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Abstract: We study a linear semidiscrete-in-time finite difference method for the system

of nonlinear Schrödinger equations that is a model of the interaction of non-relativistic particles

with different masses. The main aim is to show that the scheme is second-order convergent.
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1. Introduction and main results. We

consider the following system of nonlinear

Schrödinger equations:

i@tuþ ��u ¼ ��uv; t � 0; x 2 Rd;

i@tvþ ��v ¼ �u2; t � 0; x 2 Rd;

uð0; xÞ ¼ u0ðxÞ; vð0; xÞ ¼ v0ðxÞ; x 2 Rd;

8>><
>>:ð1Þ

where u and v are complex-valued functions, � is

the Laplacian in Rd, � and � are positive constants,

and � and � are complex constants. This system is a

model of the interaction of a non-relativistic par-

ticles with different masses.

The mathematical study for (1) is well devel-

oped. Throughout this paper, we suppose that

s > d=2; s : integer:

For any s1 � s, there exists a constant T � ¼
T �ðu0; v0Þ 2 ð0;1� such that the system (1) admits

a unique maximal solution

ðu; vÞ 2 Cs1ð½0; T �Þ;Hs1ðRdÞÞ2;

for any ðu0; v0Þ 2 Hs1ðRdÞ2; see, e.g., Cazenave [2].

Moreover, the asymptotic profiles of solutions of (1)

are studied, for example, in [4].

In this paper, we are concerned with a time

discretization method for (1). As is well-known, we

need to consider implicit schemes to obtain stable

numerical solutions for Schrödinger equations. In

particular, the Crank-Nicolson scheme is useful and

widely applied, since it is stable and second-order

convergent. However, if we apply the Crank-

Nicolson scheme to a nonlinear Schrödinger equa-

tion, we encounter a nonlinear elliptic equation

at each time step as the resulting equation in order

to maintain the second-order convergence (cf.

[3]). As a consequence, we meet another difficulty

for solving nonlinear elliptic equations. This

can be quite time-consuming when the size of a

fully discretized problem is very large. In this

connection, Besse’s relaxation scheme ([1]) is a

method worthy of note. He considers a nonlinear

Schrödinger equation and studies a linear scheme

by considering both the main time step tn and a

dual one tnþ1=2. Here, by a linear scheme, we mean a

time discretization method whose resulting equa-

tions consist of linear elliptic equations. His relax-

ation scheme is shown to be convergent but the

proof of the second-order convergence is still open

at present.

In this paper, we propose a linear scheme for

(1) that is motivated by the relaxation scheme. The

main contribution of this paper is to show that it is

actually second-order convergent. As stated above,

we restrict our attention within a time discretiza-

tion scheme and not discuss space discretizations.

However, the resulting equations of our scheme is

linear so that the standard space discretization

methods, for example, the finite difference, finite

element, spectral methods are readily applicable.

Furthermore, our time discretization scheme and

our method of convergence analysis can be applied

to nonlinear Schrödinger and wave equations with
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power-nonlinearities by converting these equations

into suitable systems. Although those applications

are of interest, herein we consider only (1) in order

to present our idea as clearly as possible. As a

matter of fact, fully discrete numerical schemes for

(1) and those equations under various boundary

conditions will be studied in forthcoming papers.

Moreover, numerical examples will be reported

there.

Now let us state the time discretization scheme

for (1) to be considered. Let h be a time step size.

We propose the following scheme for (1).

i
unþ

3
2 � unþ

1
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h
þ ��

unþ
3
2 þ unþ

1
2
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¼ �
unþ

3
2 þ unþ

1
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i
vnþ1 � vn

h
þ ��

vnþ1 þ vn

2
¼ �ðunþ

1
2Þ2
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for n ¼ 0; 1; 2; . . . Namely the first and the second

equations of (1) are discretized at tnþ1 ¼ ðnþ 1Þh
and t

nþ1
2
¼ ðnþ 1

2Þh, respectively.

The scheme (2) consists of two linear equations

in unþ3=2 and vnþ1 at each time step. More specif-

ically, the first equation of (2) is equivalently

written as

Knþ1
unþ

3
2

�unþ
3
2

 !

