Some remarks on symmetric linear functions and pseudotrace maps

By Yusuke Arike

Department of Mathematics, Graduate School of Science, Osaka University, Machikaneyamacho 1-1, Toyonaka, Osaka 560-0043, Japan

(Communicated by Shigefumi MORI, M.J.A., June 14, 2010)

Abstract: Let A be a finite-dimensional associative algebra and ϕ a symmetric linear function on A. In this note, we will show that the pseudotrace maps defined in [6] are obtained as special cases of well-known symmetric linear functions on the endomorphism rings of projective modules. As an application of our approach, we will give proofs of several propositions and theorems in [6] for an arbitrary finite-dimensional associative algebra.

Key words: Symmetric algebras; symmetric linear functions; pseudotrace maps.

1. Introduction. In this note, we work on an algebraically closed field \mathbf{k} of characteristic 0. Let A be a finite-dimensional associative \mathbf{k} -algebra. A linear function ϕ on A is said to be *symmetric* if $\phi(ab) = \phi(ba)$ for all $a, b \in A$. We denote the space of symmetric linear functions on A by $\mathrm{SLF}(A)$.

In [6], Miyamoto introduces a notion of a pseudotrace map on a basic symmetric **k**-algebra P in order to construct pseudotrace functions of logarithmic modules of vertex operator algebras satisfying some finiteness condition called C_2 -condition. Let ϕ be a symmetric linear function on P which induces a nondegenerate bilinear form $P \times P \to \mathbf{k}$. Then the pseudotrace map $\operatorname{tr}_W^{\phi}$ is a symmetric linear function on the endomorphism ring of a finite-dimensional right P-module W called interlocked with ϕ . As it is implicitly mentioned in [6] and it is proved in this note, a finite-dimensional right P-module which is interlocked with ϕ is in fact a direct sum of indecomposable projective modules.

For an arbitrary finite-dimensional **k**-algebra A, a finitely generated projective right A-module W has an A-coordinate system of W, that is, $\{u_i\}_{i=1}^n \subset W$ and $\{\alpha_i\}_{i=1}^n \subset \operatorname{Hom}_A(W,A)$ such that $w = \sum_{i=1}^n u_i \alpha_i(w)$ for all $w \in W$ (see [2]). For any symmetric linear function ϕ on A, we can define a symmetric linear function on $\operatorname{End}_A(W)$ by

$$\phi_W(\alpha) = \phi\left(\sum_{i=1}^n \alpha_i \circ \alpha(u_i)\right)$$

2000 Mathematics Subject Classification. Primary 16S50, $16\mathrm{D}40.$

for all $\alpha \in \operatorname{End}_A(W)$ (c.f. [3]). In this note, we show that the symmetric linear function $\operatorname{tr}_W^{\phi}$ coincides with the pseudotrace map when A=P and ϕ induces a nondegenerate symmetric associative bilinear form on P. We also prove that a right P-module W is interlocked with ϕ if and only if W is projective. Then we can prove several propositions and theorems in [6] for arbitrary finite-dimensional \mathbf{k} -algebras.

This note is organized as follows: In section 2, we recall a construction of a symmetric linear function ϕ_W on the endomorphism ring of finitely generated projective modules W from $\phi \in SLF(A)$. In section 3, we assume that P is indecomposable, basic and symmetric and $\phi \in SLF(P)$ satisfies some conditions (see section 3). We recall a notion of a right P-module W which is interlocked with ϕ and a notion of a pseudotrace map $\operatorname{tr}_W^{\phi}$ defined in [6]. We show that W is interlocked with ϕ if and only if W is projective. By using this fact, for any indecomposable projective module W, we define ϕ_W and show that ϕ_W coincides with $\operatorname{tr}_W^{\phi}$. In section 4 and 5, we prove several propositions and theorems for pseudotrace maps in [6] by using ϕ_W for arbitrary finite-dimensional

2. Projective modules and symmetric linear functions. Let A be a finite-dimensional associative **k**-algebra. We denote a left (resp. right) A-module M by ${}_{A}M$ (resp. ${}_{A}M$).

In this section, we recall a notion of a symmetric linear function on the endomorphism ring of a finitely generated projective right A-module (c.f. [3]).

Assume that W_A is finitely generated. Then W_A is projective if and only if there exist subsets $\{u_i\}_{i=1}^n \subset W_A$ and $\{\alpha_i\}_{i=1}^n \subset \operatorname{Hom}_A(W_A, A)$ such that

$$w = \sum_{i=1}^{n} u_i \alpha_i(w)$$

for all $w \in W_A$ (see [2], chapter II, §2.6, Proposition 12). The set $\{u_i, \alpha_i\}_{i=1}^n$ is called an *A-coordinate system* of W_A .

