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Abstract: We classify semisimple symmetric spaces G=H for which there exist proper
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1. Introduction and statement of main

results. We consider one of fundamental prob-

lems on locally symmetric spaces as follows:

Problem 1.1 (See [14]). Fix a simply con-

nected symmetric space M0 as a model space. What

discrete groups can arise as the fundamental groups

of a complete affine manifold M which is locally

isomorphic to the space M0?

By a theorem of É. Cartan, such M is

represented as the Clifford–Klein form �nG=H.

Here M0 ¼ G=H is a simply connected symmetric

space and � ’ �1ðMÞ a discrete subgroup of G

acting as a discontinuous group for G=H. Then

Problem 1.1 may be reformalized as:

Problem 1.2. What discrete subgroups of G

can act as discontinuous groups for G=H?

For a compact subgroup H of G, any discrete

subgroup � in G acts as a discontinuous group for

G=H. Thus, our interest in this article is in non-

compact H, for which not all discrete subgroups

� of G act properly discontinuously on G=H.

Even for Lorentz symmetric spaces SOðnþ 1; 1Þ=
SOðn; 1Þ, Problem 1.2 is non-trivial as was shown

by the Calabi–Markus phenomenon [5]. A system-

atic study of Problem 1.2 for the general non-

Riemannian homogeneous space G=H was initiated

in the late 1980’s by Kobayashi [9–11] followed by

[18,21,23,25,29]. See [15,16,24] for the recent devel-

opment on this topic.

In this paper, we discuss proper actions of

SLð2;RÞ on semisimple symmetric spaces. Among

others, we give the classification of semisimple

symmetric spaces that admit surface groups as

discontinuous groups. (A surface group means the

fundamental group of a closed Riemann surface of

genus g � 2.)

The basic setting here is the following

Setting 1.3. G is a connected linear semi-

simple Lie group, � is an involutive automorphism

of G, and H is an open subgroup of G� :¼
fg 2 G j �g ¼ gg.

This setting implies that G=H becomes a

symmetric space with respect to the canonical

affine connection on G=H. We write g, h for Lie

algebras of G, H, respectively. The differential

action of � on g will be denoted by the same letter �,

and we set q :¼ fX 2 g j �X ¼ �Xg. We denote by

gC the complexification of g, and write the c-dual of

g for gc :¼ h�
ffiffiffiffiffiffiffi
�1

p
q. Both g and gc are real forms of

gC.

Here is our main result:

Theorem 1.4. In Setting 1.3, the following

five conditions on a symmetric pair ðG;HÞ are

equivalent:

(i) There exists a Lie group homomoephism

� : SLð2;RÞ ! G such that SLð2;RÞ acts

properly on G=H via �.
(ii) For any g � 2, G=H admits the surface group

of genus g as a discontinuous group.

(iii) G=H admits an infinite discontinuous group �
which is not virtually abelian (i.e. � has no

abelian subgroups of finite index).

(iv) G=H admits a discontinuous group which is

a free group generated by a unipotent element

in G.

(v) There exists a nilpotent orbit O of Int gC in gC
such that O meets g but does not meet gc.
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We will use the following convention: Suppose

L is an abstract Lie group. Given a homomorphism

� : L! G, we can define the action of L on G=H by

xH 7! �ðlÞxH ðl 2 LÞ, which will be referred to

simply as an L-action via G.

Our theorem generalizes Teduka [28] who

studied proper SLð2;RÞ-actions on complex sym-

metric spaces G=H.

Remark 1.5. For any complex nilpotent

orbit O in gC, the intersection O \ g splits into at

most finitely many real nilpotent orbits of G. By the

Jacobson–Morozov theorem, there is a one-to-one

correspondence between Lie group homomorphisms

� : SLð2;RÞ ! G up to inner automorphisms of

G and real nilpotent orbits O0;� of G in g. As a

refinement of (i) , (v) in Theorem 1.4, we can

prove that the complex nilpotent orbit O containing

O0;� determines whether or not the SLð2;RÞ-action
on G=H via � is proper.

The key ingredient of Theorem 1.4 is to show

the equivalence (i) , (v), and we will indicate an

idea of the proof in Section 3. The implications

(i) ) (ii) and (ii) ) (iii) are deduced from the

lifting theorem of a surface group (see [20]). The

equivalence (i) , (iv) was previously proved in

[12]. We use Benoist’s results [3] for the proof of the

equivalence (iii) , (v).