¼
1þ i �h

2
�

� �
unþ

1
2 � i

�h

2
�unþ

1
2vnþ1

1� i
�h

2
�

� �
�unþ

1
2 þ i

�h

2
unþ

1
2 �vnþ1

0
BBB@

1
CCCA;

where

Knþ1 ¼
1� i

�h

2
� i

�h

2
vnþ1

�i
�h

2
�vnþ1 1þ i

�h

2
�

0
BB@

1
CCA:

Since the operator Knþ1 is defined in terms of the

solution vnþ1, it is not certain that Knþ1 is invertible

at this stage. However, as we will state in Propo-

sition 1 and Theorem 2 below, the scheme (2) has a

unique solution in tnþ3=2 < T � for a suitably chosen

h so that Knþ1 is actually invertible.

Below, we use the usual Lebesgue spaces

L2 ¼ L2ðRdÞ, L1 ¼ L1ðRdÞ and Sobolev spaces

Hk ¼ HkðRdÞ for an integer k together with their

standard norms. We write as k� kL2 ¼ k� kL2ðRdÞ and

k� kHs ¼ k� kHsðRdÞ.
First, we state the following local stability

result which plays an important role.

Proposition 1. Let a, b 2 Hs, and choose

an R � kakHs þ kbkHs . Then there exists a constant

TR > 0 such that, if h 2 ð0; TR=2�, the scheme (2)

with ðu1
2 ; v0Þ ¼ ða; bÞ admits a unique solution

fðunþ1
2 ; vnÞgn and the solution satisfies

kunþ
1
2kHs þ kvnkHs � 2Rð3Þ

for all n 2 N with nh � TR. The constant TR
depends only on R; �; �; s and d.

It should be kept in mind that, since

h 2 ð0; TR=2�, the set fn � 1 j nh � TRg is not an

empty set. This proposition will be proved in

Section 2, after having prepared a few preliminary

results.

We are now in a position to state the main

result of this paper.

Theorem 2. Let u0, v0 2 Hsþ6, and let T � ¼
T �ðu0; v0Þ be the maximal existence time of the

solution ðu; vÞ of (1) as mentioned before. Then

ðu; vÞ further satisfies

ðu; vÞ 2
\3
k¼0

Ckð½0; T �Þ; ðHsþ6�2kÞÞ2:ð4Þ

Let T 2 ð0; T �Þ be arbitrary, and set M� ¼
max0�k�3fMkg, where

Mk ¼ max
t2½0;T �

fk@kt uðtÞkHsþ6�2kð5Þ

þ k@kt vðtÞkHsþ6�2kg ðk ¼ 0; 1; 2; 3Þ:

Moreover, let fðunþ1
2 ; vnÞgn be the solution of (2)

with initial condition

u
1
2 ¼ u0 þ

ih

2
ð��u0 � �u0v0Þ; v0 ¼ v0:ð6Þ

Then, there exist positive constants h0 and K0,

which depend only on �; �; �; �; T and M0, such that

the problem (2) is solvable and the solution

fðunþ1
2 ; vnÞgn satisfies

kuðt
nþ1

2
Þ � unþ

1
2kHs þ kvðtnÞ � vnkHs � K0h

2ð7Þ

for all h 2 ð0; h0� and n 2 N satisfying ðnþ 1Þh � T .

2. Proof of Proposition 1. First, we col-

lect preliminary results. We introduce operators,

for positive constants p and q,

Ap ¼ I þ i
ph

2
�

� �
I � i

ph

2
�

� ��1

;
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Bq ¼ I � i
qh

2
�

� ��1

which are primarily defined on L2, where I denotes

the identity operator in L2. Applying the Fourier

transformation, we can deduce the following lem-

ma.

Lemma 1. 1. Ap is a unitary operator on Hs

and we can write

Ap ¼ I � i
ph

2
�

� ��1

I þ i
ph

2
�

� �
:

2. Bq is a bounded operator on Hs.

The following estimates are readily obtainable

from Taylor’s theorem.

Lemma 2. 1. Let fðtÞ 2 C3ð½0; T �;HsÞ, h >

0, tþ h 2 ½0; T �, and t� h 2 ½0; T �. Then we have

kh�1ðfðtþ hÞ � fðt� hÞÞ � 2@tfðtÞkHs

�
1

3
kfkC3ð½0;T �;HsÞh

2:

2. Let fðtÞ 2 C2ð½0; T �;HsÞ, h � 0, tþ h 2 ½0; T �, and

t� h 2 ½0; T �. Then we have

kfðtþ hÞ þ fðt� hÞ � 2fðtÞkHs � kfkC2ð½0;T �;HsÞh
2:

We will make use of the well-known inequality.

