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Abstract:

Let A be a finite-dimensional associative algebra and ¢ a symmetric linear

function on A. In this note, we will show that the pseudotrace maps defined in [6] are obtained as
special cases of well-known symmetric linear functions on the endomorphism rings of projective
modules. As an application of our approach, we will give proofs of several propositions and
theorems in [6] for an arbitrary finite-dimensional associative algebra.
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1. Introduction. In this note, we work on
an algebraically closed field k of characteristic 0.
Let A be a finite-dimensional associative k-algebra.
A linear function ¢ on A is said to be symmetric if
od(ab) = ¢(ba) for all a,b € A. We denote the space
of symmetric linear functions on A by SLF(A).

In [6], Miyamoto introduces a notion of a
pseudotrace map on a basic symmetric k-algebra P
in order to construct pseudotrace functions of
logarithmic modules of vertex operator algebras
satisfying some finiteness condition called Cs-con-
dition. Let ¢ be a symmetric linear function on
P which induces a nondegenerate bilinear form
P x P — k. Then the pseudotrace map tr%, is a
symmetric linear function on the endomorphism
ring of a finite-dimensional right P-module W
called interlocked with ¢. As it is implicitly men-
tioned in [6] and it is proved in this note, a finite-
dimensional right P-module which is interlocked
with ¢ is in fact a direct sum of indecomposable
projective modules.

For an arbitrary finite-dimensional k-algebra
A, a finitely generated projective right A-module W
has an A-coordinate system of W, that is, {u;};_; C
W and {a;};, C Homy(W,A) such that w=
Yo uie(w) for all we W (see [2]). For any
symmetric linear function ¢ on A, we can define a
symmetric linear function on End4 (W) by

ow(a) = ¢<i Q; o Oé(ui))

2000 Mathematics Subject Classification.
16D40.

Primary 16S50,

doi: 10.3792/pjaa.86.119
©2010 The Japan Academy

Symmetric algebras; symmetric linear functions; pseudotrace maps.

for all & € Enda(W) (c.f. [3]). In this note, we show
that the symmetric linear function trfv coincides
with the pseudotrace map when A= P and ¢
induces a nondegenerate symmetric associative
bilinear form on P. We also prove that a right P-
module W is interlocked with ¢ if and only if W is
projective. Then we can prove several propositions
and theorems in [6] for arbitrary finite-dimensional
k-algebras.

This note is organized as follows: In section 2,
we recall a construction of a symmetric linear
function ¢y on the endomorphism ring of finitely
generated projective modules W from ¢ € SLF(A).
In section 3, we assume that P is indecomposable,
basic and symmetric and ¢ € SLF(P) satisfies
(see section 3). We recall a
notion of a right P-module W which is inter-
locked with ¢ and a notion of a pseudotrace map
trf;, defined in [6]. We show that W is interlocked
with ¢ if and only if W is projective. By using
this fact, for any indecomposable projective mod-
ule W, we define ¢y and show that ¢y coincides
with trf1 In section 4 and 5, we prove several
propositions and theorems for pseudotrace maps
in [6] by using ¢y for arbitrary finite-dimensional
k-algebras.

2. Projective modules and symmetric
linear functions. Let A be a finite-dimensional
associative k-algebra. We denote a left (resp. right)
A-module M by s M (resp. My).

In this section, we recall a notion of a sym-
metric linear function on the endomorphism ring
of a finitely generated projective right A-module

(c.£. [3]).

some conditions
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Assume that Wy is finitely generated. Then Wy
is projective if and only if there exist subsets
{ui}iy C Wy and {a;}l; C Homy(Wy, A) such
that

n
w= Z ;o (w)
=1

for all weWy (see [2], chapterII, §2.6,
Proposition 12). The set {u;,a;};_; is called an A-
coordinate system of Wy.

