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Abstract:

In this paper, we elucidate the well-known Wilton’s formula for the product of

two Riemann zeta functions. A proof of Wilton’s expression for product of two zeta functions was
given by M. Nakajima in [5] using the Atkinson dissection. On the similar line we derive Wilton’s

formula using the Riesz sum of the order k = 1.
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1. Introduction. In [5], M. Nakajima de-
rived an expression for the product of two Dirichlet
series. From this expression he gives a proof for
the well-known Wilton’s formula [6] and Bellman’s
formula [2] for the product of two Riemann zeta
functions in particular. In this method, he uses the
Atkinson dissection [1].

The Atkimsor;C dissection involves splitting of

the double sum > as

m,n=1
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Nakajima in [5], splits the double sum by the
following method
0 !/ o0 !/
PIEDIDBED I
m,n m=1n<m n=1m<n
where >’ means that the corresponding term in the
summation is to be halved.

The Riesz means, introduced by M. Riesz, have
been studied in connection with summability of
Fourier series and of Dirichlet series [3] and [4].
Given an increasing sequence {\;} of reals and a
sequence {aj} of complex numbers, the Riesz sum
of order k is defined by

A(@) = Af(@) = Y (@ = )"

<z

- n/o (@ — 1)1 Ay (D)dt
_ / (= )" dA (1),
0
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where Ay(z) = A(z) = 3 'ay, and the prime on

ez
the summation sign means that when \; = z, the
correponding term is to be halved.
Consider the Dirichlet series ¢(s) and ®(s)
defined as

[o.¢] o0

©(s) :Z%, o> o, and O(s) :Za—:, o> 0g,
n=1 "‘n n=1 In

where {\,} and {v,} are increasing sequences of

real numbers and «,, and a, are complex numbers.

Assume that they are continued to meromorphic

functions over the whole plane and that they satisfy

the growth condition

(o +it) < (|t| + 1), &0 +it) < (Jt| + 1)

in the strip —b < o < ¢ (b > 0,¢ > 0). In case of the
Riemann zeta function, s¢(—b) =1 +b.

In this paper, we consider an integral of the
following form for Dirichlet series ® and ¢, (for ¢ >
0 and k > 0),

Fo)(p(u), ®(v)) = Fi (o(u), ®(v); )
o 1 F(w) WK
- ’ Twtrtl) o(u+ w)®(v — w)x"™ dw,

and its counterpart F)(®(v),¢(u)) under the
condition

Ru>o,+¢c, Rv>op+ec

In the next section, we consider ® and ¢ as the
Riemann zeta functions in particular. The Atkinson
dissection is the special case of the Riesz sum A" (z)
with £ = 0 in the sense that

(1) Fly (p(u), @(v)) + Fy (2(v), p(w))
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1 = ek / u . Multiplying numerator and denominator by the
- T(k+ 1) Z AmYm /\Z Ay (Y = An) factor I'(1 — %), the right hand side of the above
e will be
an)\ Uk CIﬂn’ym n — Ym " 1 7Tu+u)1" 1-u—w I'(1 — utw
F(/i—t—l Z W;J ) — / S(w) (ujﬂ I o )f(w)dw
. 2mi J () VD ()T (1 = =5%)
implies
1 ) qutwo— (1—u—w) \/_‘ < ( ))
N —u, v =5 ,{w72 T sin u+ w
(2) Z amA, ) any,, 2mi J(—p) L

mn=1

(o) o0
_ § E —u —v § —u —v
- Qm /\m an 7’71 + Qn )"n an’yn

m=1n<m m=n

+ i Z Oém/\y_nuan%:v

n=1 m<n

for k=0, z = 1.

We prove the well-known Wilton’s formula by
taking x = 1. The Wilton’s formula can be stated
as follows:

Theorem 1. ForRu > —1, v > —1, Re(u+
v) >0 and u + v # 2, we have

(3) C(w)¢(v)
1 1
-1 * v — 1>

— -1
+2(27)% ! Ol—un(n n“flu/ 2" tsinz de
(2m) z; 1—u—(n) -

n—=
oo
”711)/ " lsinz da.
2

T

+2(2m)"! i O1—uo(n)n

n=1

2. Proof of the Theorem. For R(u) > 1+
¢ and R(v) > 1+ ¢, with ¢, > 0, we consider the

following integral with 0 < Reu—1<b< % and
0<Rev—-1<b<3,
Fip(C(u),¢(v); )
1 r
(w) C(u+w)(v —w)z" M dw.

- % (~b) Nw+k+1)
Applying functional equation for ((u + w) we have

Fiy(Cu), ¢(v); )

B 1 F(w) qtw F( i w)
Comi JoyDw+r+1) 50 T(42)
(1 —u—w)(v—w)z" " dw.
For simplicity of the expressions let
r
) g ()
MNw+k+1)

and

(1 =u—w)(v—w) = f(w).

N1 —u—w)f(w)dw

1 utw—1 _. Z u w
~25n [ s sin(F )
'l —u—w)dw.