The full detail will be reported elsewhere.

2. Algorithm and Classification.

Theorem 1.4 may be in a good comparison with the

fact below for proper actions by an abelian group R:

Fact 2.1. In Setting 1.3, the following six

conditions on a symmetric pair ðG;HÞ are equivalent:
(i) There exists a Lie group homomorphism

� : R ! G such that R acts properly on G=H

via �.

(ii) G=H admits Z as a discontinuous group.

(iii) G=H admits an infinite discontinuous group.

(iv) G=H admits a discontinuous group which is a

free group generated by a hyperbolic element

in G.

(v) There exists a hyperbolic orbit O of Int gC in gC
such that O meets g but does not meet gc.

(vi) rankR g > rankR h.

Here an element X 2 g [resp. x 2 G] is said to be

hyperbolic if adðXÞ 2 EndðgÞ [resp. AdðxÞ 2 GLðgÞ]
is diagonalizable with only real eigenvalues.

The equivalence among (i), (ii), (iii), (iv) and

(vi) in Fact 2.1 was proved in a more general

setting (see [9]). The proof of (i) , (v) in Fact 2.1 is

similar to the proof of Theorem 1.4. The real rank

condition (vi) in Fact 2.1 serves as a criterion for

the Calabi–Markus phenomenon ((iii) in Fact 2.1,

cf. [5,9]).

In order to verify the condition (v) in

Theorem 1.4 for a symmetric pair ðg; hÞ, we give

an algorithm which is based on structural results on

nilpotent orbits (see Theorem 2.4 below). To be

precise, we recall briefly the definition of weighted

Dynkin diagrams of gC and the Satake diagrams of

g and gc.

Let g be a semisimple Lie algebra with a Cartan

decomposition g ¼ k� p. Take a maximal abelian

subspace a in p, and extend it to a Cartan

subalgebra j in g. The complexification, denoted

by jC, of j is a Cartan subalgebra of gC. Let

�ðgC; jCÞ � j�C be the root system of ðgC; jCÞ and

�ðg; aÞ � a� the restricted root system of ðg; aÞ. We

fix a positive system �þðg; aÞ of �ðg; aÞ. Then we

can and do take a positive system �þðgC; jCÞ of

�ðgC; jCÞ such that, for any � 2 �þðgC; jCÞ, the

restriction of � to a is in �þðg; aÞ [ f0g. We write

� for the fundamental system of �þðgC; jCÞ. A

weighted Dynkin diagram of gC is defined as a

map � ! f0; 1; 2g. Let �0 be the set of all simple

roots in � whose restriction to a is zero. The

Satake diagram S of g consists of the following

data: the Dynkin diagram of gC with nodes �,

black nodes �0 in S, and arrows joining � 2 � n�0

and � 2 � n �0 in S whose restrictions to a are

the same.

Combining the Jacobson–Morozov theorem,

Kostant [19] with Malcev [22], we have a one-to-

one correspondence between the set of nilpotent

orbits in gC to a subset of weighted Dynkin

diagrams of gC.

Definition 2.2. Let D be a weighted Dynkin

diagram of gC and S the Satake diagram of g. We

say that D matches S if all the weights on black

nodes are zero and any pair of nodes joined by an

arrow has the same weights.

Example 2.3. We consider a semisimple Lie

algebra g ¼ suð4; 2Þ, a real form of gC ¼ slð6;CÞ.
The Satake diagram S of suð4; 2Þ is given by

.

Suppose D1 and D2 are the following weighted

Dynkin diagrams of slð6;CÞ:
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D1 :=
2 1 0 1 2

D

,

.2 :=
2 2 2 2 2

According to Definition 2.2, D1 matches S, but D2

does not match S.

By using results of [6,27], we obtain the

following theorem:

Theorem 2.4. Let g be a real form of a

complex semisimple Lie algebra gC. For a nilpotent

orbit O of Int gC in gC, O meets g if and only if the

weighted Dynkin diagram corresponding to O matches

the Satake diagram of g in the sense of Definition 2.2.

Nilpotent orbits in a complex semisimple Lie

algebra are classified by Dynkin–Kostant [7,19] and

Bala–Carter [1,2]. The classification of semisimple

symmetric pairs ðg; hÞ is known by Berger [4].

