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Abstract: The aim in this paper is to develop the time-weighted energy method for quasi-

linear hyperbolic systems of viscoelasticity. As a consequence, we prove the global existence and

decay estimate of solutions for the space dimension n � 2, provided that the initial data are small

in the L2-Sobolev space.

Key words: Viscoelasticity; time-weighted energy method; global existence; decay
estimate.

1. Introduction. We consider the second

order quasi-linear hyperbolic systems of viscoelas-

ticity

utt �
X
j

bjð@xuÞxj þ
X
j;k

Kjk � uxjxk þ Lut ¼ 0;ð1Þ

with the initial data

uðx; 0Þ ¼ u0ðxÞ; utðx; 0Þ ¼ u1ðxÞ:ð2Þ

Here u is an m-vector function of x ¼ ðx1; . . . ; xnÞ 2
Rn (n � 1) and t � 0; bjðvÞ are smooth m-vector

functions of v ¼ ðv1; . . . ; vnÞ 2 Rmn, where vj 2 Rm

corresponds to uxj ; K
jkðtÞ are smooth m�m real

matrix functions of t � 0 satisfying KjkðtÞT ¼KkjðtÞ
for each j, k, and t � 0, and L is an m�m real

symmetric constant matrix; the symbol ‘‘�’’ denotes

the convolution with respect to t.

We assume that there exists a smooth function

�ðvÞ (the free energy) such that

bjðvÞ ¼ Dvj�ðvÞ;ð3Þ

where Dvj�ðvÞ denotes the Fréchet derivative of

�ðvÞ with respect to vj. We define

BjkðvÞ ¼ Dvkb
jðvÞ ¼ DvkDvj�ðvÞ:ð4Þ

It then follows that BjkðvÞT ¼ BkjðvÞ for each j, k,

and v 2 Rmn. Notice that (1) is written as

utt �
X
j;k

Bjkð0Þuxjxk þ
X
j;k

Kjk � uxjxk þ Lutð5Þ

¼
X
j

gjð@xuÞxj :

where gjð@xuÞ :¼ bjð@xuÞ � bjð0Þ �
P

k B
jkð0Þuxk ¼

Oðj@xuj2Þ. We introduce the following symbols of

the differential operators associated with (5):

B!ð0Þ : ¼
X
j;k

Bjkð0Þ!j!k;

K!ðtÞ : ¼
X
j;k

KjkðtÞ!j!k

for ! ¼ ð!1; � � � ; !nÞ 2 Sn�1. We see that B!ð0Þ and

K!ðtÞ are real symmetric matrices. Using these

symbols, we impose the following structural con-

ditions.

[A1]. B!ð0Þ is positive definite for each ! 2 Sn�1,

while K!ðtÞ is nonnegative definite for each

! 2 Sn�1 and t � 0, and L is real symmetric

and nonnegative definite.

[A2]. B!ð0Þ �K!ðtÞ is positive definite for each

! 2 Sn�1 uniformly in t � 0, where K!ðtÞ :¼R t
0 K!ðsÞ ds.

[A3]. K!ð0Þ þ L is (real symmetric and) positive

definite for each ! 2 Sn�1.

[A4]. K!ðtÞ is smooth in t � 0 and decays exponen-

tially as t!1. Precisely, there are positive

constants C0 and c0 such that �C0K!ðtÞ �
_KK!ðtÞ � �c0K!ðtÞ and �C0K!ðtÞ � €KK!ðtÞ �
C0K!ðtÞ for ! 2 Sn�1 and t � 0, where
_KK!ðtÞ :¼ @tK!ðtÞ and €KK!ðtÞ :¼ @2

t K!ðtÞ.
Notations. For a nonnegative integer s, Hs ¼

HsðRnÞ denotes the Sobolev space of L2 functions
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on Rn, equipped with the norm k � kHs . For a

nonnegative integer l, @lx denotes the totality of all

the l-th order derivatives with respect to x 2 Rn.

Also, for an interval I and a Banach spaceX, ClðI;XÞ
denotes the space of l-times continuously differential

functions on I with values in X. Throughout the

paper, C denotes various generic positive constants.

