Construction of 3-Hilbert class field of certain imaginary quadratic fields

By Jangheon OH
Department of Applied Mathematics, College of Natural Sciences, Sejong University, Seoul, 143-747, Korea

(Communicated by Shigefumi Mori, M.J.A., Dec. 14, 2009)

Abstract

In this paper, we give an explicit description of 3-Hilbert class field of certain imaginary quadratic fields.

Key words: Hilbert class field; anti-cyclotomic extension; Kummer extension.

1. Introduction. Let k be an imaginary quadratic field, and L an abelian extension of k. L is called an anti-cyclotomic extension of k if it is Galois over \mathbf{Q}, and $\operatorname{Gal}(k / \mathbf{Q})$ acts on $G a l(L / k)$ by -1 . For each prime number p, the compositum K of all \mathbf{Z}_{p}-extensions over k becomes a $\mathbf{Z}_{p}{ }^{2}$-extension, and K is the compositum of the cyclotomic \mathbf{Z}_{p}-extension and the anti-cyclotomic \mathbf{Z}_{p}-extension of k. In the paper [2], using Kummer theory and class field theory, we constructed the first layer k_{1}^{a} of the anticyclotomic \mathbf{Z}_{p}-extension of an imaginary quadratic field whose class number is not divisible by p. In this paper, we apply the same method as in [2] to construct 3 -Hilbert class field of certain imaginary quadratic fields.
2. Proof of theorems. We begin this section by explaining how to construct a cyclic extension M_{p} of prime degree p of an imaginary quadratic field k, which is unramified outside p over k and $\operatorname{Gal}\left(M_{p} / \mathbf{Q}\right) \simeq D_{p}$, the dihedral group of order $2 p$. Throughout this section, we denote by H_{k}, h_{k}, A_{k} the p-part of Hilbert class field, the p-class number, and p-part of ideal class group of k, respectively.

Let k be an imaginary quadratic field and ζ_{p} a primitive p-th root of unity. We denote $k_{z}=k\left(\zeta_{p}\right)$ and let σ, τ with $\sigma\left(\zeta_{p}\right)=\zeta_{p}{ }^{t}$ be generators of $\operatorname{Gal}\left(k_{z} / k\right), \operatorname{Gal}\left(k_{z} / \mathbf{Q}\left(\zeta_{p}\right)\right)$, respectively. Assume that $p \neq 2$ and $k \neq \mathbf{Q}(\sqrt{-3})$ if $p=3$. Then we have the following theorem which is a refinement of [2 , Theorem 1].

Theorem 1 (See [2, Theorem 1]). Let X^{\prime} be a vector space over a finite field F_{p} with a basis $\left\{x_{1}, \cdots, x_{p-1}\right\}$ and A be a linear map such that $A x_{i}=$ x_{i+1} for $i=1, \cdots, p-2$ and $A x_{p-1}=x_{1}$. Let $x=$ $\sum_{i} a_{i} x_{i}$ be an eigenvector of A corresponding to an eigenvalue t satisfying $\sigma\left(\zeta_{p}\right)=\zeta_{p}{ }^{t}$. Let $k=\mathbf{Q}(\sqrt{-D})$

[^0]be an imaginary quadratic field. Assume that $\varepsilon=$ $\tau(\epsilon) \epsilon^{-1}$ is not a p-power of a unit in k_{z}, where $\epsilon=$ $\prod_{i}(\alpha)^{a_{i} \sigma^{i-1}}$ for some unit $\alpha \in k_{z}$. Then $k_{z}(\sqrt[p]{\varepsilon})$ contains a unique cyclic extension M_{p} of prime degree p of k, which is unramified outside p over k and $\operatorname{Gal}\left(M_{p} / \mathbf{Q}\right) \simeq D_{p}$, and $M_{p}=k(\eta)$ where $\eta=$ $\operatorname{Tr}_{k_{z}}(\sqrt[p]{\varepsilon}) / M_{p}(\sqrt[p]{\varepsilon})$.