Applying the criterion in Theorem 2.4 to the real

forms g and gc in gC, respectively, we obtain the

following classification:

Theorem 2.5. In Setting 1.3, suppose G is a

simple Lie group. Then G=H admits a proper R-

action via G (cf. Fact 2.1) but does not admit proper

SLð2;RÞ-actions via G (cf. Theorem 1.4) if and only

if ðg; hÞ is one of the following

Remark 2.7. The symmetric spaces G=H

listed in Table 2.6 do not admit cocompact dis-

continuous groups (cf. [3,9–11,13,18,21,23,25,29]).

A part of Table 2.6 was previously known in

the special case where g and h are both complex Lie

algebras by Teduka [28].

By Theorem 1.4 and Theorem 2.5, we also

obtain the classification result below:

Theorem 2.8. In Setting 1.3, suppose G

is a simple Lie group. Then, the following three

conditions on a symmetric pair ðG;HÞ are equiv-

alent:

(i) There exists a Lie group homomorphism

� : SLð2;RÞ ! G such that SLð2;RÞ acts

properly on G=H via �.

(ii) For any g � 2, G=H admits the surface group

of genus g as a discontinuous group.

(iii) rankR g > rankR h and ðg; hÞ is not in Table 2.6.

3. Ideas of proof of (i) , (v) in Theo-

rem 1.4. We will explain the proof of the

equivalence (i) , (v) in Theorem 1.4.

The proof will be devided into two steps (step 1

and step 2 below). In step 1, by using results of

Kobayashi [9], we will obtain a purely Lie algebraic

condition equivalent to the topological condition (i)

in Theorem 1.4 (see Proposition 3.4 (vi)).

In step 2, by using Lemma 3.6 and Lemma 3.7,

we will show that the condition (vi) in Proposition 3.4

is equivalent to a new condition on ðgC; g; gcÞ
(see Proposition 3.5 (vii)). Finally, by using

[27, Proposition 1.11], we will obtain the equivalence

between the condition (vii) in Proposition 3.5 and

the condition (v) in Theorem 1.4.

Step 1: Kobayashi’s criterion. We recall

from [9] the criterion for proper actions on a

homogeneous space G=H with G and H reductive

(Fact 3.2 below).

Let G be a linear reductive Lie group with the

Lie algebra g. We adopt the following definition of

reductiveness of subalgebras (or subgroups). Let

h be a subalgebra of g. We say h is a reductive

subalgebra of g if there exists a Cartan involution �

of g such that h is �-stable. Then h is a reductive Lie

algebra with a Cartan involution �jh. We say a

closed subgroup H of G is a reductive subgroup of

G if H has finitely many connected components

and its Lie algebra is a reductive subalgebra of g.

Then G=H is said to be a homogeneous space of

reductive type.

We consider the following

Table 2.6

g h

slð2k;RÞ spðk;RÞ
slð2k;RÞ soðk; kÞ
su�ð4mþ 2Þ spðmþ 1;mÞ
su�ð4mÞ spðm;mÞ
su�ð2kÞ so�ð2kÞ
soð2kþ 1; 2kþ 1Þ soðiþ 1; iÞ � soðj; jþ 1Þ

ðiþ j ¼ 2kÞ
e6ð6Þ f4ð4Þ
e6ð6Þ spð4;RÞ
e6ð�26Þ spð3; 1Þ
e6ð�26Þ f4ð�20Þ
slðn;CÞ soðn;CÞ
slð2k;CÞ spðk;CÞ
slð2k;CÞ suðk; kÞ
soð4mþ 2;CÞ soði;CÞ � soðj;CÞ

ðiþ j ¼ 4nþ 2; i; j are oddÞ
soð4mþ 2;CÞ soð2mþ 2; 2mÞ
e6;C spð4;CÞ
e6;C f4;C

e6;C e6ð2Þ
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Setting 3.1. G is a linear reductive Lie

group, H and L are reductive subgroups in G.

