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Abstract: In this study we have obtained some sufficient conditions for the Taketa

inequality namely dlðGÞ � jcdðGÞj for finite solvable groups G.
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1. Introduction. A long standing open

problem in the character theory of finite solvable

groups is whether the derived length dlðGÞ of a

solvable group G is bounded above by the cardi-

nality of cdðGÞ, the set of irreducible character

degrees of that group, i.e. whether the so-called

Taketa inequality dlðGÞ � jcdðGÞj is true for every

finite solvable group G. This inequality appeared

first in the proof of the fact that all M-groups

are solvable. This proof was given by Taketa by

establishing that an M-group has to satisfy the

Taketa inequality. The famous Isaacs-Seitz con-

jecture claims that the Taketa inequality is true

not only for M-groups but for any finite solvable

group. In the literature we know only some classes

of solvable groups besides M-groups for which the

conjecture is true. For example, T. R. Berger has

shown that all finite groups of odd order satisfy the

Taketa inequality [1]. In their paper, ‘‘Irreducible

character degrees and normal subgroups’’ I. M.

Isaacs and G. Knutson [5] have proved that if N is

a normal nilpotent subgroup of G then dlðNÞ �
jcdðGjNÞj where cdðGjNÞ is the set of degrees of

irreducible characters of G whose kernels do not

contain N. They also remark that the inequality

dlðNÞ � jcdðGjNÞj includes the Taketa inequality

as a special case when N is replaced by G0. As

a corollary, it turns out that they prove that

dlðGÞ � jcdðGÞj when G0 is nilpotent. Some of

the other sufficient conditions refer to the cardi-

nality of cdðGÞ. I. M. Isaacs has shown that the

condition jcdðGÞj � 3 is sufficient for the Taketa

inequality [4] (or Corollary 12.6 and Theorem

12.15 of [6]). In his Ph.D. thesis, S. Garrison has

obtained that jcdðGÞj ¼ 4 is another sufficient con-

dition for the conjecture which is later generalized

by I. M. Isaacs and Greg Knutson (see Theorem C

of [5]). The last known sufficient condition for the

Taketa inequality regarding the cardinality of the

set of the irreducible character degrees is [7] due to

Mark Lewis dealing with the case jcdðGÞj ¼ 5. The

problem is still open for solvable groups with six

irreducible character degrees.

Motivated by these results we obtain in this

paper some further sufficient conditions for the

conjecture.

2. Main theorems. We start with the fol-

lowing proposition.

Proposition 2.1. Let G be a finite group and

let N be a normal Hall subgroup of G. Suppose that

both G=N 0 and N satisfy the Taketa inequality. Then

G satisfies the Taketa inequality.

The proof of this Proposition 2.1 is essentially

the same as the proof of Lemma 12.16 of [6]. But for

the sake of completeness and as a short reminder we

repeat a condensed form of the proof here.

Proof. Let � be the set of primes dividing jNj.
Since N is a normal Hall subgroup of G, cdðNÞ is

exactly the set of �-parts of the elements of cdðGÞ
and every degree in cdðG=N 0Þ divides the index

jG : N j by Theorem 6.15 of [6]. This yields that

jcdðNÞj þ jcdðG=N 0Þj � 1 � jcdðGÞj. Now we have

dlðGÞ � dlðG=N 0ÞþdlðN 0Þ � dlðG=N 0Þþ dlðNÞ� 1 �
jcdðG=N 0Þj þ jcdðNÞj � 1 � jcdðGÞj as desired. �

As a corollary of this proposition, we give a

generalization of the fact that supersolvable groups

satisfy the Taketa inequality (see Theorem 6.22

of [6]).