Assume that W_A is finitely generated and projective. Let $\{u_i, \alpha_i\}_{i=1}^n$ be an A-coordinate system of W_A . Then we define a map

$$T_{W_A}: \operatorname{End}_A(W_A) \to A/[A,A]$$

by $\alpha \mapsto \pi(\sum_{i=1}^n \alpha_i \circ \alpha(u_i))$ where $\pi: A \to A/[A,A]$ is the canonical surjection (c.f. [5,8]). It is known that the map T_{W_A} does not depend on the choice of A-coordinate systems and that $T_{W_A}(\alpha \circ \beta) = T_{W_A}(\beta \circ \alpha)$ for all $\alpha, \beta \in \operatorname{End}_A(W_A)$ (see [5,8]). For $\phi \in \operatorname{SLF}(A)$, we set $\phi_{W_A} = \phi \circ T_{W_A}: \operatorname{End}_A(W_A) \to \mathbf{k}$. Then we have the following

Proposition 2.1. Assume that W_A is finitely generated and projective and let ϕ be a symmetric linear function on A. Then ϕ_{W_A} is a symmetric linear function on $\operatorname{End}_A(W_A)$.

3. Miyamoto's psedotrace maps. In this section, we show that the map ϕ_{W_A} coincides with the pseudotrace map defined in [6] if A satisfies extra conditions.

First we recall the definition of a pseudotrace map. Let P be a basic symmetric indecomposable **k**-algebra We fix a decomposition of the unity 1 by mutually orthogonal primitive idempotents:

$$1 = e_1 + e_2 + \dots + e_k.$$

We also fix $\phi \in SLF(P)$ with the condition

(3.1)
$$\langle a, b \rangle := \phi(ab)$$
 is nondegenerate, $\phi(e_i) = 0$ for all $1 < i < k$.

Note that we have $P/J(P) = \mathbf{k}\bar{e}_1 \oplus \cdots \oplus \mathbf{k}\bar{e}_k$ since P is basic and indecomposable. It is well-known that $\{e_iP|1 \leq i \leq k\}$ is the complete list of indecomposable projective right P-modules.

Since $a \in \operatorname{Soc}(P_P)$ if and only if aJ(P) = 0 we see that

$$\langle aJ(P), P \rangle = \langle J(P), a \rangle = \langle P, J(P)a \rangle = 0.$$

The same argument for Soc(PP) shows Soc(PP) = Soc(PP). Thus Soc(PP) = Soc(PP) is a two-sided

ideal and we denote it by $\operatorname{Soc}(P)$. Then we have $\langle aJ(P), P \rangle = \langle a, J(P) \rangle$ for any $a \in P$. This identity shows that $\operatorname{Soc}(P) = J(P)^{\perp}$. Similarly we have $J(P) = \operatorname{Soc}(P)^{\perp}$. Thus the bilinear form $\langle \ , \ \rangle$ induces a nondegenerate pairing $\langle \ , \ \rangle : \operatorname{Soc}(P) \times P/J(P) \to \mathbf{k}$. Let $\{f_1, f_2, \ldots, f_k\}$ be a basis of $\operatorname{Soc}(P)$ which are dual to the basis $\{\bar{e}_1, \bar{e}_2, \ldots, \bar{e}_k\}$ of P/J(P), that is, $\langle f_i, \bar{e}_j \rangle = \langle f_i, e_j \rangle = \delta_{ij}$ for $1 \leq i, j \leq k$.

Lemma 3.1. $e_i f_j = f_j e_i = \delta_{ij} f_j$ for all $1 \le i, j \le k$.

Proof. Note that $e_i f_i \in Soc(P)$. Thus we have

$$\langle e_i f_j, \bar{e}_k \rangle = \delta_{ik} \langle f_j, \bar{e}_k \rangle = \delta_{ik} \delta_{kj}$$

so that $e_i f_j = \delta_{ij} f_j$.

Lemma 3.2. Soc $(P) \subseteq J(P)$, in particular, $e_i \operatorname{Soc}(P) e_j \subseteq e_i J(P) e_j$ for all $1 \le i, j \le k$.

Proof. Since $P = \bigoplus_{i=1}^k Pe_i$, we see that $\operatorname{Soc}(P) = \bigoplus_{i=1}^k \operatorname{Soc}(Pe_i)$. Then $J(P)e_i$ is the unique maximal submodule of Pe_i . Suppose that $\operatorname{Soc}(Pe_i)$ is not contained in J(P). We have $Pe_i = \operatorname{Soc}(Pe_i) + J(P)e_i$ since $J(P)e_i$ is the unique maximal submodule of Pe_i . Then we conclude $\operatorname{Soc}(Pe_i) = Pe_i$ by Nakayama's lemma. Therefore we can see $e_i \in \operatorname{Soc}(Pe_i)$. By the same argument for $P = \bigoplus_{i=1}^k e_i P$, we obtain $e_i \in \operatorname{Soc}(e_i P)$. Thus we find $J(P)e_i = e_i J(P) = 0$, which shows that e_i is a central idempotent of P. This contradicts to the assumption that P is indecomposable.

