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Abstract: We investigate the problem of equipping a topology on cohomology groups

(sets) in its relation with the problem of closedness of (relative) orbits for the action of algebraic

groups on affine varieties defined over complete, especially p-adic fields and give some

applications.
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Introduction. Let G be a smooth affine

algebraic group acting morphically on an affine

variety V , all are defined over a field k. Many results

of (geometric) invariant theory related to the orbits

of the action of G are obtained in the geometric

case, i.e., when k is an algebraically closed field.

However, since the very beginning of modern geo-

metric invariant theory, as presented in [MFK],

there is a need to consider the relative case of the

theory. For example, Mumford has considered

many aspects of the theory already over sufficiently

general base schemes, with arithmetical aim (say,

to construct arithmetic moduli of abelian varieties,

as in Chap. 3 of [MFK]). Also some questions or

conjectures due to Borel [Bo1], Tits [MFK] . . . ask

for extensions of results obtained to the case of non-

algebraically closed fields. As typical examples, we

just cite the results by Birkes [Bi], Kempf [Ke],

Raghunathan [Ra]. . . to name a few, which gave the

solutions to some of the above mentioned questions

or conjectures. Besides, due to the need of number-

theoretic applications, the local and global fields k

are in the center of such investigation. For example,

let an algebraic k-group G act on a k-variety V ,

x 2 V ðkÞ. One of the main steps in the proof of the

analog of Margulis’ super-rigidity theorem in the

global function field case (see [Ve,Li,Ma]) was to

prove the (locally) closedness of certain sets of the

form GðkÞ:x, which will be called in the sequel

relative orbits. In this paper we assume that k is a

field which is complete with respect to a non-trivial

valuation v of real rank 1 (e.g. p-adic or real field,

i.e., a local field of characteristic 0). Then we can

endow V ðkÞ with the (Hausdorff) v-adic topology

induced from that of k. Let x 2 V ðkÞ be a closed k-

point of V . We are interested in a connection

between the Zariski-closedness of the orbit G:x of

x in V , and Hausdorff closedness of the (relative)

orbit GðkÞ:x in V ðkÞ. The first result of this type was
obtained by Borel and Harish-Chandra [BHC] and

then by Birkes [Bi] if k ¼ R, the real field. In fact, it

was shown that if G is a reductive R-group, G:x is

Zariski closed if and only if GðRÞ:x is closed in the

real topology (see [Bi]). Then this was extended

to p-adic fields in [Bre]. Notice that some proofs

previously obtained in [Bi,Bre], . . . do not extend to

the case of positive characteristic. The aim of this

note is to see to what extent the above results

still hold for more general class of algebraic groups

and fields. In the course of study, it turns out

that this question has a close relation with the

problem of equipping a topology on cohomology

groups (or sets), which has important aspects, say

in relation with the duality theory in general (see

[Se,Mi]). Some preliminary results on this topic are

presented in Section 1. In Section 2 we give some

general results on the closedness of (relative) orbits

in perfect field case. In Section 3 we consider the

general (not-necessarily perfect) case, and also a

special class of solvable groups, including commu-

tative groups, in particular tori and unipotent

groups over local fields. Details of the proofs will

appear elsewhere.

Notations and conventions. By a k-group

G we always mean a smooth affine k-group scheme
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of finite type (i.e. a linear algebraic k-group, as in

[Bo1]). We consider only closed points while con-

sidering orbits. For flat affine k-group scheme of

finite type G, H1
flatðk;GÞ stands for the flat coho-

mology of G.

1. Topology on cohomology sets and

groups.

1.1. Ordinary cohomology sets.

1.1.1. Commutative case. Let G be a flat

affine commutative group scheme of finite type

defined over a field k which is complete with respect

to a non-trivial valuation v of real rank 1. In many

problems related with cohomology, one needs to

consider various topologies on the group cohomol-

ogy, such that all the connecting maps are contin-

uous. As in [Mi], Chap. III, Section 6, one may

define a natural topology on the flat cohomology

groups of flat commutative group schemes of finite

type G, which is in a sense induced from the

topology on k and we refer the readers to [Mi] for

details. We name this topology as the canonical

topology. When we are in the category of flat

commutative group schemes of finite type, with

canonical topology on their flat cohomology groups,

all the connecting homomorphisms appearing in

any long exact sequence of flat cohomology involv-

ing commutative groups are continuous, see

loc.cit. In fact, regarding the connecting maps

Hr
flatðk;AÞ ! Hr

flatðk;BÞ, on the level of cocycles,

these maps are given by polynomials, induced from

the morphism A ! B. Thus the induced maps are

continuous.