Proof of Theorem 1. We include here the proof of Theorem 1 given in [2] because we will use Theorem 1 to construct the 3-Hilbert class field of k. Write $L_{z}=k_{z}(\sqrt[p]{\varepsilon})$. Let $H=\left\langle\varepsilon \bmod \left(k_{z}^{*}\right)^{p}\right\rangle$ be the Kummer group for the Kummer extension L_{z} / k_{z}, and let $X=\operatorname{Gal}\left(L_{z} / k_{z}\right)$. Then $\operatorname{Gal}\left(k_{z} / \mathbf{Q}\right)$ acts on H and X, and the Kummer pairing

$$
H \times X \longrightarrow \mu_{p}
$$

is a perfect $\operatorname{Gal}\left(k_{z} / \mathbf{Q}\right)$-equivariant pairing. Hence, by the construction of ε, σ and τ, and using the fact that $F_{p}\left[G a l\left(k_{z} / k\right)\right] \simeq X^{\prime}: \sigma^{i-1} \rightarrow x_{i}$, one can easily see that $\sigma(\varepsilon)=\varepsilon^{t} \bmod \left(k_{z}^{*}\right)^{p}$ and $\tau(\varepsilon)=\varepsilon^{-1}$. Therefore the generators σ and τ act on X trivially and inversely, respectively. It follows that $\operatorname{Gal}\left(L_{z} / k\right)$ is cyclic of order $(p-1) p$. Then there exists the unique intermediate field M_{p} of L_{z} / k with $\left[M_{p}: k\right]=p$, and the uniqueness of M_{p} asserts that M_{p} / \mathbf{Q} is a Galois extension. It follows that $\operatorname{Gal}\left(M_{p} / \mathbf{Q}\right) \simeq$ $\operatorname{Gal}\left(L_{z} / \mathbf{Q}\left(\zeta_{p}\right)\right) \simeq D_{p}$. Moreover, M_{p} / k is a cyclic extension of degree p unramified outside p, and by [1, Theorem 5.3.5] we conclude that $M_{p}=k(\eta)$ with $\eta=\operatorname{Tr}_{L_{z} / M_{p}}(\sqrt[p]{\varepsilon})$.

The first layer of anti-cyclotomic \mathbf{Z}_{p}-extension of an imaginary quadratic field k may be or may not be contained in the p-Hilbert class field of k. The following theorem gives an answer for this question when $p=3$.

Theorem 2 (See [3, Theorem 2]). Let $d \not \equiv 3$ $\bmod 9$ be a squarefree positive integer, $k=\mathbf{Q}(\sqrt{-d})$
an imaginary quadratic field and K the compositum of all \mathbf{Z}_{3}-extensions over k. Then

$$
\begin{gathered}
H_{k} \cap K=k \Longleftrightarrow \\
\operatorname{rank}_{\mathbf{Z} / 3} A_{\mathbf{Q}(\sqrt{3 d})}=\operatorname{rank}_{\mathbf{Z} / 3} A_{\mathbf{Q}(\sqrt{-d})} .
\end{gathered}
$$

Remark 1. It is well-known that

$$
\begin{aligned}
\operatorname{rank}_{\mathbf{Z} / 3} A_{\mathbf{Q}(\sqrt{3 d})} & \leq \operatorname{ran}_{\mathbf{Z} / 3} A_{\mathbf{Q}(\sqrt{-d})} \\
& \leq \operatorname{rank}_{\mathbf{Z} / 3} A_{\mathbf{Q}(\sqrt{3 d})}+1
\end{aligned}
$$

Now we state the main theorem of this paper, and prove it by using the results discussed above.