Since $P = \sum_{i=1}^{k} \mathbf{k} e_i + J(P)$, we have by Lemma 3.1

(3.2)
$$e_i P e_j = \begin{cases} \mathbf{k} e_i + e_i J(P) e_i, & i = j, \\ e_i J(P) e_j, & i \neq j, \end{cases}$$

and

(3.3)
$$e_i \operatorname{Soc}(P) e_j = \begin{cases} \mathbf{k} f_i, & i = j, \\ 0, & i \neq j. \end{cases}$$

Set $d_{ij} = \dim_{\mathbf{k}} e_i J(P) e_j / e_i \operatorname{Soc}(P) e_j$ for all $1 \le i, j \le k$. Then since the pairing

$$\langle , \rangle : e_i J(P) e_j / e_i \operatorname{Soc}(P) e_j \times e_j J(P) e_i / e_j \operatorname{Soc}(P) e_i$$

 $\to \mathbf{k}$

is well-defined and nondegenerate, it follows that $d_{ij} = d_{ji}$ for all $1 \le i, j \le k$.

Also since $e_i \operatorname{Soc}(P) e_j \subseteq e_i J(P) e_j \subseteq e_i P e_j$, (3.2) and (3.3), we have $\dim_{\mathbf{k}} e_i P e_i = d_{ii} + 2$ and $\dim_{\mathbf{k}} e_i P e_j = d_{ij}$ for $i \neq j$ by (3.2) and (3.3).

Lemma 3.3 ([6], Lemma 3.2). The algebra P has a basis

$$\Omega = \{\rho_0^{ii}, \rho_{d_{ii}+1}^{ii}, \rho_{s_{ij}}^{ij} | 1 \le i, j \le k, \ 1 \le s_{ij} \le d_{ij}\}$$

satisfying

- (a) $\rho_0^{ii} = e_i, \, \rho_{d_{ii}+1}^{ii} = f_i,$
- (b) $e_i \rho_s^{ij} e_j = \rho_s^{ij}$,
- (c) $\langle \rho_s^{ij}, \rho_{d_{ab}+1-t}^{ja} \rangle = \delta_{i,b}\delta_{j,b}\delta_{s,t},$ (d) $\rho_s^{ij}\rho_{d_{ji}+1-s}^{ji} = f_i,$
- (e) the space spanned by $\{\rho_t^{ij}|t\geq s\}$ is e_iPe_i invariant.

For $1 \le i, j \le k$, set

$$\Omega_i = \{ \rho_s^{ij} | 1 \le j \le k, s \}, \ \Omega_{ij} = \{ \rho_s^{ij} | s \}.$$

Note that Ω_i is a basis of $e_i P$ for any $1 \leq i \leq k$ and $\Omega - \{e_1, \ldots, e_k\}$ is a basis of J(P). We sometimes denote an element of Ω_{ij} by ρ^{ij} .

Definition 3.4 ([6], Definition 3.6). Assume that W_P is finitely generated. The module W_P is said to be interlocked with ϕ if $\ker(f_i) = \{w \in W | wf_i = 0\}$ is equal to $\sum_{\rho \in \Omega - \{e_i\}} W \rho$ for all $1 \leq i \leq k$.

It is obvious that $\ker(f_i) \supseteq \sum_{\rho \in \Omega - \{e_i\}} W\rho$ since $\rho f_i = 0$ for any $\rho \in \Omega - \{e_i\}$. In [6], the pseudotrace map is defined on the endomorphism ring of a finitedimensional right P-module which is interlocked with ϕ . The isomorphism stated in [6, p.68] is more precisely understood as follows:

Theorem 3.5. Let P be a basic symmetric indecomposable algebra. Assume that $\phi \in SLF(P)$ satisfies the condition (3.1) and W_P is finitely generated. Then W_P is interlocked with ϕ if and only if W_P is projective. In particular, if W_P is interlocked with ϕ then the multiplicity of the indecomposable projective module e_iP in W_P is given by $\dim_{\mathbf{k}} W_P f_i$ for $1 \leq i \leq k$.

In order to prove this theorem, we first show the following lemmas.

Lemma 3.6. Any indecomposable projective module $e_i P$ for $1 \le i \le k$ is interlocked with ϕ .