Assume that W, is finitely generated and
projective. Let {u;,a;};_; be an A-coordinate sys-
tem of Wy. Then we define a map

TWA . EndA(WA) — A/[A, A]

by aw— w(} 0, a;0a(u;)) where m: A — A/[A, A
is the canonical surjection (c.f. [5,8]). It is known
that the map Ty, does not depend on the choice
of A-coordinate systems and that Ty, (aof) =
Tw,(Boa) for all «, 3 € Endy(Wy) (see [5,8]). For
¢ € SLF(A), we set ¢w, = ¢po Ty, : Enda(Wy) —
k. Then we have the following

Proposition 2.1. Assume that W4 is finitely
generated and projective and let ¢ be a symmetric
linear function on A. Then ¢w, is a symmetric
linear function on Endy(Wy).

3. Miyamoto’s psedotrace maps. In this
section, we show that the map ¢y, coincides with
the pseudotrace map defined in [6] if A satisfies
extra conditions.

First we recall the definition of a pseudotrace
map. Let P be a basic symmetric indecomposable
k-algebra We fix a decomposition of the unity 1 by
mutually orthogonal primitive idempotents:

l=e +e+---+ep.
We also fix ¢ € SLF(P) with the condition
(a,b) := ¢(ab) is nondegenerate,
¢e;) =0foralll1 <i<k.
Note that we have P/J(P) =ke; @ --- P ke since
P is basic and indecomposable. It is well-known
that {e;P|1 <1i <k} is the complete list of inde-
composable projective right P-modules.

Since a € Soc(Pp) if and only if aJ(P) =0 we
see that

(aJ(P),P) = (J(P),a) = (P, J(P)a) = 0.

(3.1)

The same argument for Soc(pP) shows Soc(Pp) =
Soc(pP). Thus Soc(Pp) = Soc(pP) is a two-sided
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ideal and we denote it by Soc(P). Then we have
(aJ(P), Py = (a, J(P)) for any a € P. This identity
shows that Soc(P)= J(P)*. Similarly we have
J(P) = Soc(P)*. Thus the bilinear form (, ) in-
duces a nondegenerate pairing (, ):Soc(P) x
P/J(P) — k. Let {fi,fs,...,fx} be a basis of
Soc(P) which are dual to the basis {e,és,... €}
of P/J(P), that iS, <fiaéj> = <fi,ej> = 6ij for 1 §
i,j < k.

Lemma 3.1.
i,j <k

Proof. Note that e; f; € Soc(P). Thus we have

(eifj er) = Ol fj, er) = Ounln;

so that eifj = ijfj- [l

Lemma 3.2. Soc(P) C J(P), in particular,
e;Soc(P)e; C e;J(Pej for all1 <1i,j < k.

Proof. Since P = @le Pe;, we see that
Soc(P) = @;‘;1 Soc(Pe;). Then J(P)e; is the unique
maximal submodule of Pe;. Suppose that
Soc(Pe;) is mnot contained in J(P). We have
Pe; = Soc(Pe;) + J(P)e; since J(P)e; is the unique
maximal submodule of Pe;. Then we conclude
Soc(Pe;) = Pe; by Nakayama’s lemma. Therefore
we can see ¢; € Soc(Pe;). By the same argument for
P= @le e;P, we obtain e; € Soc(e; P). Thus we
find J(P)e; = e;J(P) = 0, which shows that e; is a
central idempotent of P. This contradicts to the
assumption that P is indecomposable. O

Since P =YY" ke, +J(P), we have by
Lemma 3.1

eif; = fiei =06if; for all 1<

k i+ ZJ P 2 | = .a
(3.2) e;Pe; = { e+ el (Ple Z J
e;J(P)e;, i # 7,
and
k 3 | = .7
(3.3) eiSoc(P)e; = { fi 0=
' 0, i # ]

Set d” = dlmk eiJ(P)ej/equOC(P)ej for all 1 S
1,7 < k. Then since the pairing

(,):eJ(P)ej/eiSoc(P)e; x e;J(P)e;/ejSoc(P)e;
—k

is well-defined and nondegenerate, it follows that
di]' = dji for all 1 S Z,] S k.

Also since e;Soc(P)e; C e;J(P)e; C e; Pej, (3.2)
and (3.3), we have dimye;Pe;=d;+2 and
dimy e; Pej = d;; for i # j by (3.2) and (3.3).

