Xg
m¼1

cjm

Z
bk

�m þ
Xg
m¼1

ecjm Z
bk

�m;

and Z
bk

W�j �
Xg
m¼1

cjm�m �
Xg
m¼1

ecjm�m
 !

¼ 0:

On the other hand, we computeZ
ak

W�j �
Xg
m¼1

cjm�m �
Xg
m¼1

ecjm�m
 !

¼
Z
ak

W�j �
Xg
m¼1

cjm

Z
ak

�m �
Xg
m¼1

ecjm Z
ak

�m

¼ �jk �
Xg
m¼1

ðcjm þ ecjmÞ�km
¼ �jk �

Xg
m¼1

�jm�km

¼ 0:

Namely, all A-periods and B-periods of W�j �Pg
m¼1 cjm�m �

Pg
m¼1 ecjm�m are zero. By Proposi-

tion 3.5 and ��j ¼ 0, we have dW�j ¼ W��j ¼ 0 on

the interior �i of any n-simplex � in K, where

n ¼ 1; 2. This implies that W�j �
Pg

m¼1 cjm�m �Pg
m¼1 ecjm�m is closed on �i. By de Rham’s theorem,

the closed form W�j �
Pg

m¼1 cjm�m �
Pg

m¼1 ecjm�m is

exact: there exists dfj such that

W�j �
Xg
m¼1

cjm�m �
Xg
m¼1

ecjm�m ¼ dfj;
on Mnfp 2Mjp : vertex in Kg.
Since fp 2Mjp : vertex in Kg is a null set, we have

hdfj; �ki� ¼ W�j �
Xg
m¼1

cjm�m �
Xg
m¼1

ecjm�m; �k
* +

�

No. 2] A matrix equation on triangulated Riemann surfaces 41



¼ hW�j; �ki� �
Xg
m¼1

cjmh�m; �ki�

�
Xg
m¼1

ecjmh�j; �ki�:
By Theorem 2.6 and d��k ¼ 0, we obtain h�m; �ki� ¼
0 and h�m; dfji� ¼ hd��m; fji� ¼ 0. So, we have

hW�j; �ki� ¼
Xg
m¼1

cjmh�m; �ki�:

By Riemann’s bi-linear relation of forms (Lemma

2.8), we obtain

h�m; �ki� ¼ ih�i�m; �ki�
¼ ih?�m; �ki�

¼ i
Xg
s¼1

Z
as

�m

Z
bs

�k �
Z
bs

�m

Z
as

�k

� �
¼ ið�km � �mkÞ
¼ ið�mk � �mkÞ
¼ 2 Im�mk:

Note that since the period matrix � is lie in the

Siegel upper half space, the period matrix � is

symmetric and we obtain �km ¼ �mk. Thus, we have

�K ¼ ðhW�j; ?�ki�Þ1�j;k�g
¼ iðhW�j; �ki�Þ1�j;k�g

¼ i 2
Xg
m¼1

cjm Im�mk

 !
1�j;k�g

¼ 2iðcjmÞ1�j;m�gðIm�mkÞ1�m;k�g
¼ 2iCK Im �:

So we conclude

�K ¼ �� 2i eCK Im �

¼ �� 2iðE � CKÞ Im �

¼ �� 2i Im �þ 2iCK Im �

¼ �þ �K:
�

By Theorem 4.2, we see that an associate

matrix is an element of the Siegel upper half space.

This implies that a triangulated Riemann surface

gives three elements of the Siegel upper half space.

Corollary 4.3. Let ðM; fa; bg; KÞ be a trian-

gulated Riemann surface, and let � be the period

matrix, �K the combinatorial period matrix and �K

the associate matrix of ðM; fa; bg; KÞ. Then, �K is

an element of the Siegel upper half space. Also �K is

not equal to � nor �K.

Proof. By Theorem 4.2, we have

�K ¼ �K � �

¼ ðRe �K � Re �Þ þ iðIm �K þ Im �Þ:

For any x 2 Rg, we see that
txðIm �KÞx ¼ txðIm �K þ Im �Þx

¼ txðIm �KÞxþ txðIm �Þx > 0:

This implies that �K is symmetric and Im �K is

positive definite, so �K is an element of the Siegel

upper half space.

Next, we assume that �K is equal to �. Then, by

Theorem 4.2, we have

�K ¼ �þ �K ¼ �þ � ¼ 2 Re �:

This is a contradiction, because the imaginary part

of a combinatorial period matrix is not equal to zero

matrix. In a similar way, one can check that �K is

not equal to �K as well. �
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