Proof. For $e_i p \in e_i P$, suppose $e_i p f_i = 0$ and express p as $p = \sum_{\rho \in \Omega} a_{\rho} \rho$ with $a_{\rho} \in \mathbf{k}$. Then 0 = $e_i p f_i = e_i \sum_{\rho \in \Omega} a_\rho \rho f_i = a_{e_i} f_i$. Thus p belongs to the space spanned by $\Omega - \{e_i\}$, which shows $e_i p \in$ $\sum_{\rho \in \Omega - \{e_i\}} e_i P \rho$.

For $i \neq j$, we can see $e_i p f_j = a_{e_i} e_i f_j = 0$ for all $p \in P$. Thus we have $\ker(f_i) \subseteq e_i P =$ $\sum_{\rho \in \Omega - \{e_i\}} e_i P \rho$.

Lemma 3.7. The module W_P is interlocked with ϕ if and only if any direct summand of W_P is interlocked with ϕ .

Proof. Suppose that $W_P = W_1 \oplus W_2$ where W_1 and W_2 are right P-modules. Then we have

(3.4)
$$\sum_{\rho \in \Omega - \{e_i\}} W \rho = \left(\sum_{\rho \in \Omega - \{e_i\}} W_1 \rho \right) \oplus \left(\sum_{\rho \in \Omega - \{e_i\}} W_2 \rho \right).$$

By (3.4) and the definition of the module which interlocked with ϕ , we have the lemma.

Lemma 3.8. Assume that W_P is interlocked with ϕ . Then

$$We_i/WJ(P)e_i \cong Wf_i, \ \overline{we_i} \mapsto wf_i$$

for any $1 \le i \le k$.

Proof. The kernel of the map $We_i \to Wf_i$, $we_i \mapsto wf_i$ is equal to $\sum_{\rho \in \Omega - \{e_i\}} W \rho e_i = WJ(P)e_i$ since W_P is interlocked with ϕ .

Proof of Theorem 3.5. By Lemma 3.6 and Lemma 3.7, any finite direct sum of indecomposable projective modules is interlocked with ϕ .

Conversely, suppose that W_P is interlocked with ϕ . By Lemma 3.8, there exists v^{e_i} such that $v^{e_i}f_i \neq 0$ if $\dim_{\mathbf{k}} Wf_i \neq 0$. Then the map

$$\theta: e_i P \to W, \ e_i p \mapsto v^{e_i} e_i p,$$

is a P-homomorphism. Suppose $ker(\theta) \neq 0$. Note that $Soc(e_iP) = \mathbf{k}f_i$ by Lemma 3.1. Since e_iP has the unique simple submodule $Soc(e_iP)$ (see [4, Proposition 9.9 (ii)]) we have $f_i \in \ker(\theta)$ and $v^{e_i}f_i=0$. This is a contradiction. Thus θ is injective.

Since P is a symmetric algebra, any projective module is also injective (see [4, Proposition 9.9 (iii)]). Therefore θ is split and then e_iP is a direct summand of W, say, $W \cong e_i P \oplus W'$. By Lemma 3.5, W' is also interlocked with ϕ and $\dim_{\mathbf{k}} W' f_i =$ $\dim_{\mathbf{k}} W f_i - 1$ since $\dim_{\mathbf{k}} e_i P f_i = 1$. If $W f_i = 0$ for all $1 \le i \le k$, then $wf_i = 0$ for all $w \in W$ and $1 \le i \le k$. Thus we have

$$W = \bigcap_{i=1}^{k} \left(\sum_{\rho \in \Omega - \{e_i\}} W \rho \right) = W J(P).$$

By Nakayama's lemma, we have W=0.

Therefore the induction on $\dim_{\mathbf{k}} W f_i$ proves the theorem. In particular, the multiplicity of $e_i P$ in W is equal to $\dim_{\mathbf{k}} W f_i$ for all $1 \leq i \leq k$.

Assume that W_P is finitely generated and projective. Then W_P is isomorphic to a finite direct sum of indecomposable projective modules:

$$(3.5) W_P \cong \bigoplus_{i=1}^k n_i e_i P,$$

where n_i is the multiplicity of e_iP , that is, $n_i = \dim_{\mathbf{k}} W f_i$. We denote the element of W_P corresponding to e_i by $v_j^{e_i}$ for $1 \le i \le k$ and $1 \le j \le n_i$. Note that W_P has a basis $\{v_j^{e_i}\rho \mid \rho \in \Omega_i, 1 \le i \le k, 1 \le j \le n_i\}$.