Theorem 2.2. Let G be a finite group and p

be the smallest prime divisor of the order of G. If G

has a normal p-complement then G satisfies the

Taketa inequality.
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Proof. Since all finite groups of odd order

satisfy the Taketa inequality by [1], we may assume

that the order of G is even so that p ¼ 2. Let N be

the normal 2-complement of G. Since the order of

N is odd, N satisfies the Taketa inequality. Also,

N=N 0 is an abelian normal subgroup of G=N 0 and

the factor group is a 2-group. So G=N 0 is an M-

group by Theorem 6.22, Theorem 6.23 of [6] and

satisfies the Taketa inequality. Thus G itself

satisfies the Taketa inequality by Proposition 2.1.

�

Corollary 2.3. Let M be a normal subgroup

of a group G, where M is supersolvable and G=M is

a p-group where p is the smallest prime number

dividing Gj j. Then G satisfies the Taketa inequality.

Proof. We know that M has a normal p-

complement and since G=M is a p-group G has

also a normal p-complement. So we are done by

Theorem 2.2. �

Corollary 2.4. Let G be a rational group

with supersolvable derived subgroup. Then G sat-

isfies the Taketa inequality.

Proof. Since G is rational and factor groups of

a rational group are still rational, G=G0 is a rational

group which is also abelian. It is well known that

only abelian rational groups are elementary abelian

2-groups. So we are done by Corollary 2.3. �

Theorem 2.5. Let N be a normal subgroup

of a group G, where N has an abelian normal

p-complement for some prime number p. Then

dlðNÞ � jcdðGjNÞj. In particular, if G0 has an

abelian normal p-complement, then dlðGÞ � jcdðGÞj.
Proof. We will induct on jNj. If jNj ¼ 1, then

dlðNÞ ¼ 0 and the result holds. Assume N > 1.

We have dlðNÞ ¼ 1þ dlðN 0Þ � 1þ jcdðGjN 0Þj �
jcdðGjNÞj, where the first inequality holds by the

inductive hypothesis since N 0 < N , and the second

inequality holds by Theorem 3.1 of [5]. To establish

the second claim of the theorem, replace N with G0.
�

Let us consider the following condition for a

solvable group G:

�ðH 0Þ < �ðHÞ

for every nontrivial Hall subgroup H of G. Under

this condition, all Sylow subgroups of G are abelian

and so G is an M-group by Theorem 6.23 of [6].

Thus the condition above is sufficient for the Taketa

inequality. In the next theorem, we will provide a

slightly weaker sufficient condition:

Theorem 2.6. Let G be a solvable group.

Assume that �ðH 0Þ < �ðHÞ for every Hall subgroups

H of G satisfying 2 � j�ðHÞj. Then dlðGÞ � jcdðGÞj.
Proof. We will induct on the order of G. Since

Taketa inequality holds for p-groups, we may

assume that 2 � j�ðGÞj. This starts the induction

and also allows us to conclude �ðG0Þ < �ðGÞ by

the fact that every group is a Hall subgroup of

itself.

Thus there exists a prime number q dividing

the order of G but fails to divide the order of G0.
Thus G0 is a q0-group and so a Hall q0-subgroup H of

G contains G0. Since H is a Hall subgroup of G, the

hypothesis is satisfied for H and so dlðHÞ � jcdðHÞj
by induction argument (Here H is a proper sub-

group of G, since q does not divide the order of H).

Now we have a normal Hall subgroup H for which

Taketa inequality holds and the factor group G=H

is a q-group. So by Corollary 12:16 of [6] we have

dlðGÞ � jcdðGÞj. �

As a preparation for the proof of the following

theorems we prove the following proposition:

Proposition 2.7. Let P be a class of finite

solvable groups which is closed with respect to taking

quotients. Suppose there exists a group in P for

which the Taketa inequality is not true and let G be

such a group of smallest possible order. Then the

following hold:

(i) Gðn�1Þ is the unique minimal normal sub-

group of G where n ¼ dlðGÞ,
(ii) cdðG=Gðn�1ÞÞ ¼ cdðGÞ,
(iii) dlðGÞ ¼ jcdðGÞj þ 1,

(iv) F ðGÞ, the Fitting subgroup of G, is a p-

group for some prime p.

