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Optimal Korn’s inequality for solenoidal vector fields on a periodic slab

By Yoshiaki TERAMOTO* and Kyoko TOMOEDA**):!

(Communicated by Kenji FUKAYA, M.J.A., Nov. 12, 2012)

Abstract:

We obtain the best constant in Korn’s inequality for solenoidal vector fields on

a periodic slab which vanish on a part of its boundary. To do this we consider the Stokes
equations with Dirichlet boundary conditions, following H. Ito [6], [7].

Key words:

1. Introduction and result. Let Q be a
periodic slab I x T, where I denotes the interval
(—1,0) and T the torus R/(27/a)Z with period 27/a
for a given constant a > 0. We set

0H(Q) = {u = (w1, us) € {H'(Q)}*:

diveu=0, uw=0onuz =-1}.

Korn’s inequality on ¢ H! () states that there exists
a constant K > 0 such that

(L.1) ||E(U)Hi2(gz> 2 KHVUH%Q(Q)

for any u € (H!(Q), where e(u) = (g;;(u)) is the
rate-of-strain tensor whose elements are given by

( ) 1 an n 8Uj L. 1.9

i\u) = = , L= 1,4

€ 2 8:10]- 83% J

Our problem is to find the best constant K., of

(1.1), i.e., the largest number K such that (1.1)
holds, and we obtain the following result.

Theorem 1.1. The best constant of (1.1) is
given by
1
Kpax = 7
3
Remark 1. Note that the value 1/3 of the

best constant coincides with that for the case of
half-space obtained by H. Ito [7]. For the results in
other situations, see, for example, [1-9] and their
references.

The plan of this paper is as follows. In section
2, we obtain the solution to the Stokes equations
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Korn inequality; best constant.

with Dirichlet boundary conditions. By using
this, we determine K,,, in section 3. We show
the lemma used in the proof of Theorem 1.1 in
appendix.

2. Preliminary. We begin with writing
down explicitly, a solution {u,p} of the Stokes
equations with Dirichlet boundary conditions:

(21) —(1—-kK)Au+Vp=0, divu=0 in{,
2.2 dr =0

(2.2 | ptaraiz o

(2.3) u(—1,29) =0, w(0,z2) = &(z2),

where k < 11is a constant and ¢ = (¢1, ¢2) is a given
function.

We expand u;, p and ¢; (j = 1,2) into Fourier
series in x5 € T as follows:

uj(z1, x2) = Z ué.k)(xl) exp(ialzs),

leZ
p(x1,x2) = Zp([)(x1) exp(ialzs),
ez
bj(x2) = Zgi)‘gvé) exp(ialzy), j=1,2.
leZ

Then, for each ¢ € Z, we obtain the boundary value
problem on the interval {z;: —1 < x; < 0} for the
system of the ordinary differential equations

d\* ¢ ¢
(24) —(1-— H){ (d—xl> Wl — (ab)?u >}
d .
— 0 —y
+ e P ;
d\* 2 (0)
(2.5) —(1- /1){ <d_x1> uy — (al) us }
+ (ial)p¥) =0,
d
(2.6) d_up + (ia)ul) =0, in—1<a; <0,
X1
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27 W1 =0 u(0) =9

; W i=1,2.

To solve this, we must assume
(2.8) o\ =0.
Then, for ¢ =0, the solution to the system (2.4)—
(2.7) is given by
(29) w (@) =0, w(@)= (&1 +1)sy,
p¥ =o0.

In the case ¢ # 0, the solution to (2.4)—(2.6) are
written as follows:

(2.10) w9 (@) = (O + Ca(ay + 1))eld@+)
+ (Cg + 04(331 + 1))6*“1[\(1174)’

ul (z1)
-1
= {(Cy + [al|(Cy + Co(my + 1)))elllmnt)

+ (Cy — [al|(C5 + Cy(ay +1)))e ity
P (1) = 2(1 — &) (Cyell@ ) ¢ elolll@t1)y
Substituting (2.10) into the boundary conditions
(2.7), we have
b1 bip bz by Cy 0
bat by bag oy G| 0

(211) by bza b3z by Cy o\ ’
by bz biz by Cy —z’a&bg@

where

biy =biz=0byp=by =1, bia =014 =0, by = |af],

bys = —all, by = bsy = €™, byy = byy = 7",

bar = |al]el™l, by = (1 + [al])el™!,

bis = —|alle™ ¥ by = (1 — |al))e 1.