Since $\alpha(v_j^{e_i}) = \alpha(v_j^{e_u}e_i) = \alpha(v_j^{e_i})e_i \in We_i$ for $\alpha \in \operatorname{End}_P(W_P)$ and Lemma 3.3 (b), we have

(3.6)
$$\alpha(v_j^{e_i}) = \sum_{s=1}^k \sum_{t=1}^{n_s} \sum_{o^{si} \in \Omega_{ri}} \alpha_{jt}^{\rho^{si}} v_t^{e_s} \rho^{si}$$

for $1 \leq i \leq k$ and $1 \leq j \leq n_i$ where $\alpha_{jt}^{\rho^s} \in \mathbf{k}$. In [6], the pseudotrace map $\operatorname{tr}_{W_P}^{\phi}$ on $\operatorname{End}_P(W_P)$ is defined by

(3.7)
$$\operatorname{tr}_{W_P}^{\phi}(\alpha) = \sum_{i=1}^k \sum_{j=1}^{n_i} \alpha_{jj}^{f_i}.$$

In order to show that the pseudotrace map coincides with ϕ_{W_P} , we choose the following P-coordinate system of W_P . Note that ϕ_{W_P} does not depend on the choice of P-coordinate systems.

Set

$$\alpha_j^i(v_t^{e_s}\rho^{sp}) = \begin{cases} \rho^{ip}, & i = s, \ j = t, \\ 0, & \text{otherwise} \end{cases}$$

for $1 \leq i \leq k$ and $1 \leq j \leq n_i$. Then α_j^i belongs to $\operatorname{Hom}_P(W_P, P)$ for $1 \leq i \leq k$ and $1 \leq j \leq n_i$.

Lemma 3.9. The set $\{v_j^{e_i}, \alpha_j^i \mid 1 \le i \le k, 1 \le j \le n_i\}$ is a *P*-coordinate system of W_P .

Proof. By the definitions of $v_j^{e_i}$ and α_j^i , we have $v_j^{e_i}\rho^{ip}=v_j^{e_i}\alpha_j^i(v_j^{e_i}\rho^{ip})=\sum_{s=1}^k\sum_{t=1}^{n_s}v_t^{e_s}\alpha_t^s(v_j^{e_i}\rho^{ip}).$ Since the elements $v_j^{e_i}\rho^{ip}$ form a basis of W_P , we have shown the lemma.

Theorem 3.10. Let P be a basic symmetric algebra. Assume that $\phi \in \mathrm{SLF}(P)$ satisfies the condition (3.1) and that W_P is finitely generated and projective. Then $\phi_{W_P} = \mathrm{tr}_{W_P}^{\phi}$.

Proof. For $\alpha \in \operatorname{End}_P(W_P)$, one has

$$\phi_{W_P}(\alpha) = \phi \left(\sum_{i=1}^k \sum_{j=1}^{n_i} \alpha_j^i \circ \alpha(v_j^{e_i}) \right)$$

$$= \phi \left(\sum_{i,s=1}^k \sum_{j=1}^{n_i} \sum_{t=1}^{n_s} \sum_{\rho^{si} \in \Omega_{si}} \alpha_j^i (\alpha_{jt}^{\rho^{si}} v_t^{e_s} \rho^{si}) \right)$$

$$= \sum_{i=1}^k \sum_{j=1}^{n_i} \sum_{\rho^{ii} \in \Omega_{ii}} \alpha_{jj}^{\rho^{ii}} \phi(\rho^{ii})$$

$$= \sum_{i=1}^k \sum_{j=1}^{n_i} \alpha_{jj}^{f_i} = \operatorname{tr}_{W_P}^{\phi}(\alpha)$$

since (3.6) and Lemma 3.3 (c).

4. The center and symmetric linear functions. In this section, we assume that the finite-dimensional **k**-algebra A contains a nonzero central element ν such that $(\nu - r)^s A = 0$ and $(\nu - r)^{s-1} A \neq 0$ for some $r \in \mathbf{k}$ and $s \in \mathbf{Z}_{>0}$.

Set $\mathcal{K} = \{a \in A \mid (\nu - r)a = 0\}$. Note that \mathcal{K} is a two-sided ideal of A. Let $\alpha : M_A \to N_A$ be an A-module homomorphism. Then $M/M\mathcal{K}$ is an A/\mathcal{K} -module and the map $\widehat{\alpha} : M/M\mathcal{K} \to N/N\mathcal{K}$ defined by $\widehat{\alpha}(\overline{m}) = \overline{\alpha}(m)$ is an A/\mathcal{K} -module homomorphism where \overline{m} is the image of m under the canonical map $M \to M/M\mathcal{K}$. Assume that W_A is finitely generated and projective and let $\{u_i, \alpha_i\}_{i=1}^n$ be an A-coordinate system of W_A . Then $\{\overline{u}_i, \widehat{\alpha}_i\}_{i=1}^n$ is an A/\mathcal{K} -coordinate system of the right A/\mathcal{K} -module $W/W\mathcal{K}$.

Let ϕ be a symmetric linear function on A. Then $\phi'(\overline{a}) = \phi((\nu - r)a)$ for any $\overline{a} \in A/K$ is well-defined and symmetric on A/K.