2. Time-weighted energy estimate and

decay estimate. In this section, we first state

our result on the time-weighted energy estimate

for small solutions to the problem (1), (2). Then,

as a corollary, we prove the global existence and

quantitative decay of small solutions. For this

purpose, we introduce the time-weighted energy

norm EðtÞ and the corresponding dissipation

norm DðtÞ:

EðtÞ2 :¼
Xs
m¼0

EmðtÞ2;

DðtÞ2 :¼
Xs
m¼0

~DDmðtÞ2 þ
Xs�1

m¼0

DmðtÞ2;

where

EmðtÞ2 ¼ sup
0���t

ð1þ �Þm�

kð@mx ut; @mþ1
x uÞð�Þk2

Hs�m þ
Xs
l¼m

QK ½@lþ1
x u�ð�Þ

 !
;

~DDmðtÞ2 ¼
Z t

0

ð1þ �Þm
 
kðI � P Þ@mx utð�Þk

2
Hs�m

þ
Xs
l¼m

QK ½@lþ1
x u�ð�Þ

!
d�;

Dm�1ðtÞ2 ¼
Z t

0

ð1þ �Þm�1�

kð@mx ut; @mþ1
x uÞð�Þk2

Hs�m þ
Xs
l¼m

QK ½@lþ1
x u�ð�Þ

 !
d�:

Here I and P are the identity matrix and the

orthogonal projection matrix onto kerðLÞ, respec-

tively. Also, the quantity QK is defined as

QK ½@xu� :¼ Q]
K ½@xu� þQ[

K ½@xu�;

Q]
K ½@xu� :¼

X
j;k

Z
Rn
Kjk½uxj ; uxk � dx;

Q[
K ½@xu� :¼

X
j;k

Z
Rn
hKjkuxj ; uxki dx;

where

Kjk½ j;  k�ðtÞ ¼Z t

0

hKjkðt� �Þð jðtÞ �  jð�ÞÞ;  kðtÞ �  kð�Þ i d�:

Our time-weighted energy estimate involves the

following time-weighted L1 norm NðtÞ:

NðtÞ :¼ sup
0���t

n
kð@xuð�ÞkL1ð6Þ

þ ð1þ �Þkð@xut; @2
xuÞð�ÞkL1

o
and is given as follows:

Proposition 1 (Time-weighted energy esti-

mate). Suppose that all the conditions [A1]–[A4]

are satisfied. Let n � 1 and s � ½n=2� þ 2. Assume

that ðu1; @xu0Þ 2 Hs and put E0 ¼ kðu1; @xu0ÞkHs .

Let u be a solution to the problem (1), (2) satisfying

ðut; @xuÞ 2 C0ð½0; T �;HsÞ for T > 0 such that

N0ðT Þ ¼ sup0���T kð@xu; @xut; @2
xuÞð�ÞkL1 is suitably

small. Then we have the following time-weighted

energy estimate for t 2 ½0; T �:

EðtÞ2 þDðtÞ2 � CE2
0 þ CNðtÞDðtÞ

2:ð7Þ

As a simple corollary, we can show the global

existence and quantitative decay estimate of small

solutions when n � 2. In fact, using the Gagliardo-

Nirenberg inequality kvkL1 � Ck@s0
x vk

�
L2kvk1��

L2 with

s0 ¼ ½n=2� þ 1 and � ¼ n=ð2s0Þ, we can estimate

kð@xu; @xut; @2
xuÞðtÞkL1 in terms of the time-weight-

ed energy norm EðtÞ as

k@xuðtÞkL1 � CEðtÞð1þ tÞ
�n=4;

kð@xut; @2
xuÞðtÞkL1 � CEðtÞð1þ tÞ

�n=4�1=2;

where we have used s � s0 þ 1. This shows that

NðtÞ � CEðtÞ for n � 2. Consequently, the energy

inequality (7) is reduced to EðtÞ2 þDðtÞ2 � CE2
0 þ

CEðtÞDðtÞ2, from which we can deduce EðtÞ2 þ
DðtÞ2 � CE2

0 , provided that E0 is suitably small and

n � 2. Thus we obtain the following result on the

global existence and quantitative decay estimate of

solutions.

Theorem 1 (Global existence and decay esti-

mate). Suppose that all the conditions [A1]–[A4]

are satisfied. Let n � 2 and s � ½n=2� þ 2. Assume

that ðu1; @xu0Þ 2 Hs and put E0 ¼ kðu1; @xu0ÞkHs .

Then there is a positive constant �0 such that if

E0 � �0, then the problem (1), (2) has a unique global

solution u verifying ðut; @xuÞ 2 C0ð½0;1Þ;HsÞ. The

solution satisfies the time-weighted energy estimate

EðtÞ2 þDðtÞ2 � CE2
0

100 P. M. N. DHARMAWARDANE, T. NAKAMURA and S. KAWASHIMA [Vol. 87(A),



for t � 0. In particular, we have the following decay

estimates:

kð@mx ut; @mþ1
x uÞðtÞkL2 � CE0ð1þ tÞ�m=2ð8Þ

for t � 0, where 0 � m � s.
In our previous paper [1], we have proved the

global existence and asymptotic decay (without

decay rate) of small solutions to the problem (1),

(2) for all space dimensions n � 1. The above

theorem gives the quantitative decay estimate of

solutions obtained in [1] for n � 2. For more de-

tailed decay estimate of solutions to the corre-

sponding linearized system (i.e., (5) with gj 	 0),

we refer the reader to [3]. Also, we refer to [5,8] for

related results for simpler equations of viscoelas-

ticity.