Lemma 3.3 ([6], Lemma 3.2). The algebra P
has a basis
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Q= {p, Pl PLIL S 4,5 Sk 1< si < dij)

satisfying

(a) pf = e pif1 = fis

(b) eiplie; = pY,

(c) (P?:_PZS#%J = 60505t

(d) ppy 1y = fis -

(e) the space spanned by {p/|t > s} is e;Pe;-
nvariant.
For 1 <i,5 <k, set

Qi = {p?1 <j<ks}, Qy={p7s}.

Note that §2; is a basis of ¢; P for any 1 < i < k and
Q—{e,...,ex} is a basis of J(P). We sometimes
denote an element of §2;; by p“.

Definition 3.4 ([6], Definition 3.6). Assume
that Wp is finitely generated. The module Wp is said
to be interlocked with ¢ if ker(f;) = {w € Wwf; = 0}
is equal to 3 cq_,y Wp for all 1 <i < k.

It is obvious that ker(f;) 2 >, co (.} Wp since
pfi =0 for any p € Q — {e;}. In [6], the pseudotrace
map is defined on the endomorphism ring of a finite-
dimensional right P-module which is interlocked
with ¢. The isomorphism stated in [6, p.68] is more
precisely understood as follows:

Theorem 3.5. Let P be a basic symmetric
indecomposable algebra. Assume that ¢ € SLF(P)
satisfies the condition (3.1) and Wp is finitely
generated. Then Wp is interlocked with ¢ if and
only if Wp is projective. In particular, if Wp is
interlocked with ¢ then the multiplicity of the
indecomposable projective module e;P in Wp is
given by dimy Wp f; for 1 <i <k.

In order to prove this theorem, we first show
the following lemmas.

Lemma 3.6. Any indecomposable projective
module e; P for 1 < i < k is interlocked with ¢.

Proof. For e;p € e;P, suppose e;pf; =0 and
express p as p = ZpEQ a,p with a, € k. Then 0 =
epfi =e; ZpEQ appfi = ae, f;- Thus p belongs to the
space spanned by Q —{e;}, which shows e;p €
2 pea{ey G PP

For i#j, we can see epf;=aceifi=0
for all pe P. Thus we have ker(f;) CeP=
Zpe&l—{cj} eZPp u

Lemma 3.7. The module Wp is interlocked
with ¢ if and only if any direct summand of Wp is
interlocked with ¢.

Proof. Suppose that Wp = Wi @& Wy where Wy
and W5 are right P-modules. Then we have
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(3.4) Yoo Wp=1| Y Wip|le| > Wl
peQ—{e;} peQ—{e;} peQ—{e;}

By (3.4) and the definition of the module which
interlocked with ¢, we have the lemma. (I

Lemma 3.8. Assume that Wp is interlocked
with ¢. Then

forany 1 <i<k.

Proof. The kernel of the map We;, — W,
we; — wf; is equal to Zp6527{e,} Wpe; = WJ(P)e;
since Wp is interlocked with ¢. ([l

Proof of Theorem 3.5. By Lemma 3.6 and
Lemma 3.7, any finite direct sum of indecomposable
projective modules is interlocked with ¢.

Conversely, suppose that Wp is interlocked
with ¢. By Lemma 3.8, there exists v% such that
v% f; # 0 if dimyg W f; # 0. Then the map

0:e;P— W, epr— vep,

is a P-homomorphism. Suppose ker() # 0. Note
that Soc(e;P) =kf; by Lemma 3.1. Since e;P
has the wunique simple submodule Soc(e;P)
(see [4,Proposition 9.9 (ii)]) we have f; € ker(f)
and v%f; = 0. This is a contradiction. Thus @ is
injective.

Since P is a symmetric algebra, any projective
module is also injective (see [4,Proposition 9.9
(iii)]). Therefore 6 is split and then e; P is a direct
summand of W, say, W 22 ¢; P ® W’. By Lemma 3.5,
W’ is also interlocked with ¢ and dimy W'f; =
dimy W f; — 1 since dimyge; Pf; = 1. If Wf; =0 for
all 1<i<k, then wf;=0 for all we W and
1 <4 < k. Thus we have

W:(k] > Wp| =wJ(P).