1.1.2. Non-commutative case. H-special

topology. Now assume that G is arbitrary and

may not be commutative. It seems that not very

much is known how to endow canonically a top-

ology on the set H1
flatðk;GÞ such that all connecting

maps are continuous. First we recall a definition of a

topology on H1
flatðk;GÞ via embedding of G into

special k-groups given in [TT]. Recall that a smooth

affine (i.e. linear) algebraic k-group H is called

special (over k) (after Grothendieck and Serre), if

the flat (or the same, Galois) cohomology

H1
flatðK;HÞ is trivial for all extensions K=k. Given

an embedding G ,! H of G into a special group H,

we have the following exact sequence of cohomology

1 ! GðkÞ ! HðkÞ ! ðH=GÞðkÞ !� H1
flatðk;GÞ ! 0:

Here H=G is a quasi-projective scheme of finite

type defined over k (cf. [DG] or SGA 3). Let k be

equipped with Hausdorff topology. Since � is sur-

jective, by using the natural (Hausdorff) topology

on ðH=GÞðkÞ, induced from that of k, we may endow

H1
flatðk;GÞ with the strongest topology such that � is

continuous. We call it the H-special topology.

1.1.3. Non-commutative case. Canonical

topology. Let G be a non-commutative flat affine

k-group scheme of finite type. We may also define

the canonical topology on H1
flatðk;GÞ similarly to the

commutative case (1.1). We have

1.1.4. Proposition [TT]. With the above

notation and convention, the special topology on

H1ðk;GÞ does not depend on the choice of the

embedding into special groups.

Here we wish to compare the canonical and the

special topologies. We have the following

1.1.5. Theorem. Let k be a field, which is

complete with respect to a non-trivial valuation v of

real rank 1. Then for any smooth affine algebraic k-

group G and any special embedding G ,! H, the H-

special topology on H1ðk;GÞ is stronger than the

canonical topology on the cohomology sets H1ðk;GÞ,
and when G is commutative, they coincide. Thus if

G is smooth, and the canonical topology on H1ðk;GÞ
is discrete, then so is the special topology.

Remark. Below, while we are discussing a

property P related with special topology without

mentioning H, it means that there is no need to

introduce a special group H, and the statement

holds for any special group H.

1.1.6. Theorem. 1) If a coboundary map

between cohomology sets � : CðkÞ ! H1ðk;AÞ, in-

duced from the exact sequence of k-groups ð�Þ : 1 !
A ! B ! C ! 1 is continuous in some H-special

topology, then it is so in the canonical topology on

H1ðk;AÞ.
2) Any connecting map of cohomology sets in degree

� 1 induced from ð�Þ is continuous in the special

topology on these sets.

As a consequence of the proof, we have the following

1.1.7. Proposition. With the above notation,

if k is complete with respect to a non-trivial

valuation, then

1) Any k-morphism of flat algebraic affine k-group

schemes f : K ! L induces a continuous map

H1
flatðk;KÞ ! H1

flatðk; LÞ with respect to the H-special

topologies for any H.

2) For K ,! L, where K, L are smooth, the induced

map H1ðk;KÞ ! H1ðk; LÞ is open in the special

topologies on H1ðk;KÞ and H1ðk; LÞ.
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The following theorem refines some results proved

by various authors, scattered in the literature

(see [BT], Section 9, the proof of Lemma 9.2, [Bre,

GiMB, Se]).