To guarantee the unique solvability of (2.11),
we give the following lemma.
Lemma 2.1. If¢+#0, then det(b;;) > 0.
Proof. Calculating determinant, we have

det(byj) = 4(sinh? |al| — |al]*) > 0.
[l

Set D = det(b;;). By (2.11) and Lemma 2.1,
we have

C 0

Cs . 0
2.12 = (bi; ¢
(2.12) c, (bij) (0

Cy —ia&béé)
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fir(al)  fiz(al)
_ 1| faulal)  fr(ad) ( ¢\ )
D falal)  fs(al) ¢éf) ’
fu(al)  fiz(al)
where
f11(al) = 2(|al| cosh |al| 4 sinh |al]),
fi2(af) = 2ial(sinh |af)),
fui(al) = —2|al|(sinh |al| + |al]el),
fiz(al) = 2ial(sinh |al| — |al|el*),
faj(al) = =2lalfij(al) — fi;(al),
fsj(al) = = fij(al), j=1,2.

We next show the regularity of the formal
solution {u,p} of (2.1)—(2.3) in the form of Fourier
series in zy with coefficients (2.8)—(2.10) specified
by (2.12).

Lemma 2.2. For a given ¢ {H*%(T)}*
with (2.8), it holds that

(2.13) {u,p} € {H*(Q)}* x H ().

Proof. We begin with showing u; € H?().
Since each term uge)(xl)exp(iaéxg) of the Fourier
series of u; in s is a smooth function on €2, it is
sufficient to show

Z uy) (z1) exp(ialzs) € H*(Q).

lal]>1

So let |af] > 1. Since
D = (el — e7ltl — 2]al)) (el — 1ot 1 2ar))

62\&2\
> b)
)
we have
(2.14) |Cy + Oy
2 . _lat
= = |(sinh|af| — Jaf](|af| - D)e latly {0
+ iaﬁ|a€|e““€|¢y)
< 5o (el 6] + 2late g}
< 5e (0] + 16y,
and
2lal
(2.15)  |Cy] < ‘D|

x (|(Jatle™"! + sinh |a])¢!"|
+ |(—|able 1 + sinh |at])p )
< 10Jalle7 (16| + 03
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Similarly, we have
(216) |G+ Cul < 141" | + 1947,

€l < 916" + 165 )).
Therefore we have by (2.10) and (2.14)—(2.16)

0
(2.17) / 10 (1) Py
—1

0
<4<€2ai||01+02|2/ eQ\a(lxldxl
-1

0
+ el Cy? / x1|262‘1“1d:c1)

+4<|03 + C4| / —2|al|( r1+1)d T

+ |C4| / |l‘ |2 —2|al|( :r1+1 1)

< 2]al| ' (Cy + O +|Col?)
+20al] (|05 + Cul? + i)
< Cslat] ™ (161" + [6")

for some constant Cs. In the same way as (2.17),
we have for a; + ap <2

0 d o2 2
i ()
1 I

< ColatP 7 (6P + 165",

where Cj is independent of £. Since ¢ € {H32(T)}?,
we see from Parseval’s identity that (2.18) implies

= C7||¢H{H3/2(T)}2=

which yields u; € H?(Q2). Using a similar argument
0 (2.17)—(2.18), we can prove (2.13) for uy and p.
This completes the proof of Lemma 2.2. ([
3. Proof of Theorem 1.1. For v, we
{H'(2)}* and k € R we set
Ex(v, w) = 2(e(v), e(w)) 20 —

En('v) - EK('U, 'U) = 2“5(1))”[,1(9

(2.18) da;

HU1||H2(Q)

(V’U V’lU)Lz Q)
) — KVl

By integration by parts we have the following
Lemma 3.1. For wve  H{Q)N{H*Q)}?
w € o HY(Q) and g € H(Q), it holds

(=(1 = rK)Av+ Vg, w)LQ(Q) = E,(v, w)
2
Ov;
-, / <2%(’U) ko q@j) nw; ds,
i=170% Iz

where 6;; is the (1, j)-element of the 2 X 2 unit matric
and (ny,n9) is the outward unit normal vector to the
boundary Of).
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Now we determine the best constant K.
By definition 2K, is equal to the supremum of
# € R such that E,(v) > 0 for all v € H}(Q). Since
cach v € (H() N {HL(Q)}* satisfies E.(v) = (1 —
/i)||V'v||%z(Q), we see that 2K .« < 1, and hence

(3.1) 2 Knax
=sup{r < 1:E,(v) >0V ve HAQ)}.
Let k< 1. For an arbitrarily given wve

oHL Q) N{H?(Q)}* let {u,p} be the solution to
(2.1)-(2.3) with qi)(a:g) = u(0,x9); by Lemma 2.2 u €
oHL(Q) N {H*(Q)}* and p € H'(Q). Setting w = v —
u € o HL(Q) N{H] (2)}? and applying Lemma 3.1 to
{u,p} and w, we have E(u, w) = 0, so that
E,{(v) = Ey(u+ w)