=1 \ peQ—{e;}

By Nakayama’s lemma, we have W = 0.

Therefore the induction on dimy W f; proves
the theorem. In particular, the multiplicity of e; P in
W is equal to dimy W f; for all 1 <i < k. O

Assume that Wp is finitely generated and
projective. Then Wp is isomorphic to a finite
direct sum of indecomposable projective mod-
ules:

k
(3.5) Wp = P e P,
i=1
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where n; is the multiplicity of e;P, that is,
n; = dimy Wf;. We denote the element of Wp
corresponding to e; by vj for 1<i<k and 1<
j < n;. Note that Wp has a basis {v;f"p lpefy, 1<
i<k 1<j<n}.

Since a(vj') = a(vi'e;) = a(v])e; € We; for a €
Endp(Wp) and Lemma 3.3 (b), we have

N

=Y T o

s=1 t= 1/}“6951

for 1 <i<kand 1< j<mn; where a;’t € k. In [6],
the pseudotrace map tr‘{fpp on Endp(Wp) is defined

by

(3.6)

n;

ZZ@

=1 j=

(3.7) trWP
In order to show that the pseudotrace map
coincides with ¢yw,, we choose the following P-
coordinate system of Wp. Note that ¢y, does not
depend on the choice of P-coordinate systems.

Set

ajuppm = {07 1o I
’ 0, otherwise

for 1<i<kand 1<j<n;.
Homp(Wp,P) for 1 <i<kand1<j<mn,.

Lemma 3.9. The set {v?",a; |1<i<k 1<
Jj<mn;} is a P-coordinate system of Wp.

Proof. By the definitions of v§ and a]' we have
vj pm_v& 7(71€1P7p) Ze L2t Y O‘t(” pr).
Smce the elements v p’? form a basis of Wp, we
have shown the lemma (|

Theorem 3.10. Let P be a basic symmetric
algebra. Assume that ¢ € SLF(P) satisfies the con-
dition (3.1) and that Wp is finitely generated and
projective. Then ¢w, = tr%,l,.

Proof. For a € Endp(Wp) one has

Then o} belongs to

since (3.6) and Lemma 3.3 (c). O
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4. The center and symmetric linear func-
tions. In this section, we assume that the
finite-dimensional k-algebra A contains a nonzero
central element v such that (v—7)’A=0 and
(v—7)"""A 0 for some r € k and s € Z-y.

Set X ={a€ A|(v—r)a=0}. Note that I is
a two-sided ideal of A. Let oo : M4 — N4 be an A-
module homomorphism. Then M/MK is an A/K-
module and the map a: M/MK — N/NK defined
by a(m) = a(m) is an A/K-module homomorphism
where m is the image of m under the canonical map
M — M/MK. Assume that Wy is finitely generated
and projective and let {u;, ;}!; be an A-coordinate
system of Wy. Then {u;,a;};_, is an A/K-coordi-
nate system of the right A/KC-module W/WK.

Let ¢ be a symmetric linear function on A.
Then ¢'(a) = ¢((v — r)a) for any a € A/K is well-
defined and symmetric on A/K.

Proposition 4.1 ([6], Proposition 3.8). Assume
that W 4 is finitely generated and projective. Let ¢ be a
symmetric linear function on A. Then

pw,(ao(v—r)) = ¢§/V/W1c(a)

for all @ € Enda(Wa) where v —r is identified as an
element of End 4 (Wy).

Proof. Let {u;,a;}!_, be an A-coordinate sys-
tem of Wy. Then we have

(e

=09 <(1/ -r) Z ;0 oz(ui)>

<Zaloa (u; u—r)))
a(ao (v —r)).