Lemma 3. There exists a positive constant

C which depends only on d and s such that

kuvkHs � CkukHskvkHs ðu; v 2 HsÞ:

Now we can state the following proof.

Proof of Proposition 1. It is based on the

contraction mapping principle. Let a; b 2 Hs be

arbitrary and set R � kakHs þ kbkHs .

First, the equation (2) with ðu1
2 ; v0Þ ¼ ða; bÞ can

be written in the following form:

unþ
3
2 ¼ Anþ1

� a

� i�h
Xn
j¼0

An�j
� B�

ujþ
3
2 þ ujþ

1
2

2
vjþ1;

vnþ1 ¼ Anþ1
� b

� i�h
Xn
j¼0

An�j
� B�ðujþ

1
2Þ2

8>>>>>>>>>>><
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for n ¼ 0; 1; 2; . . .

For the time being, we fix N 2 N and set

N̂ ¼ f1; 2; . . . ; Ng. Then, we consider a Banach

space

XN ¼ ffðwnþ
1
2 ; ŵnÞgn2N̂ j w

nþ1
2 ; ŵn 2 Hs ðn 2 N̂Þg

with the norm

kfðwnþ
1
2 ; ŵnÞgnkXN ¼ sup

n2N̂
ðkwnþ

1
2kHs þ kŵnkHsÞ;

for fðwnþ1
2 ; ŵnÞgn 2 XN . We introduce T : XN !

XN by setting

fð~unþ
1
2 ; ~vnÞgn ¼ T fðunþ

1
2 ; vnÞgn;ð9Þ

where

~unþ
3
2 ¼ Anþ1

� a

� i�h
Xn
j¼0

An�j
� B�

ujþ
3
2 þ ujþ

1
2

2
vjþ1;

~vnþ1 ¼ Anþ1
� b

� i�h
Xn
j¼0

An�j
� B� ujþ

1
2

� �2

8>>>>>>>>>>><
>>>>>>>>>>>:

ð10Þ

for n ¼ 0; 1; . . . ; N � 1. Here, we set u
1
2 ¼ a.

Below, we will show that T is a contraction

operator from a closed ball B2R into itself, with a

suitably chosen h, where

B2R

¼ ffðwnþ
1
2 ; ŵnÞgn 2 XN j kfðwnþ

1
2 ; ŵnÞgnkXN � 2Rg:

First, let fðunþ1
2 ; vnÞgn 2 B2R, and set fð~unþ1

2 ; ~vnÞgn ¼
T fðunþ1

2 ; vnÞgn. By using Lemmas 1 and 3, we have

k~unþ
3
2kHs � kakHs

þ Ch
Xn
j¼0

ðkujþ
3
2kHs þ kujþ

1
2kHsÞkvjþ1kHs

� kakHs þ CNhR2;

k~vnþ1kHs � kbkHs þ Ch
Xn
j¼0

kujþ
1
2k2
Hs

� kbkHs þ CNhR2;

for n ¼ 0; 1; . . . ; N � 1: Here and in what follows,

the generic positive constants depending only on �,

�, s and d are denoted by C. The value of C may

change in the same context. Hence there exists a

positive constant C1, which depends only on d, s, �

and �, such that

k~unþ
3
2kHs þ k~vnþ1kHs � Rþ C1NhR

2

for all n ¼ 0; 1; . . . ; N � 1. Therefore, if
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C1NhR � 1ð11Þ
then we have kfð~unþ1

2 ; ~vnÞgnkXN � 2R, which implies

that T ðB2RÞ � B2R.