3. Time-weighted energy method. In

this section, we develop the time-weighted energy

method for the system (1) and give the outline of

the proof of Proposition 1; the detailed proof will

be given in our forthcoming paper [2]. The time-

weighted energy method was first effectively used

by Matsumura [7] in the study of the compressible

Navier-Stokes equation. Then similar time-weight-

ed energy methods were used for many other

nonlinear systems of partial differential equations,

such as hyperbolic systems of balance laws [6], the

dissipative Timoshenko system [4], the compressi-

ble Euler-Maxwell system [9], and so on. Our time-

weighted energy method developed below is quite

similar to the one employed in [6,7].

We apply @lx to (1) to obtain

@lxutt �
X
j;k

Bjkð@xuÞ@lxuxjxkð9Þ

þ
X
j;k

Kjk � @lxuxjxk þ L@lxut ¼ f ðlÞ;

where f ðlÞ ¼
P

j;k½@lx; Bjkð@xuÞ�uxjxk , and ½ � ; � � de-

notes the commutator. As the first step of our time-

weighted energy method, we take the inner product

of (9) with @lxut and integrate in x over Rn. Then we

multiply the resulting equation by ð1þ tÞm, inte-

grate with respect to t, and add for l with m � l � s.
After tedious computations as in [1], we arrive at

the basic energy estimate of the form

EmðtÞ2 þ ~DDmðtÞ2ð10Þ
� CE2

0 þ CNðtÞDðtÞ
2 þmCDm�1ðtÞ2;

where 0 � m � s; the last term on the right-hand

side of (10) is absent if m ¼ 0.

In the second step, we produce a part of the

dissipation in DðtÞ. We take the inner product of

(9) with
P

j;kðKjk � @lxuxjxkÞt and integrate over Rn.

Moreover, we multiply the result by ð1þ tÞm,

integrate with respect to t, and add for l with

m � l � s� 1. Then the technical computations

in [1] yieldZ t

0

ð1þ �Þmk@mþ1
x utð�Þk2

Hs�m�1 d�ð11Þ

� CE2
0 þ CNðtÞDðtÞ

2

þ �
Z t

0

ð1þ �Þmk@mþ2
x uð�Þk2

Hs�m�1 d�

þ C�ðEmðtÞ2 þ ~DDmðtÞ2Þ þmCDm�1ðtÞ2

for any � > 0, where 0 � m � s� 1 and C� is a

constant depending on �; the last term on the right-

hand side of (11) is absent if m ¼ 0. In the third

step, we create the remaining part of the dissipation

in DðtÞ. We apply @lþ1
x to (5), take the inner product

with @lþ1
x u, and integrate over Rn. Moreover, we

multiply the result by ð1þ tÞm, integrate with

respect to t, and add for l with m � l � s� 1. Then

the technical computations as in [1] giveZ t

0

ð1þ �Þmk@mþ2
x uð�Þk2

Hs�m�1 d�ð12Þ

� CE2
0 þ CNðtÞDðtÞ

2

þ C
Z t

0

ð1þ �Þmk@mþ1
x utð�Þk2

Hs�m�1 d�

þ CðEmðtÞ2 þ ~DDmðtÞ2Þ þmCDm�1ðtÞ2;

where 0 � m � s� 1; the last term on the right-

hand side of (12) is absent if m ¼ 0. Now we

combine (11) and (12). Taking � > 0 suitably small,

we have

DmðtÞ2 � CE2
0 þ CNðtÞDðtÞ

2ð13Þ
þ CðEmðtÞ2 þ ~DDmðtÞ2Þ þmCDm�1ðtÞ2;

where 0 � m � s� 1. Moreover, substituting (10)

into (13), we obtain

DmðtÞ2 � CE2
0 þ CNðtÞDðtÞ

2 þmCDm�1ðtÞ2ð14Þ

for 0 � m � s� 1, where the last term on the right-

hand side of (14) is absent if m ¼ 0.

Finally, we apply to (10) and (14) the induction

argument with respect to m, and conclude that

EmðtÞ2 þ ~DDmðtÞ2 � CE2
0 þ CNðtÞDðtÞ

2;

DmðtÞ2 � CE2
0 þ CNðtÞDðtÞ

2
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for 0 � m � s and 0 � m � s� 1, respectively. This

gives the desired estimate (7). Thus the proof of

Proposition 1 is complete.
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