Py i (@

)
= ow

O
5. Basic algebras and symmetric linear

functions. Let

n

ZZ%

i=1 j=

(5.1)

be a decomposition of the unity 1 by mutually
orthogonal primitive idempotents where e;;A =
eiA and e;;A % e A for i # k. Set e; = e; for 1 <
i<n and e=) ", e. Then k-algebra ede with
the unity e is called a basic algebra associated with
A. Then Ae is (A, eAe)-bimodule. Let ¢: A —
Endeac(Aecae) and r:eAe — Endg(4A4e) be maps
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defined by {(a)(be) =abe for all a,be A and
r(eae)(be) = beae for all a,b € A.

Lemma 5.1 ([1], Proposition 4.15, Theorem
17.8).
(a) The map r is an anti-isomorphism of algebras.
(b) The map £ is an isomorphism of algebras

By Lemma 5.1, an element a € A is identified
as an element in End.4.(Ae) and an element eae €
eAe is identified as an element in End4(Ae).

Remark 5.2. By Lemma 5.1, we have two
linear maps

(=) 4c,,, : SLF(eAe) — SLF(A),
(=), 4 : SLF(A) — SLF((eAe)™).
Since SLF(eAe) = SLF((eAe)?), the second map is

in fact a map SLF(A) — SLF(eAe).
By (5.1), we have

(5.2) = é@e”fle

=1 j=
The following fact is well-known.

Lemma 5.3. Let e and f be idempotents
of A. Then the following assertions are equiv-
alent.

(a) Ae = Af.
(b) eA = fA.
(¢) There exist p € eAf and q € fAe such that

pg=eand qp = f.

Lemma 5.4. For 1<i<n and 1<j<n;,
we have e;Ae 2 e;;Ae as right eAe-modules.

Proof. By Lemma 5.3 and the fact ;A = ¢;;4,
there exist p;; € e;jAe; and g;; € e;Ae;; such that
Dijqi; = €;; and  qypi;; =e;.  Then the maps
a:ejjAe — e;Ae defined by afejjae) = ¢jjae and
B:eAe — ej;jAe defined by [(e;ae) = p;jae are
eAe-homomorphisms and are inverse each other.
Thus we have shown the lemma. O

For any ae € Ae, it is not difficult to check
that ae =Y. a;(a)e; where «;(a) = ae;. Thus
{ei,a;};_; is an A-coordinate system of 4Ae.

By the proof of Lemma 5.1, we can see that
eijAecse is generated by p;; € e;;4e; such that
Dijqij = eij and g;jp;; = e; for some ¢;; € e;Ae;j. Note
that we can choose p;; = ¢;1 = €;; =¢;. For any
ae € Ae, we set fjj(ea) = gjae € eAe for all
1<i¢<n and 1<j<n;. Then we have f;; €
Homga.(Ae,ede)  and 370, 3707 pijBij(ae) =
>oisi 2oty eijlae) = ae by (5.1). Thus {p;, 5|1 <
i<n, 1<j<n;} is an eAe-coordinate system of
Ae.4.. In the following, we fix the A-coordinate
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system {e;,a;}:, of 4Ae and the eAe-coordinate

system {p;;, Bij|1 <i<n, 1 <j<n}of Aecye.
Lemma 5.5.

(a) Let ¢ be a symmetric linear function on A.
Then ¢, 4c(eae) = P(eae) for all eae € eAe.

(b) Let ¢ be a symmetric linear function on eAe.

Then Pae,, (a) = (1, D20 gijapi;) for all

a€ A.
Proof. Since ¢, ac(eae) = > 1", d(ai(ejeae)) =
Yo ¢(eiae;) and ¢ is symmetric, we obtain
p(eiAej) = p(eje;Ae;) =0 for i # j, which shows
the first assertion.

The second assertion is proved as follows:

noon;

@Z)AC,A, sz) ﬂu ap“
=1 j=
noon
= ZZw qijapi;)-
i=1 j=
O
Theorem 5.6.

(a) Let ¢ be a symmetric linear function on A.

Then (¢,4¢) ac,, (@) = ¢(a) for all a € A.

(b) Let ¢ be a symmetric linear function on eAe.
Then we have (Y ac,,.) , 4.(€ae) = Y(eae) for all
eae € eAe.