Proposition 4.1 ([6], Proposition 3.8). Assume that W_A is finitely generated and projective. Let ϕ be a symmetric linear function on A. Then

$$\phi_{W_A}(\alpha \circ (\nu - r)) = \phi'_{W/WK}(\widehat{\alpha})$$

for all $\alpha \in \operatorname{End}_A(W_A)$ where $\nu - r$ is identified as an element of $\operatorname{End}_A(W_A)$.

Proof. Let $\{u_i, \alpha_i\}_{i=1}^n$ be an A-coordinate system of W_A . Then we have

$$\phi'_{W/WK}(\widehat{\alpha}) = \phi' \left(\sum_{i=1}^{n} \widehat{\alpha}_{i} \circ \widehat{\alpha}(\overline{u}_{i}) \right)$$

$$= \phi \left((\nu - r) \sum_{i=1}^{n} \alpha_{i} \circ \alpha(u_{i}) \right)$$

$$= \phi \left(\sum_{i=1}^{n} \alpha_{i} \circ \alpha(u_{i}(\nu - r)) \right)$$

$$= \phi_{W_{4}}(\alpha \circ (\nu - r)).$$

5. Basic algebras and symmetric linear functions. Let

(5.1)
$$1 = \sum_{i=1}^{n} \sum_{i=1}^{n_i} e_{ij}$$

be a decomposition of the unity 1 by mutually orthogonal primitive idempotents where $e_{ij}A \cong e_{ik}A$ and $e_{ij}A \ncong e_{k\ell}A$ for $i \neq k$. Set $e_i = e_{i1}$ for $1 \leq i \leq n$ and $e = \sum_{i=1}^n e_i$. Then **k**-algebra eAe with the unity e is called a basic algebra associated with A. Then Ae is (A, eAe)-bimodule. Let $\ell: A \to \operatorname{End}_{eAe}(Ae_{eAe})$ and $r: eAe \to \operatorname{End}_A(Ae)$ be maps

defined by $\ell(a)(be) = abe$ for all $a, b \in A$ and r(eae)(be) = beae for all $a, b \in A$.

Lemma 5.1 ([1], Proposition 4.15, Theorem 17.8).

- (a) The map r is an anti-isomorphism of algebras.
- (b) The map ℓ is an isomorphism of algebras

By Lemma 5.1, an element $a \in A$ is identified as an element in $\operatorname{End}_{eAe}(Ae)$ and an element $eae \in eAe$ is identified as an element in $\operatorname{End}_A(Ae)$.

Remark 5.2. By Lemma 5.1, we have two linear maps

$$(-)_{Ae_{eAe}} : SLF(eAe) \to SLF(A),$$

 $(-)_{Ae} : SLF(A) \to SLF((eAe)^{op}).$

Since $SLF(eAe) = SLF((eAe)^{op})$, the second map is in fact a map $SLF(A) \rightarrow SLF(eAe)$.

By (5.1), we have

(5.2)
$$Ae = \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{n_i} e_{ij} Ae.$$

The following fact is well-known.

Lemma 5.3. Let e and f be idempotents of A. Then the following assertions are equivalent

- (a) $Ae \cong Af$.
- (b) $eA \cong fA$.
- (c) There exist $p \in eAf$ and $q \in fAe$ such that pq = e and qp = f.

Lemma 5.4. For $1 \le i \le n$ and $1 \le j \le n_i$, we have $e_i Ae \cong e_{ij} Ae$ as right eAe-modules.

Proof. By Lemma 5.3 and the fact $e_iA \cong e_{ij}A$, there exist $p_{ij} \in e_{ij}Ae_i$ and $q_{ij} \in e_iAe_{ij}$ such that $p_{ij}q_{ij} = e_{ij}$ and $q_{ij}p_{ij} = e_i$. Then the maps $\alpha: e_{ij}Ae \to e_iAe$ defined by $\alpha(e_{ij}ae) = q_{ij}ae$ and $\beta: e_iAe \to e_{ij}Ae$ defined by $\beta(e_iae) = p_{ij}ae$ are eAe-homomorphisms and are inverse each other. Thus we have shown the lemma.

For any $ae \in Ae$, it is not difficult to check that $ae = \sum_{i=1}^{n} \alpha_i(a)e_i$ where $\alpha_i(a) = ae_i$. Thus $\{e_i, \alpha_i\}_{i=1}^n$ is an A-coordinate system of ${}_AAe$.