E.(u,u) +2Re B, (u, w) + E;(w, w)
Ey(uw) + (1= &)Vl 12
Ei(u

);

where the last equality holds if and only if v = u.
Since o H:(2) N {H?()}” is dense in (H!(Q), we see
from the argument above that 2K . is equal to the
supremum of £ < 1 such that E,(u) > 0 for all u €
oHL(Q) N {H2(Q)}” such that {u,p} is the solution
to (2.1)-(2.3) for some ¢ € {H*?(Q)}* satisfying
(2.8). For such {u,p}, by Lemma 3.1 and the
orthogonality of {exp(iafxs): ¢ € Z} in L*(T) we
have

E,(u)
27 dul” YN
= {Z ((2 =) (0) —p“><o>>u§”<o>
a | = dzq
duy 0 )@
+>° ((1 — k) d; (0) + ialu! >(o>> ug)(O)}.
leZ 1

By (2.9), (2.10) and (2.12), this is rewritten in the
form of inner product in C?:

Bu(uw) =Y (M. (0", )

el

(0
with ¢ = < " ) o\ =0,
)

where
2w (0 0
M. (0) ?(0 1—&)
and for ¢ # 0
2 1 ( fs(al,k)  fo(al, K)
w0 =55 T s )



No. 10]

with components
fs(al, k) = 4(1 — k)|al|(2|al| + sinh 2|al)),
fo(al, k) = 4(ial){(2 — k)|al|* — ksinh? |al|},
fr(al, k) = —4(1 — K)|al|(2|al| — sinh 2|al]).
Since  (M(0)3”,¢0)ce = (1= )[g{"[* >0 for
k < 1, it follows from (3.1) that
2K nax = sup{x < 1: M, (¢) > O V¢ # 0},

where M,;(¢) > O signifies that M, (¢) is nonnegative
definite.

Let k < 1. For each ¢ # 0 fixed, since the trace
of M,(¢) is positive as easily verified, M,(¢) > O
if and only if det M;(¢) > 0, or equivalently s <
ko(al) with

2al|* + 4sinh? |al| + 4
ko(al) =

|al)* + 3sinh? |al| + 4

2\/sinh4 |al| + sinh? |al| — |al)?
|al|* 4 3sinh?|al| + 4 '
Thus it follows that

2K ax = sup (ﬂ(—oo, no(af)]> = }I;(f) ko(al).
040
The graph of k¢(af) drawn by Mathematica is
shown in Fig. 1.
We obtain from Lemma A.1 in appendix that

Ko = ~inf rg(at) = —
max—2}20’10a —3

This completes the proof of Theorem 1.1. O
Appendix. In this section we prove the
lemma below.
Lemma A.1l.
g(x) =
222 4+ 4sinh?z + 4 — 2\/si1r1h4 x +sinh?z — 22
22 + 3sinh? z + 4

The function

satisfies
2 . 2
g(x) >= forany >0 and lim g(z)=-=.
3 T—00 3
Moreover g(x) is monotone decreasing for x > 2.

Proof. Since

2 2
\/si1r1h4a:—|—sinh235—gc2 SsinhQ:(:—l—ng—l—g,
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Fig. 1. The horizontal and vertical axes indicate |af| and
ko(al), respectively.

we have

()>§x2+251nh2x+§ 2
T =_.,
9 = 22 + 3sinh®x + 4 3

Differentiating g(x), we have

d

ag(x) = g1(z){g2(2) + g3(2)ga ()},

where
gi(z) = (22 + 3sinh® 2z + 4) 2,
g2(x) = —2z(sinh z)(x coshz — 2sinh )
— 2(2* — 4) sinh x cosh x + 8z,
g3(z) = (sinh?z + sinh® z — 2%)7'/2,
g4(z) = —{4x(sinh® z) (2 cosh z — sinh z)
+ (10sinh? z + 8)(sinh z cosh z — )
+ 142” sinh z cosh « + 22°}.

By z > 2 and Taylor expansion, we have

xcoshx — 2sinhx > 0, 2 — 4> 0,

and
sinhz coshx —x > 0,
which yield

gi(x) >0,
g2(x) < 8z,

—142” sinh z cosh z(2 sinh? x)71/2

—14x.

93(w)ga ()

IAIA

Therefore,
g1(x){g2(x) + g3(x)ga(x)} <O

for > 2. This completes the proof. O
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