By change of variables and assuming Ru < b, we
have

L[ s f(—z)(zw)“—z—lsm(g (u—z)>

m (b)
'l —u+z)dz

N T (g (u— z)>

N g} (b)

Z 01 uo(n)

-— Z O1—y—p(n)(2nm)"” ! " S, (—2) sin (g (u— z))
(2n7r) T(1 —u—+ 2)dz
Taking the order k = 1.
(C(u) ((v); )
=— Zal weo(n) (2nm)" ! / S1(—2) sin (g (u— z))
n=1

(2nm) " T(1 —u+ 2)dz

:—Zal u—v(n)(2nm)"" 1/ S1(—

nl

,2(ufz) _ 71,2(11,72)
{6 _e }F(l—u+z)dz.
2t

n* (1 — u+ 2)dz

2)(2nm)”*

Let
hy(u; x)
1 —z+1 -z .
= —/ ﬂé?(“ =P — u+ 2)dz.
2mi Jgy  2(z—1)
Similarly, let
9y (u; )
1 —z+1 -z -
= —/ ﬂ e 2P (1 — u + 2)d.
271 (b) Z(Z - 1)

Differentiating above integral hy(u;z) with
respect to z, we get



No. §]
hy (u; )
1 “Z(2nm)F x
=—-— 2 (@nm) - €2 UD(1 — u + 2)dz
2mi (b) z
1 2mnwe’s)
- _,ela(ufl)/ (2mnae) © I'(1—u+ 2)dz
2 (b) z

Now, shifting the path of integration to the left, we
get
hy(u; )’

S L.ev%(ufl)/ Mr(l —u+ 2)dz.
27 (b) z

Note that hy(u;z) 4 gy(u;z)" is absolutely conver-

gent on 1+b <R(u), 0 <R(u—1) <by. There-

fore, using the formula for incomplete Gamma

function, which is given as

d
— [ T(s+a)= =T(a,z) (c>0,%s>0)
21 (© S
1 d
271 (c) $
1
(C>O,%a<§—c> 9563)
where

o0
Do, z) = / t* e tat (larg | < )

is the incomplete gamma function.
Now we have,

hy(u; ) + gy(us ) = efig(lﬂt)r(l —u, 271_“3:6%#)

+ eig“*“)F(l —u, 727m:ce%r)

(o)
=2 / t
2mnx

where we used the following formula

costdt (Ru > 0)

- a—1 1 —iTa : 1 iza .
% cosazdr = 3¢ ? o, iu) + €2 (o, —iu).

u

Hence, we obtain

(F ) (Cu),¢(v):2))
:_Zalut 27m)u 12/OC

2mna

t~" costdt.

Note that the differentiated series is absolutely
convergent.
Now, using the residue theorem,

Product of two Riemann zeta functions

Flo(Cu), ¢(v);2)
= F ) (C(u), ((v);

—Clu—1)¢(v+1)+

) + 2¢(u)C(v)
C(u+v—1)a?
(u—2)(u—1)
Differentiating with respect to = gives,
(Flo(Cw), ¢(v);2))
= (Fp(Clu), ¢ (v);2))
(utv—1) 1-u
(u—1)

+((w)((v)

Also, we know that

E amm”~ E a,n "

m= n<mx

Taking x = 1 with a,,, = 1, o, = 1, we have

Zm D

n<m
=_9 Z o1 —u_v(n)(2mn)"" 1u/ =% L sin tdt
2mn
(u+v—1)
+ ((u)¢(v)
(u—1)
Similarly,
Z ny e
m<n
=2 Zal I 27m)“_1v/ t~" " sin tdt
2mn
((u+v—1
+ () — e

(v—1)
Adding the above two equations, we get

((u)¢(v)

_ —QZal_u_u( )(2mn)" lu/m

2mn

t"gintdt

o0
n)(2mn)"" 11}/ t~"" L sin tdt
21mn

+2<<u><<v>—<<u+w—1>{ )
v—1 wu—-1
and hence

C(u)¢(v)
= ((u+v— 1){$+ui 1}
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o0 oo
+2(2m)"! Z al,u,u(n)n“’lu/ t~" " Usin tdt
n=1 2

™

+2(2m)"! Z ol,u,v(n)n“_lv/ t~!sin tdt.
n=1 2

™

Acknowledgements. We are indebted to
Prof. Shigeru Kanemitsu for his discussions and
useful suggestions that helped in forming a draft of
this paper. We are also extremely thankful to Prof.
Kalyan Chakraborty for his valuable suggestions
and comments. Finally, we thank the referee for the
thorough perusal of this paper.

[2]

References

F. V. Atkinson, The mean-value of the Riemann
zeta function, Acta Math. 81 (1949), 353-376.

R. Bellman, An analog of an identity due to
Wilton, Duke Math. J. 16 (1949), 539-545.

K. Chandrasekharan and S. Minakshisundaram,
Typical means, Oxford Univ., Press, 1952.

G. H. Hardy and M. Riesz, The general theory of
Dirichlet’s series, Cambridge Tracts in Mathe-
matics and Mathematical Physics, No. 18,
Stechert-Hafner, Inc., New York, 1964.

M. Nakajima, A new expression for the product of
the two Dirichlet series. I, Proc. Japan Acad.
Ser. A Math. Sci. 79 (2003), no. 2, 19-22.

J. R. Wilton, An Approximate Functional Equa-
tion for the Product of Two (-Functions, Proc.
London Math. Soc. S2-31 (1930), no. 1, 11-17.



	c_rf1
	c_rf2
	c_rf3
	c_rf4
	c_rf5
	c_rf6