1.1.8. Theorem. (Compare with [BT],

Sec. 9, [Bre], Sec. 5, [GiMB]) Let k be a field which

is complete with respect to a non-trivial valuation of

real rank 1 and G a smooth affine algebraic group

defined over k.

a) The subset f1g is open in the special topology on

H1ðk;GÞ. Thus, if G is further commutative then

the special (or canonical) topology on H1ðk;GÞ is

discrete.

b) If the characteristic of k is 0 then the cohomology

set H1ðk;GÞ is discrete in the special topology. In

particular, if k is a local field of characteristic 0,

H1ðk;GÞ is finite and discrete in its special topology.

If, moreover, k is non-archimedean and G is

commutative, then the same discreteness assertion

holds for Hiðk;GÞ, i � 1.
c) Let a smooth affine algebraic group G act

morphically on an affine k-variety V. If v 2 V ðkÞ is
a closed point such that its stabilizer is smooth (e.g.,

if char. k ¼ 0) then GðkÞ:v is open in Hausdorff

topology of ðG:vÞðkÞ.
2. Application to the study of relative

orbits over perfect fields.

2.1. In this section we state and prove a

property of being closed for orbits of a class D of

algebraic groups, which are close to reductive

groups, namely those groups which are direct prod-

ucts of a reductive group and an unipotent group.

This result is perhaps the best possible, in the sense

that there exists a non-closed orbit for the action of

an algebraic group of smallest dimension which does

not belong to D. Before going to main results, we

need some auxiliary results, some of which are of

their independent interest. Below, the terminology

‘‘open’’ or ‘‘closed’’, unless otherwise stated, always

means in the sense of Zariski topology.

2.1.1. Lemma. Let G be an algebraic group

acting morphically on a variety V, v 2 V a (closed)

point and G� the connected component of G. Then

G:v is closed (resp. open) in V if and only if G�:v is

closed (resp. open).

2.1.2. Proposition. With the notation as in

Lemma 2.1.1 assume that H is a closed subgroup of

G and v 2 V is a closed point. Then

1) If G.v is closed in V then there is a conjugate H 0

of H in G such that H 0:v is closed in V. In particular,

there exists a maximal torus (resp. Cartan subgroup)

and for each standard parabolic subgroup P� of type

� of G, there is a parabolic subgroup P � G, a

conjugate of P� such that P.v is closed.

2) With the above assumption and notation, assume

that G ¼ L� U (direct product), where L is a

reductive subgroup of G, and U is a unipotent

subgroup of G. Then G:v is closed if and only if so is

L.v.

2.2. Next we need an extension of a theorem of

Kempf to a class of non-reductive groups.

2.2.1. Theorem. (An extension of a theorem

of Kempf) Let k be a perfect field, G ¼ L� U, where

L is a reductive k-group and U is a unipotent k-

group. Let G act k-morphically on an affine k-variety

V, and let v be a closed point of instability of V(k),

i.e., G:v is not closed. Let Y be any closed G-

invariant subset of ClðG:vÞ nG:v. Then there exist a

one-parameter subgroup � : Gm ! G, defined over

k, and a point y 2 Y \ V ðkÞ, such that when t ! 0,
�ðtÞ:v ! y.

Remark. In fact, in the reductive case, the

original theorem of Kempf gives more information

about the nature of instable orbits and we state here

only its simplified version.

2.2.2. Corollary. Let the notation be as above

and z 2 V ðkÞ a closed point such that its stabilizer Gz

contains all maximal k-split tori of G. Then G:z is

closed in V.

This result complements Corollary 1 of [St, p.70].

2.3. With these preparations we have the

following results regarding the topology of the

orbits.

2.3.1. Theorem. Let k be a perfect field,

complete with respect to a non-trivial valuation of

real rank 1, G a smooth affine algebraic k-group

acting morphically on an affine k-variety V and

v 2 V a closed k-point of V.

1) (Compare [Bi, BHC, BT, Bre]) If G:v is closed

and the stabilizer Gv is a smooth k-group, then

GðkÞ:v is closed in the Hausdorff topology in V ðkÞ.
2) Conversely, assume that G ¼ L� U, where L is

reductive and U is unipotent, all defined over k. If

GðkÞ:v is closed in the Hausdorff topology on V ðkÞ,
then G:v is also Zariski-closed in V.