Next, let fðunþ
1
2

1 ; vn1 Þgn, fðunþ
1
2

2 ; vn2 Þgn 2 B2R,

and let

fð~unþ
1
2

j ; ~vnj Þgn ¼ T fðu
nþ1

2
j ; vnj Þgn: ðj ¼ 1; 2Þ:

Then, we have

k~unþ
3
2

1 � ~u
nþ3

2
2 kHs

� Ch
Xn
j¼0

fðkujþ
3
2

1 � ujþ
3
2

2 kHs

þ kujþ
1
2

1 � ujþ
1
2

2 kHsÞkvjþ1kHs

þ ðkujþ
3
2

2 kHs þ kujþ
1
2

2 kHsÞkvjþ1
1 � vjþ1

2 kHsg

� CNhRkfðukþ
1
2

1 ; vk1Þgk � fðu
kþ1

2
2 ; vk2ÞgkkXN ;

and

k~vnþ1
1 � ~vnþ1

2 kHs

� Ch
Xn
j¼0

ðkujþ
1
2

1 kHs þ kujþ
1
2

2 kHsÞkujþ
1
2

1 � ujþ
1
2

2 kHs

� CNhRkfðukþ
1
2

1 ; vk1Þgk � fðu
kþ1

2
2 ; vk2ÞgkkXN

for n ¼ 0; 1; . . . ; N � 1. Hence there exists a positive

constant C2, which depends only on d, s, � and �,

such that

k~unþ
3
2

1 � ~u
nþ3

2
2 kHs þ k~vnþ1

1 � ~vnþ1
2 kHs

� C2NhRkfðukþ
1
2

1 ; vk1Þgk � fðu
kþ1

2
2 ; vk2ÞgkkXN

for all n ¼ 0; 1; . . . ; N � 1. Therefore, if

C2NhR �
1

2
;

then we have

kT fðukþ
1
2

1 ; vk1Þgk � T fðu
kþ1

2
2 ; vk2ÞgkkXN

�
1

2
kfðukþ

1
2

1 ; vk1Þgk � fðu
kþ1

2
2 ; vk2ÞgkkXN ;

which implies that T : B2R ! B2R is a contraction

mapping. At this stage, we define TR as

TR ¼ min
1

C1R
;

1

2C2R

� �
:

Moreover, from now on, choose N as N ¼
maxfn j n � 1; nh � TRg. Then, the mapping T

turns out to be a contraction mapping of B2R !
B2R. As a result, T has a unique fixed point

fðunþ1
2 ; vnÞgn2N̂ which obviously satisfies (10) and

(3) for 1 � n � N . This completes the proof of

Proposition 1. �

3. Proof of Theorem 2. Let u0, v0 2 Hsþ6

and let fðunþ1
2 ; vnÞgn be the solution of (2) with

initial condition (6). Then there exists a positive

constant C� which depends s; d and �, such that

ku0kHs þ kv0kHs � C�M�ð1þM�Þ:

Put M 0 :¼ maxfM�; C�ðM� þ 1ÞM�g. From Propo-

sition 1, there exists a constant TM 0 > 0, which

depends only on R, �, �, s and d, a unique solu-

tion fðunþ1
2 ; vnÞgn of (2) with initial condition (6)

satisfies

kunþ
1
2kHs þ kvnkHs � 2M 0

for all n 2 N with nh � TM 0 . We define

�h ¼ supfn 2 N j kunþ
1
2kHs þ kvnkHs � 3M 0g:

We divide the proof into two steps.

Step 1. First, we show that there exist positive

constants h1 and K0, which depend only on T and

M0, such that the estimate (7) holds for all h 2
ð0; h1� and n 2 N satisfying

ðnþ 1Þh � T; n � �h:ð12Þ

We define Nh as

Nh ¼ min T=h½ � � 1; �hf g;

where ½T=h� denotes the integer part of T=h.

For n ¼ 0; 1; 2; . . ., we set

�nþ
1
2 ¼ uðt

nþ1
2
Þ � unþ

1
2 ; �n ¼ vðtnÞ � vn:

Then we have

�nþ
3
2 � �nþ

1
2 � i

�h

2
�ð�nþ

3
2 þ �nþ

1
2Þ ¼ ih�nþ1;

or equivalently,

�nþ
3
2 ¼ A��

nþ1
2 þ ihB��nþ1;

where �nþ1 ¼ 	nþ1
1 þ 	nþ1

2 þ 	nþ1
3 ,

	nþ1
1 ¼ i @tuðtnþ1Þ �

uðt
nþ3

2
Þ � uðt

nþ1
2
Þ

h

( )
;

	nþ1
2 ¼ �� uðtnþ1Þ �

uðt
nþ3

2
Þ þ uðt

nþ1
2
Þ

2

( )
;
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	nþ1
3 ¼ �� uðtnþ1Þvðtnþ1Þ �

unþ
3
2 þ unþ

1
2

2
vnþ1

8<
:

9=
;:

It follows from Lemma 1 that

k�nþ
3
2kHs � k�nþ

1
2kHs þ hk�nþ1kHs:

Next, we estimate k�nþ1kHs . First, from Lemma 2,

k	nþ1
1 kHs � CM3h

2; k	nþ1
2 kHs � CM2h

2

for n ¼ 0; 1; . . . ; Nh � 1, where M2 and M3 are

constants defined by (5).

Moreover, since

uðtnþ1Þvðtnþ1Þ �
unþ

3
2 þ unþ

1
2

2
vnþ1

¼ uðtnþ1Þ �
uðt

nþ3
2
Þ þ uðt

nþ1
2
Þ

2

8<
:

9=
;vðtnþ1Þ

þ
uðt

nþ3
2
Þ þ uðt

nþ1
2
Þ

2
�
unþ

3
2 þ unþ

1
2

2

8<
:

9=
;vðtnþ1Þ

þ
unþ

3
2 þ unþ

1
2

2
fvðtnþ1Þ � vnþ1g;

it follows from Lemma 2 that

k	nþ1
3 kHs � CM2h

2kvðtnþ1ÞkHs

þ Cðkuðt
nþ3

2
Þ � unþ

3
2kHs

þ kuðt
nþ1

2
Þ � unþ

1
2kHsÞkvðtnþ1ÞkHs

þ Cðkunþ
3
2kHs þ kunþ

1
2kHsÞ

	 kvðtnþ1Þ � vnþ1kHs

� CM 0ðM2h
2 þ k�nþ

3
2kHs þ k�nþ

1
2kHs

þ k�nþ1kHsÞ

for n ¼ 0; 1; . . . ; Nh � 1. Thus, we obtain

k�nþ1kHs � CM 0h2 þ CM 0ðk�nþ
3
2kHs

þ k�nþ
1
2kHs þ k�nþ1kHsÞ;

and consequently, for n ¼ 0; 1; . . . ; Nh � 1,

k�nþ
3
2kHs � k�nþ

1
2kHs þ hk�nþ1kHsð13Þ

� k�nþ
1
2kHs þ CM 0h3

þ CM 0hðk�nþ
3
2kHs þ k�nþ

1
2kHs

þ k�nþ1kHsÞ:

Similarly, we have

�nþ1 � �n � i
�h

2
�ð�nþ1 þ �nÞ ¼ ih�nþ1

2 ;

or equivalently,

�nþ1 ¼ A��
n þ ihB��nþ1

2 ;

where �nþ1
2 ¼  nþ

1
2

1 þ  nþ
1
2

2 þ  nþ
1
2

3 ,

 
nþ1

2
1 ¼ i @tvðtnþ1

2
Þ �

vðtnþ1Þ � vðtnÞ
h

� �
;

 
nþ1

2
2 ¼ �� vðt

nþ1
2
Þ �

vðtnþ1Þ þ vðtnÞ
2

� �
;

 
nþ1

2
3 ¼ ��fðuðt

nþ1
2
ÞÞ2 � ðunþ

1
2Þ2g:

Again, from Lemma 2, we have

k nþ
1
2

1 kHs � CM3h
2; k nþ

1
2

2 kHs � CM2h
2

for n ¼ 0; 1; . . . ; Nh � 1. Moreover, we have

k nþ
1
2

3 kHs � Cðkuðtnþ1
2
ÞkHs þ kunþ

1
2kHsÞ

	 kuðt
nþ1

2
Þ � unþ

1
2kHs

� CM 0k�nþ
1
2kHs

for n ¼ 0; 1; . . . ; Nh � 1. Thus, we obtain

k�nþ1kHs � k�nkHs þ hk�nþ1
2kHsð14Þ

� k�nkHs þ CM�h3 þ CM 0hk�nþ
1
2kHs

for n ¼ 0; 1; . . . ; Nh � 1.