We write g, h, and l for Lie algebras of G, H

and L, respectively. Take a Cartan involution � of

g which preserves h. We write the Cartan decom-

positions g ¼ k� p and h ¼ kðhÞ � pðhÞ correspond-

ing to � and �jh, respectively. We fix a maximal

abelian subspace ah of pðhÞ, and extend it to a

maximal abelian subspace a in p. We write K for

the maximal compact subgroup of G with Lie

algebra k and denote the Weyl group acting on

a by W ðg; aÞ :¼ NKðaÞ=ZKðaÞ. Since l is a reduc-

tive subalgebra of g, we can take a Cartan

involution �0 of g preserving l. We write l ¼ k
0ðlÞ �

p0ðlÞ for the Cartan decomposition corresponding

to �0jl, and fix a maximal abelian subspace a0ðlÞ
of p0ðlÞ. Then there exists g 2 G such that AdðgÞ �
a0ðlÞ is contained in a, and we put al :¼ AdðgÞ �
a0ðlÞ. The subset W ðg; aÞ � al of a does not depend

on a choice of g 2 G. Then, the following fact

holds:

Fact 3.2 ([9, Theorem 4.1]). In Setting 3.1,

L acts on G=H properly if and only if

W ðg; aÞ � al \ ah ¼ f0g:

We go back to Setting 1.3. Set an element:

X0 :¼
1 0

0 �1

� �
2 slð2;RÞ � slð2;CÞ:

Building on Fact 3.2, we obtain the following

lemma:

Lemma 3.3. In Setting 1.3, let

� : SLð2;RÞ ! G be a Lie group homomorphism.

The differential of � will be denoted by

� : slð2;RÞ ! g. Then, SLð2;RÞ acts properly on

G=H via � if and only if AdðGÞ � �ðX0Þ does not

meet h.

Any Lie algebra homomorphism � : slð2;RÞ !
g can be lifted to � : SLð2;RÞ ! G because G is

linear. Thus, we obtain the proposition below:

Proposition 3.4. The condition (i) in

Theorem 1.4 is equivalent to the following condition

on a symmetric pair ðg; hÞ:
(vi) There exists a Lie algebra homomorphism

� : slð2;RÞ ! g such that ðInt gÞ � �ðX0Þ does

not meet h.

Step 2: Complexification. We recall gc ¼
h�

ffiffiffiffiffiffiffi
�1

p
q. Conversely, h is recovered from the c-

dual gc by h ¼ g \ gc. The key proposition in Step 2

is the following

Proposition 3.5. The condition (vi) in Pro-

position 3.4 is equivalent to the following condition

on ðgC; g; gcÞ:
(vii) There exists a complex Lie algebra homomor-

phism  : slð2;CÞ ! gC such that ðInt gCÞ�
 ðX0Þ meets g but does not meet gc.

To prove Proposition 3.5, we use the following

two lemmas:

Lemma 3.6. For any complex Lie algebra

homomorphism  : slð2;CÞ ! gC, if  ðX0Þ 2 g,

then there exists a Lie algebra homomorphism � :
slð2;RÞ ! g such that �ðX0Þ ¼  ðX0Þ.

Lemma 3.7. In Setting 1.3, for any hyper-

bolic element X 2 g, ðInt gÞ �X meets h in g if and

only if ðInt gCÞ �X meets gc in gC.

Lemma 3.6 can be proved by using [6,26].

Proof of Proposition 3.5. For (vi) ) (vii),

we take � : slð2;RÞ ! g such that ðInt gÞ � �ðX0Þ does
not meet h. Then, ðInt gCÞ � �ðX0Þ does not meet gc

by Lemma 3.7. Thus, we can take  to be the

complex linear extension �. For (vii) ) (vi), we

can take  : slð2;CÞ ! gC such that  ðX0Þ 2 g and

ðInt gCÞ �  ðX0Þ does not meet gc. Then � : slð2;RÞ !
g in Lemma 3.6 satisfies the condition (vi). �

Therefore, to prove the equivalence (i) , (v)

in Theorem 1.4, it is enough to show that

(vii) , (v). This equivalence can be proved by

using [27, Proposition 1.11] for g and gc as real forms

of gC.

Remark 3.8. In Theorem 2.8, we have given

a classification of semisimple symmetric spaces

G=H on which surface groups �1ð�gÞ act as dis-

continuous groups via G. Our classification factors

through a Lie group homomorphism SLð2;RÞ to G.
It is an open question to find all homomorphisms

�1ð�gÞ to G which induce proper actions on G=H.

This question is intimately related to the deforma-

tion of discontinuous groups for G=H, see [12,13] for

the general definition of the deformation space of

discontinuous groups for G=H with H non-compact,

and [8,17] for concrete examples for specific ðG;HÞ.
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