3) With assumption as in 2), GðkÞ:v is closed in V ðkÞ
if and only if G�ðkÞ:v is closed in V ðkÞ.

Remark. The statement 1) of Theorem 2.3.1

has its origin in Borel and Harish-Chandra [BHC]

when k ¼ R, and the converse was proved for
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reductive groups over the reals by Birkes [Bi]. Then

1) was extended in [Bre], to reductive groups over

any local field of characteristic 0. Here we extend

their results to the fields which are complete with

respect to a non-trivial valuation of real rank 1, for

which the general implicit function theorem holds.

2.3.2. Corollary. Let k;G; V be as in 2.3.1.

Assume that Gv is a smooth k-group. If G is a

smooth nilpotent k-group and T the unique maximal

k-torus of G, then the following statements are

equivalent.

a) G � v is closed in Zariski topology;

b) T � v is closed in Zariski topology;

c) GðkÞ � v is closed in Hausdorff topology;

d) T ðkÞ � v is closed in Hausdorff topology.

2.4. Recall that by a well-known theorem of

Mostow, any linear algebraic group G over a field k

of characteristic 0 has a decomposition G ¼ L:U

into semi-direct product, where U is the largest

normal unipotent k-subgroup of G and L is a

maximal reductive k-subgroup. The groups which

are direct products of a reductive group and a

unipotent group are perhaps the best possible for

2.3.1, 2) above to hold. Namely we give below a

minimum example among solvable non-nilpotent

algebraic groups, for which the assertion 2.3.1, 2)

does not hold.

2.4.1. Proposition. Let B be a smooth

solvable affine algebraic group of dimension 2,

acting morphically on an affine variety X and

x 2 X, a closed point, all defined over a field k of

characteristic 0.

1) If the stabilizer Bx of x is an infinite subgroup of

B, then B.x is always closed.

2) Let G ¼ SL2 and B the Borel subgroup of G,

consisting of upper triangular matrices. Consider

the standard representation of G by letting G act on

the space V2 of homogeneous polynomials of degree

2 with coefficients in C, considered as 3-dimen-

sional C-vector space. Then dim B ¼ 2, and for

v ¼ ð1; 0; 1Þt 2 V2, we have

a) G:v ¼ fðx; y; zÞ j 4xz ¼ y2 þ 4g is a closed set in

Zariski topology;

b) B:v ¼ fðx; y; zÞ j 4xz ¼ y2 þ 4g n fz ¼ 0g is a non-

closed set in Zariski topology;

c) BðkÞ:v ¼ fða2 þ b2; 2bd; d2Þ j ad ¼ 1; a; b; c; d 2 kg
is a closed set in Hausdorff topology, where k

is either R or a p-adic field, with p ¼ 2 or

p � 3 ðmod: 4Þ.
d) The stabilizer Bv of v in B is finite.

Remark. Also, in the case of solvable groups,

in contrast with the nilpotent case (see

Corollary 2.3.2), some of the relations between the

closedeness of orbits of closed subgroups and that of

the ambient groups may not hold, as the following

statements show.

2.4.2. Proposition. Let G be a smooth

solvable affine algebraic group defined over k, where

k is either R or Qp, T a maximal k-torus of G, � :

G ! GLðV Þ a representation of G which is defined

over k, and v 2 V ðkÞ a closed k-point. We consider

the following statements.

a) G:v is closed in Zariski topology;

b) For any above T, T:v is closed in Zariski topology;

c) GðkÞ:v is closed in Hausdorff topology;

d) For any above T, T ðkÞ:v is closed in Hausdorff

topology.

Then we have the following logical scheme

b) , d), a) ) c), a) ; b), b) ; a), c) ; d), d) ; c),

c) ; a).

3. Relative orbits over non-perfect com-

plete fields.

3.1. In this section we consider the case of a

field k which is complete with respect to a non-

trivial valuation of real rank 1, (e.g., a local field) of

arbitrary characteristic; for example, k can be a

local function field, which is one of important cases

of non-perfect fields. The first main result of this

section is the following Theorem 3.1.1, where, under

some mild and natural conditions, we treat the case

of reductive and nilpotent groups, and the most

satisfactory (i.e. unconditional) results were ob-

tained for commutative and unipotent groups. In

3.2–3.3 we present various results on closedness of

orbits under the action of a class of smooth solvable

affine algebraic groups, which includes a large class

of nilpotent linear groups.