(¢c) The space of symmetric linear functions on A
and the one of eAe are isomorphic as vector
spaces.

Proof. By Lemma 5.5, we have

(6110) pe.. (@) = () 1 (Z 3 ql,apw>

i=1 j=

: (fz%%)

i=1 j

- (iim%)

=1 j

i=1 j=

which shows (a).
By Lemma 5.5, we have

(wASrAF )AAe (eae)

= Ve, (eae)

noon
(zz%eaep”)

=1 j
= 9Y(eae),

since ¢;1 = pi1 = ¢;.



124 Y. ARIKE

Hence we can see that two linear maps (—) 4, :
SLF(A) — SLF(eAe) and (—),, :SLF(ede) —
SLF(A) are inverse each other, which shows the
last assertion. O

Remark 5.7. The statement (a) of Theorem
5.6 for a € Soc(A) is found in [6, Lemma 3.9]. The
statement (c) of Theorem 5.6 is well-known (see
[7,6.1]).

For ¢ € SLF(A), we set Rad(¢)={aec A|
¢(Aa) = 0}. Then Rad(¢) is a two-sided ideal of A
and ¢ induces a symmetric linear function on
A/Rad(¢). Note that A/Rad(¢) is a symmetric
algebra since ¢ is well-defined on A/Rad(¢) and
induces a nondegenerate symmetric associative
bilinear form on A/ Rad(¢).

Let A=A ® Ay ®--- @ Ay be a decomposition
into two-sided ideals of A. For any ¢ € SLF(A), we
have ¢ = ¢1 + ¢ +--- + ¢y where ¢; = ¢[, . Note
that ¢; € SLF(4;). If ¢(aA) =0 for some a € A,
then we can see that ¢;(a4;) C ¢(ad) = 0.

Theorem 5.8. Let ¢ be a symmetric linear
function on A and v a central element of A. Assume
that there exists s € Z~q such that ¢((v —r)°a) =0
foranya € A and that A=A @A B --- DAy isa
decomposition of A into two-sided ideals. Then
there exist symmetric linear functions ¢; € SLF(A;),
basic symmetric algebras P; of B; = A/ Rad(¢;) and
(A, P)-bimodules M; satisfying (v —1)"M; =0.
Moreover,

¢
o(b) = Z(((ﬁi)am)(m)g (b)
i=1
for allb € A where b in the right hand side is viewed
as a linear map defined by the left action ofb € A on
each (A, P;)-bimodule M;.

Proof. Set B; = A/Rad(¢;). Since Rad(¢;) 2
A, for j # i, we can see that B; = A;/Rad(¢;). We
first note that the symmetric linear function ¢; on
B; is well-defined and that B; is naturally a left A-
module. Let P, =¢;(A/Rad(¢;))e; be the basic
algebra of A/ Rad(¢;) where €; is an idempotent of
B;. The basic algebra P, is a symmetric algebra by
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[7,10.1]. Then we set M; = (A/Rad(¢;))e; which is
an (A, P,)-bimodule. By the argument before the
statement of this theorem, we can see that
(v—r1r)* € Rad(¢;) and thus (v —r)°M; =0. Note
that the left action of a € A defines a right P;-
module endomorphism of M;. By Lemma 5.5,
we have $i(b) = ¢i(b) = ((¢i)B,M,)(ML)” (b) =
Eéﬁgﬁéﬁ?wm”(b) for all b€ A;, which shows t}g

Remark 5.9. This theorem is found in
[6, Theorem 3.10]. In the proof of [6, Theorem 3.10],
it is shown that a symmetric linear function on
A may be written as a sum of pseudotrace
maps even if A is indecomposable by using the
fact (¢,4c)a.,, (a) = ¢(a) for all a € Soc(A) (see
[6, Lemma 3.9]) in our notation. However, since
(b14¢) ac,,, (@) = ¢(a) for all a € A, any symmetric
linear function can be written by only one
symmetric linear function on the endomor-
phism ring of the (A, P)-bimodule if A is indecom-
posable.
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