Theorem 3. Let $d \not \equiv 3 \bmod 9$ be a squarefree positive integer and $k=\mathbf{Q}(\sqrt{-d})$ be an imaginary quadratic field such that $h_{k}=3$ and $h_{\mathbf{Q}(\sqrt{3 d})}=1$. Then

$$
H_{k}=k\left(\sqrt[3]{\alpha^{2}}+\sqrt[3]{\alpha^{-2}}\right)
$$

where α is the fundamental unit of $\mathbf{Q}(\sqrt{3 d})$.
Proof of Theorem 3. Since the absolute norm $N \alpha=\alpha^{\sigma+1}=\alpha^{\tau+1}= \pm 1$, Note that $p=3$ and $2+\sigma$ is the eigenvector for the eigenvalue $t=2$, we have $\epsilon=\alpha^{2+\sigma}= \pm \alpha$ and hence $\varepsilon= \pm \alpha^{-2}$ is not cubic in k_{z}. Since $\sigma^{\sim} \in \operatorname{Gal}\left(L_{z} / M_{3}\right)$ satisfies $\sigma^{\sim 2}=$ 1, we have $\sqrt[3]{\varepsilon}{\sqrt{\sigma^{\sim}}}^{\varepsilon^{-1}}$ and therefore $\eta=$ $\pm\left(\sqrt[3]{\alpha^{2}}+\sqrt[3]{\alpha^{-2}}\right)$ and $M_{3}=k(\eta)$. Let F be the maximal abelian p-extension of k unramified outside p. Then [4] class field theory shows that

$$
\operatorname{Gal}\left(F / H_{k}\right) \simeq\left(\prod_{\mathfrak{p} \mid p} U_{1, \mathfrak{p}}\right)
$$

where $U_{1, \mathrm{p}}$ is the local units of k which is congruent to $1 \bmod \mathfrak{p}$. So in this case, by Theorem 2 , $\operatorname{Gal}(F / k) \simeq \mathbf{Z}_{p}^{2}$. Hence F, which is equal to K in this case, contains a unique D_{p}-extension k_{1}^{a} of \mathbf{Q}
(cf. [2, Lemma 1]). This completes the proof since M_{p}, H_{k}, and k_{1}^{a} are D_{p}-extensions of \mathbf{Q} contained in F.

Let us give an example of Theorem 3.
Example 1. Let $k=\mathbf{Q}(\sqrt{-23})$ and $p=3$. In this case, $h_{k}=3, h_{\mathbf{Q}(\sqrt{69})}=1$. We can take $t=2$, and in this case the eigenvector of A is $2 x_{1}+x_{2}$. If we take $\alpha=11+3\left(\frac{1+\sqrt{69}}{2}\right)$, then $\epsilon=\alpha^{2+\sigma}=\alpha$ and $\varepsilon=\epsilon^{\tau-1}=\left(11+3\left(\frac{1-\sqrt{69}}{2}\right)\right)^{2}$. Note that α is a fundamental unit of $\mathbf{Q}(\sqrt{69})$ and $\varepsilon=\left(11+3\left(\frac{1-\sqrt{69}}{2}\right)\right)^{2}=$ α^{-2}. Hence ε is not a 3rd power in k_{z}. We can easily compute that $\eta=\sqrt[3]{\frac{623-75 \sqrt{69}}{2}}+\sqrt[3]{\frac{623+75 \sqrt{69}}{2}}$ and $\operatorname{irr}(\eta, \mathbf{Q}(\sqrt{-23}))=x^{3}-3 x-623$. Therefore H_{k} is the splitting field of $x^{3}-3 x-623$ over $\mathbf{Q}(\sqrt{-23})$.

Acknowledgments. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0071627). I would like to thank to an anonymous referee for his/her very careful reviews of the paper that improves significantly the clarity of this paper.

References

[1] H. Cohen, Advanced topics in computational number theory, Springer, New York, 2000.
[2] J. Oh, On the first layer of anti-cyclotomic \mathbf{Z}_{p}-extension of imaginary quadratic fields, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 3, 19-20.
[3] J. Oh, A note on the first layers of \mathbf{Z}_{p}-extensions, Commun. Korean Math. Soc. 24 (2009), no. 1, 1-4.
[4] L. C. Washington, Introduction to cyclotomic fields, Springer, New York, 1982.

[^0]: 2000 Mathematics Subject Classification 11R23.