First we recall the notion of strongly separable

actions of algebraic groups after [RR]. Let G be a

smooth affine algebraic group acting regularly on an

affine variety V , all are defined over a field k. Let

v 2 V ðkÞ be a k-point, Gv the corresponding stabil-

izer and ClðG:vÞ the Zariski closure of G:v in V . The

action of G is said to be strongly separable (after

[RR]) at v if for all x 2 ClðG:vÞ, the stabilizer Gx is

smooth, or equivalently, the induced morphism

G ! G=Gx is separable. Related with this notion,

we call the action fairly separable at v, if for all

w 2 ðG:vÞðkÞ, the stabilizer Gw is a smooth k-

subgroup of G. A priori ‘‘strongly separable’’
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implies ‘‘fairly separable’’, and it is quite unlikely

that the converse statement is true.

3.1.1. Theorem. Let k be a field, which is

complete with respect to a non-trivial valuation of

real rank 1, and G a smooth affine algebraic group

acting linearly on an affine k-variety V, all defined

over k. Let v 2 V ðkÞ be a closed k-point and Gv the

stabilizer group of v.

1) If GðkÞ:v is closed in Hausdorff topology induced

from V ðkÞ and either G is nilpotent or G is reductive

and the action of G is strongly separable at v in the

sense of [RR], then G:v is closed (in Zariski top-

ology) in V.

2) Conversely, with above notation, GðkÞ:v is

Hausdorff closed in V ðkÞ if G:v is closed and one

of the following conditions holds:

a) Gv is smooth and commutative, or G is commu-

tative;

b) Gv is a smooth k-group, which is an extension of a

smooth unipotent k-group by a diagonalizable k-

group;

c) k is a local field, and Gv is a smooth connected

reductive k-subgroup of G;

d) The action at v is fairly separable.

Remarks. 1) If char :k ¼ 0, then this theorem

is contained in 1.1.8. Thus it is especially interest-

ing in the case of non-perfect fields, e.g. local

function fields.

2) The examples similar to 2.4.1 show that if one of

the conditions on G in Theorem 3.1.1, 1) (i.e., the

nilpotency, or the strong separability of the action),

is violated, then the assertion 1) does not hold. For

the proof of Part 1), we need the following result

due to Birkes, characterizing the so-called Property

A in [Bi,Ra].

3.1.2. Theorem. ([Bi], Proposition 9.10) Let

k be an arbitrary field and G a smooth nilpotent k-

group acting linearly on a finite dimensional vector

space V via a representation � : G ! GLðV Þ, all

defined over k. If v 2 V ðkÞ is a closed point and Y is

a non-empty G-stable closed subset of ClðG:vÞ nG:v,

then there exist an element y 2 Y \ V ðkÞ, and a one-

parameter subgroup � : Gm ! G defined over k,

such that �ðtÞ:v ! y while t ! 0.

3.1.3. Corollary. Let k be a field, complete

with respect to a non-trivial valuation of real rank 1

and G a smooth unipotent algebraic group defined

over k, which acts k-regularly on an affine k-variety

V. Let v 2 V ðkÞ be a closed point, and assume that

the stabilizer group Gv is smooth.

1) The trivial cohomology class f1g is both open and

closed in the special topology on H1ðk;GÞ. In

particular, GðkÞ:v is always Hausdorff closed in

V ðkÞ.
2) Assume further that V is a finite dimensional k-

vector space and G is a smooth unipotent k-subgroup

of GLðV Þ. Then for any v 2 V ðkÞ, with the standard

linear action of G on V, GðkÞ:v is closed in

Hausdorff topology in V ðkÞ.
3.2. Next we consider the case of connected

smooth solvable affine groups which are extensions

of unipotent k-groups by diagonalizable k-groups, in

particular, the case of connected nilpotent groups.