By the proof of Lemma 5.1, we can see that $e_{ij}Ae_{eAe}$ is generated by $p_{ij} \in e_{ij}Ae_i$ such that $p_{ij}q_{ij} = e_{ij}$ and $q_{ij}p_{ij} = e_i$ for some $q_{ij} \in e_iAe_{ij}$. Note that we can choose $p_{i1} = q_{i1} = e_{i1} = e_i$. For any $ae \in Ae$, we set $\beta_{ij}(ea) = q_{ij}ae \in eAe$ for all $1 \leq i \leq n$ and $1 \leq j \leq n_i$. Then we have $\beta_{ij} \in \text{Hom}_{eAe}(Ae, eAe)$ and $\sum_{i=1}^{n} \sum_{j=1}^{n_i} p_{ij}\beta_{ij}(ae) = \sum_{i=1}^{n} \sum_{j=1}^{n_i} e_{ij}(ae) = ae$ by (5.1). Thus $\{p_{ij}, \beta_{ij} | 1 \leq i \leq n, 1 \leq j \leq n_i\}$ is an eAe-coordinate system of Ae_{eAe} . In the following, we fix the A-coordinate

system $\{e_i, \alpha_i\}_{i=1}^n$ of ${}_AAe$ and the eAe-coordinate system $\{p_{ij}, \beta_{ij} | 1 \le i \le n, 1 \le j \le n_i\}$ of Ae_{eAe} .

Lemma 5.5.

- (a) Let ϕ be a symmetric linear function on A. Then $\phi_{AAe}(eae) = \phi(eae)$ for all $eae \in eAe$.
- (b) Let ψ be a symmetric linear function on eAe. Then $\psi_{Ae_{eAe}}(a) = \psi(\sum_{i=1}^{n} \sum_{j=1}^{n_i} q_{ij}ap_{ij})$ for all $a \in A$.

Proof. Since $\phi_{AAe}(eae) = \sum_{i=1}^{n} \phi(\alpha_i(e_i eae)) = \sum_{i=1}^{n} \phi(e_i ae_i)$ and ϕ is symmetric, we obtain $\phi(e_i Ae_j) = \phi(e_j e_i Ae_j) = 0$ for $i \neq j$, which shows the first assertion.

The second assertion is proved as follows:

$$\psi_{Ae_{eAe}}(a) = \sum_{i=1}^{n} \sum_{j=1}^{n_i} \psi(\beta_{ij}(ap_{ij}))$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n_i} \psi(q_{ij}ap_{ij}).$$

Theorem 5.6.

- (a) Let ϕ be a symmetric linear function on A. Then $(\phi_{AAe})_{Ae_{eAe}}(a) = \phi(a)$ for all $a \in A$.
- (b) Let ψ be a symmetric linear function on eAe. Then we have $(\psi_{Ae_{eAe}})_{AAe}(eae) = \psi(eae)$ for all $eae \in eAe$.
- (c) The space of symmetric linear functions on A and the one of eAe are isomorphic as vector spaces.

Proof. By Lemma 5.5, we have

$$(\phi_{AAe})_{Ae_{eAe}}(a) = (\phi)_{AAe} \left(\sum_{i=1}^{n} \sum_{j=1}^{n_i} q_{ij} a p_{ij} \right)$$

$$= \phi \left(\sum_{i=1}^{n} \sum_{j=1}^{n_i} q_{ij} a p_{ij} \right)$$

$$= \phi \left(\sum_{i=1}^{n} \sum_{j=1}^{n_i} p_{ij} q_{ij} a \right)$$

$$= \phi \left(\sum_{i=1}^{n} \sum_{j=1}^{n_i} e_{ij} a \right) = \phi(a)$$

which shows (a).

By Lemma 5.5, we have

$$egin{aligned} \left(\psi_{Ae_{eAe}}
ight)_{_{A}Ae}(eae) &= \psi_{Ae_{eAe}}(eae) \ &= \psi\Biggl(\sum_{i=1}^{n}\sum_{j=1}^{n_{i}}q_{ij}eaep_{ij}\Biggr) \ &= \psi(eae), \end{aligned}$$

since $q_{i1} = p_{i1} = e_i$.

Hence we can see that two linear maps $(-)_{AAe}$: $SLF(A) \rightarrow SLF(eAe)$ and $(-)_{Ae_{eAe}}: SLF(eAe) \rightarrow SLF(A)$ are inverse each other, which shows the last assertion.

Remark 5.7. The statement (a) of Theorem 5.6 for $a \in Soc(A)$ is found in [6, Lemma 3.9]. The statement (c) of Theorem 5.6 is well-known (see [7,6,1]).

For $\phi \in \operatorname{SLF}(A)$, we set $\operatorname{Rad}(\phi) = \{a \in A \mid \phi(Aa) = 0\}$. Then $\operatorname{Rad}(\phi)$ is a two-sided ideal of A and ϕ induces a symmetric linear function on $A/\operatorname{Rad}(\phi)$. Note that $A/\operatorname{Rad}(\phi)$ is a symmetric algebra since ϕ is well-defined on $A/\operatorname{Rad}(\phi)$ and induces a nondegenerate symmetric associative bilinear form on $A/\operatorname{Rad}(\phi)$.