Furthermore if G00 is nilpotent, then

(v) p divides the index jG : G0j.
Proof. First assume that G has two distinct

minimal normal subgroups M and N. Thus G is

isomorphic to a subgroup of G=M �G=N since

M \N ¼ 1. As the Taketa inequality is true for

both G=M and G=N we get dlðGÞ � maxfdlðG=MÞ;
dlðG=N Þg � maxfjcdðG=M Þj; jcdðG=N Þjg � jcdðGÞj.
But this is a contradiction. So G has a unique

minimal normal subgroup and consequently F ðGÞ is

a p-group for some prime p. This completes the

proof of ðivÞ.
Let M be the unique minimal normal subgroup

of G. In this case, M is abelian by the solvability

of G and so dlðGÞ � dlðMÞ þ dlðG=MÞ ¼ 1þ
dlðG=M Þ � 1 þ jcdðG=M Þj � 1 þ jcdðGÞj � dlðGÞ.

104 U. YILMAZTÜRK, T. ERKOC� and İ. �S. GÜLOĞLU [Vol. 89(A),



So we have dlðGÞ ¼ jcdðGÞj þ 1, jcdðG=MÞj ¼
jcdðGÞj; dlðG=MÞ ¼ dlðGÞ � 1 ¼ n� 1.

Since Gðn�1Þ is non-trivial normal subgroup

of G, M is contained in Gðn�1Þ. The equation

dlðG=MÞ ¼ n� 1 yields that 1 ¼ Gðn�1Þ ¼ Gðn�1Þ

where G ¼ G=M. So we have M ¼ Gðn�1Þ. This

gives the proof of (i), (ii), (iii).

Now suppose that G00 is nilpotent. In this case,

G00 � F ðGÞ and so G00 is a p-group. To prove ðvÞ, we

will assume that p does not divide the index jG : G0j
and show that dlðGÞ � jcdðGÞj which is a contra-

diction. This will complete the proof. Since G00 is a

p-group there exists a Sylow p-subgroup P of G0

containing G00. It follows that P is normal in G.

Since we assume that p does not divide the index

jG : G0j, P is a normal Hall subgroup of G for which

Taketa inequality holds. Clearly we may assume

that 1 6¼ P 0 since G00 � P and Taketa inequality

holds for groups dlðGÞ � 3. Since 1 6¼ P 0, we have

dlðG=P 0Þ � jcdðG=P 0Þj. Finally we have dlðGÞ �
jcdðGÞj by Proposition 2.1. �

Theorem 2.8. Let G be a solvable group.

Assume that for all �;  2 IrrðGÞ, ker� ¼ ker if

1 < �ð1Þ ¼  ð1Þ. Then dlðGÞ � jcdðGÞj.
Proof. Since IrrðG=NÞ � IrrðGÞ, the hypothe-

sis is inherited by factor groups. Suppose the

theorem is false and let G be a minimal counter

example to this theorem. Then by Proposition 2.7,

G has a unique minimal normal subgroup M and

cdðG=MÞ ¼ cdðGÞ.
Clearly we may assume 1 6¼ G0 so that M � G0

and cdðGjMÞ � cdðGjG0Þ ¼ cdðGÞ � f1g. Let k 2
cdðGjMÞ. In this case, 1 6¼ k and there exists an

irreducible character � of G such that �ð1Þ ¼ k
and M " ker�. On the other hand, k 2 cdðGÞ ¼
cdðG=MÞ and so there exists an irreducible charac-

ter  of G such that M � ker and  ð1Þ ¼ k. But by

hypothesis, ker� ¼ ker which is a contradiction.

So we are done. �

Y. Berkovich, D. Chillag and M. Herzog have

classified the finite groups in which the degrees of

nonlinear irreducible characters are distinct and

shown that such groups have at most three distinct

irreducible character degrees [2]. So these groups

satisfy the Taketa inequality. In the following

corollary we have the same conclusion without

exploring the structure of these groups.