We may assume that G is neither torus, nor

unipotent. In the case of connected nilpotent groups

G, the maximal diagonalizable subgroup Gs of G is

defined over ks and is stable with respect to �. Thus
it is defined over k (see [DG], Chap. IV, Sec. 4).

Moreover, it is a central k-subgroup of G, which is

smooth if G is smooth. The unipotent part of G is

not necessarily defined over k, but we still have the

following exact sequence 1 ! Gs ! G !f U ! 1,
where U is a unipotent k-group, which is called

the unipotent quotient of G. By a well-known result

of Tits, there is a unique normal, maximal k-split

subgroup Ud of U, where U=Ud is k-wound (see

[KMT,Oe,Ti]). The inverse image of Ud via f is an

affine k-subgroup scheme K of G, containing Gs. It

is clear that K is a normal k-subgroup scheme of G.

3.2.1. Proposition. Let k be a local field, G

a connected smooth affine algebraic k-group, which

acts k-regularly on an affine k-variety V, and v 2
V ðkÞ a closed k-point. Assume that G is an extension

of a unipotent k-group by a smooth diagonalizable k-

group Gs (e.g. a nilpotent linear algebraic group).

Let K be as above and assume that K is a smooth k-

subgroup of G.

1) IfKðkÞ:v is closed in ðK:vÞðkÞ, then so is GðkÞ:v in
ðG:vÞðkÞ.
2) The special topology on H1ðk;KÞ is discrete. In

particular, the trivial class f1g is both open and

closed subset there.

3.2.2. Corollary. With above notation and

assumption, if G is a smooth connected nilpotent

affine algebraic k-group and the k-split part Ud of

the unipotent quotient G=Gs is commutative, then

GðkÞ:v is Hausdorff closed in V ðkÞ.
We have the following general result.

3.2.3. Theorem. Let notation be as above and

let k be a field, complete with respect to a non-trivial
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valuation of real rank 1, G a smooth affine algebraic

k-group, acting k-regularly on an affine k-variety V

and v 2 V ðkÞ a closed k-point. Assume that G:v is

closed, Gv is an extension of a unipotent k-group by

a diagonalizable k-group Gs;v and both are smooth k-

groups. Then GðkÞ:v is Hausdorff closed in V ðkÞ.
3.2.4. Corollary. Let k, G, V, v be as in 3.2.3.

Assume that G:v is closed and Gv is a smooth k-

group, which is an extension of a unipotent k-group

by a k-split torus Gs;v. Then GðkÞ:v is Hausdorff

closed in V ðkÞ.
3.3. Next we assume that G is a smooth affine

nilpotent algebraic k-group, G ¼ T � U, where T is

a diagonalizable k-group and U a unipotent k-

group. Let T � ¼ Ts:Ta, where Ts (resp. Ta) is the

maximal k-split (resp. k-anisotropic) subtorus of T

and the product is almost direct and defined over k.

3.3.1. Proposition. With above notation and

assumption as in 3.2.1, let G act k-regularly on an

affine k-variety V and v 2 V ðkÞ a closed k-point.

Assume that G:v is closed in V, G ¼ T � U, where T

is a diagonalizable k-group and U is a k-unipotent

group. If ðTsðkÞ � UdðkÞÞ:v is Hausdorff closed in

ððTs � UdÞ:vÞðkÞ then GðkÞ:v is Hausdorff closed in

V ðkÞ.
3.4. Let k be a local field. By abuse of

language, we call a smooth affine algebraic k-group

G compact if its group of k-rational points GðkÞ is a
compact Hausdorff topological group. Denote by

C the smallest class of linear algebraic k-groups

satisfying the following properties.

1) All commutative affine k-groups belong to C;
2) All compact k-groups belong to C;
3) If G is an extension of a compact k-group by a

group belong to C, then G also belongs to C.
As a consequence of above consideration, we have

3.4.1. Corollary. Let k be a local field, G a

smooth connected affine algebraic k-group, which

acts k-regularly on an affine k-variety V and v 2
V ðkÞ a closed k-point. If G 2 C and G:v is closed,

then GðkÞ:v is Hausdorff closed in V ðkÞ.
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