Let $A = A_1 \oplus A_2 \oplus \cdots \oplus A_\ell$ be a decomposition into two-sided ideals of A. For any $\phi \in \operatorname{SLF}(A)$, we have $\phi = \phi_1 + \phi_2 + \cdots + \phi_\ell$ where $\phi_i = \phi|_{A_i}$. Note that $\phi_i \in \operatorname{SLF}(A_i)$. If $\phi(aA) = 0$ for some $a \in A$, then we can see that $\phi_i(aA_i) \subseteq \phi(aA) = 0$.

Theorem 5.8. Let ϕ be a symmetric linear function on A and ν a central element of A. Assume that there exists $s \in \mathbb{Z}_{>0}$ such that $\phi((\nu - r)^s a) = 0$ for any $a \in A$ and that $A = A_1 \oplus A_2 \oplus \cdots \oplus A_\ell$ is a decomposition of A into two-sided ideals. Then there exist symmetric linear functions $\phi_i \in \mathrm{SLF}(A_i)$, basic symmetric algebras P_i of $B_i = A/\mathrm{Rad}(\phi_i)$ and (A, P_i) -bimodules M_i satisfying $(\nu - r)^s M_i = 0$. Moreover,

$$\phi(b) = \sum_{i=1}^{\ell} ((\phi_i)_{_{B_i}M_i})_{(M_i)_{P_i}}(b)$$

for all $b \in A$ where b in the right hand side is viewed as a linear map defined by the left action of $b \in A$ on each (A, P_i) -bimodule M_i .

Proof. Set $B_i = A/\operatorname{Rad}(\phi_i)$. Since $\operatorname{Rad}(\phi_i) \supseteq A_j$ for $j \neq i$, we can see that $B_i = A_i/\operatorname{Rad}(\phi_i)$. We first note that the symmetric linear function ϕ_i on B_i is well-defined and that B_i is naturally a left A-module. Let $P_i = \overline{e}_i(A/\operatorname{Rad}(\phi_i))\overline{e}_i$ be the basic algebra of $A/\operatorname{Rad}(\phi_i)$ where \overline{e}_i is an idempotent of B_i . The basic algebra P_i is a symmetric algebra by

[7, 10.1]. Then we set $M_i = (A/\operatorname{Rad}(\phi_i))\overline{e_i}$ which is an (A, P_i) -bimodule. By the argument before the statement of this theorem, we can see that $(\nu - r)^s \in \operatorname{Rad}(\phi_i)$ and thus $(\nu - r)^s M_i = 0$. Note that the left action of $a \in A$ defines a right P_i -module endomorphism of M_i . By Lemma 5.5, we have $\phi_i(b) = \phi_i(\overline{b}) = ((\phi_i)_{B_iM_i})_{(M_i)_{P_i}}(\overline{b}) = ((\phi_i)_{B_iM_i})_{(M_i)_{P_i}}(b)$ for all $b \in A_i$, which shows the theorem.

Remark 5.9. This theorem is found in [6, Theorem 3.10]. In the proof of [6, Theorem 3.10], it is shown that a symmetric linear function on A may be written as a sum of pseudotrace maps even if A is indecomposable by using the fact $(\phi_{AAe})_{Ae_{eAe}}(a) = \phi(a)$ for all $a \in \operatorname{Soc}(A)$ (see [6, Lemma 3.9]) in our notation. However, since $(\phi_{AAe})_{Ae_{eAe}}(a) = \phi(a)$ for all $a \in A$, any symmetric linear function can be written by only one symmetric linear function on the endomorphism ring of the (A, P)-bimodule if A is indecomposable.

Acknowledgement. The author expresses his gratitude to Prof. K. Nagatomo for his encouragement and useful comments.

References

- F. W. Anderson and K. R. Fuller, Rings and categories of modules, Second edition, Springer, New York, 1992.
- [2] N. Bourbaki, Algebra I, Capters 1-3, Springer, New York, 1989.
- [3] M. Broué, Higman's criterion revisited, Michigan Math. J. 58 (2009), no. 1, 125–179.
- [4] C. W. Curtis and I. Reiner, Methods of representation theory. Vol. I, Wiley, New York, 1981.
- 5] A. Hattori, Rank element of a projective module, Nagoya Math. J. **25** (1965), 113–120.
- [6] M. Miyamoto, Modular invariance of vertex operator algebras satisfying C_2 -cofiniteness, Duke Math. J. **122** (2004), no. 1, 51–91.
- [7] C. Nesbitt and W. M. Scott, Some remarks on algebras over an algebraically closed field, Ann. of Math. (2) 44 (1943), 534–553.
- [8] J. Stallings, Centerless groups—an algebraic formulation of Gottlieb's theorem, Topology 4 (1965), 129–134.