Corollary 2.9. Let G be a solvable group in

which distinct nonlinear irreducible characters have

distinct degrees. Then, dlðGÞ � jcdðGÞj.

Proof. This is an immediate corollary of

Theorem 2.8. �

Let G be a finite group and jGj ¼ p�1

1 . . . p�rr
where p1; . . . ; pr are distinct primes and �1; . . . ; �r
are non negative integers. We will denote the

maximum of the �i’s by �ðGÞ. Suppose that �ðGÞ �
2. Then all Sylow subgroups of G are abelian and

so dlðGÞ � jcdðGÞj as mentioned above. The next

theorem gives a slightly better bound by putting an

additional hypothesis:

Theorem 2.10. Let G be a group and k 2
f1; 2; 3; 4; 5g. If GðkÞ is nilpotent and �ðGÞ � 13� 2k

then dlðGÞ � jcdðGÞj.
Proof. Fix a k 2 f1; 2; 3; 4; 5g and suppose GðkÞ

is nilpotent, �ðGÞ � 13� 2k. We will assume that

the assertion is false and look for a contradiction.

Let G be a minimal counter example to the

assertion. In this case 6 � jcdðGÞj by [4], [3]

and [7]. Clearly the condition is inherited by factor

groups and so we can apply Proposition 2.7. Then

n ¼ dlðGÞ ¼ jcdðGÞj þ 1 � 7 and F ðGÞ is a p-group

for some prime number p. By hypothesis GðkÞ is

nilpotent and so GðkÞ � F ðGÞ. Thus GðkÞ is a p-group

and so contained in a Sylow p-subgroup P of Gðk�1Þ

and P has to be normal in G. If P 0 ¼ 1, then

Gðkþ1Þ � P 0 ¼ 1 and so 7 � dlðGÞ � kþ 1 � 6 which

is a contradiction. So P 0 is nontrivial so that

jG=P 0j < jGj and hence dlðG=P 0Þ � jcdðG=P 0Þj by

the minimality of G. Thus we see by Proposition 2.1

that P is not a Sylow p-subgroup of G.

When we consider the hypothesis �ðGÞ � 13�
2k together with the last paragraph, we have

that the order of P which is the p-part of the

order of Gðk�1Þ divides p12�2k so that cdðP Þ �
f1 ¼ p0; p; . . . ; p5�kg. Thus n� k ¼ dlðGðkÞÞ �
dlðP Þ � jcdðP Þj � 6� k and so n � 6. But this is a

contradiction since 7 � n by the first paragraph. �

Corollary 2.11. Let G be a group. If G0 is

supersolvable and �ðGÞ � 9 then dlðGÞ � jcdðGÞj.
Proof. This is an immediate consequences of

Theorem 2.10 since the derived subgroup of a

supersolvable group is nilpotent. �

Theorem 2.12. Let G be a group with super-

solvable derived subgroup. Suppose that G=G0 is a

p-group for some prime p and 2k 6� 1ðpÞ for k ¼
1; . . . ; n where jGj2 ¼ 2n. Then dlðGÞ � jcdðGÞj.

Proof. Let G be a minimal counter example to

the Theorem. Since the conjecture is true for groups

of odd order by [1], the order of G is even and p 6¼ 2
by Corollary 2.3. Let H be the unique 20-Hall
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subgroup of G0 so that H C G and let S 2 SylpðGÞ.
Then, SH is a proper subgroup of G:If SH C G then

G=SH ¼	 G0=ðG0 \ SHÞ, but as G00 is a p-group by

Proposition 2.7 we have G00 � ðG0 \ SHÞ. Therefore

G=SH is abelian which implies that G0 � SH and

hence G ¼ SH which is not the case. So SH=H is

a Sylow p-subgroup of G=H which is not normal.

Thus we conclude that 1 < ½G=H : NG=HðSH=HÞ
 �
1 ðpÞ. But ½G=H : NG=HðSH=HÞ
 divides ½G0 : H

which is a power of 2. This contradiction completes

the proof. �
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