Summing up estimates (13) and (14), we

deduce

k�nþ
3
2kHs þ k�nþ1kHs

� k�nþ
1
2kHs þ k�nkHs þ C3M

0h3

þ C4M
0hðk�nþ

3
2kHs þ k�nþ1kHs

þ k�nþ
1
2kHs þ k�nkHsÞ;

where C3 and C4 denote positive constants depend-

ing only on d, s, �, �, � and �: Therefore

ð1� C4M
0hÞðk�nþ

3
2kHs þ k�nþ1kHsÞ

� ð1þ C4M
0hÞðk�nþ

1
2kHs þ k�nkHsÞ þ C3M

0h3

for n ¼ 0; 1; . . . ; Nh � 1.

At this stage, we define

h1 ¼
1

2C4M 0

and we assume that h 2 ð0; h1�. Then, we have
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k�nþ
3
2kHs þ k�nþ1kHs

� ð1þ 4C4M
0hÞðk�nþ

1
2kHs þ k�nkHsÞ þ 2C3M

0h3

� e4C4M
0hðk�nþ

1
2kHs þ k�nkHsÞ þ 2C3M

0h3

for n ¼ 0; 1; . . . ; Nh � 1. Thus, we have

k�nþ
1
2kHs þ k�nkHs

� e4C2M
0nhðk�

1
2kHs þ k�0kHsÞ

þ 2C1M
0h3
Xn�1

j¼0

e4C2M
0jh

� e4C2M
0Tk�

1
2kHs þ 2C1M

0Te4C2M
0Th2

for n 2 N satisfying (12).

In view of the regularity property (4), we have

@tuð0Þ ¼ ið��u0 � ��u0v0Þ:

Hence, using the Taylor theorem, we have

�
1
2 ¼ uðt1

2
Þ � u

1
2

¼ uð0Þ þ
h

2
@tuð0Þ þ

Z h
2

0

h

2
� 


� �
@2

 uð
Þ d


( )

� u0 þ i
h

2
��u0 � �u0v0ð Þ

� �

¼
Z h

2

0

h

2
� 


� �
@2

 uð
Þ d
:

This gives

k�
1
2kHs �

Z h
2

0

h

2
� 


� �
k@2


 uð
ÞkHs d
 �
M 0

8
h2:

Therefore, taking

K0 ¼
M 0

8
e4C2M

0T þ 2C1M
0Te4C2M

0T ;

we have shown that the desired estimate (7) holds

for all h 2 ð0; h1� and n 2 N satisfying (12).

Step 2. We set

h0 ¼ min h1;

ffiffiffiffiffiffiffiffiffi
M 0

2K0

s
;
1

2
T3

2M
0

( )
;

where T3
2M

0 is the constant introduced in Proposi-

tion 1 with R ¼ 3
2 M

0.
We prove

½T=h� � 1 � �h ð8h 2 ð0; h0�Þð15Þ

by showing a contradiction. Thus, we assume that

there exists h 2 ð0; h0� such that

½T=h� � 1 > �h:

Then, we have Nh ¼ �h and, since h0 � h1, in view

of Step 1,

kuðt
nþ1

2
Þ � unþ

1
2kH2 þ kvðtnÞ � vnkHs � K0h

2

for all n ¼ 1; . . . ; �h: Moreover, since ð�h þ 1Þh � T ,

it follows from the definition of M 0 that

max
n¼1;...;�h

ðkuðt
nþ1

2
ÞkHs þ kvðtnþ1

2
ÞkHsÞ �M 0:

Combining those inequalities, we get

kunþ
1
2kHs þ kvnkHs �M 0 þK0h

2

for all n ¼ 1; . . . ; �h: In particular, since h 2 ð0; h0�,
we have

ku�hkHs þ kv�hkHs �M 0 þK0h
2 �

3

2
M 0:

Then, we apply Proposition 1 with a ¼ u�hþ1
2 , b ¼

v�h and R ¼ 3
2 M

0 to obtain

ku�hþ
3
2kHs þ kv�hþ1kHs � 3M 0:

This contradicts the definition of �h. Therefore, (15)

actually holds true. That is, we have Nh ¼ ½T=h� � 1

for all h 2 ð0; h0�. Hence, by the result of Step 1,

we see that the desired estimate (7) holds for all

h 2 ð0; h0� and n 2 N satisfying ðnþ 1Þh � T . This

completes the proof of Theorem 2. �
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