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Abstract:

We show how to invert the multiplication-by-2 map in Jacobians of genus 2

curves C over finite fields F, of odd characteristic. For any divisor D € Jac(C)(F,) we provide a
method to construct the coordinates of all divisors I/ € Jac(C)(F,) such that 2D" = D.

Key words:

1. Introduction. Let C be a genus two
curve over a finite field F, of odd characteristic,
given by a model

(1) C:y? = f(x),

f(@) = 2° + fax* + fsa® + for® + frz + fo €
F,[z] has no double roots. If ¢ is different from a
power of 5, fy can be made 0 after a translation of
z. In the following we assume f; =0 everywhere
except in section 5. The curves with a model like (1)
have one (Weierstraf}) point P, at infinity, and the
roots of f(x) are the z-coordinates of the affine
Weierstrafl points of C.

The algorithms we present here work in the
group of F-points of the Jacobian Jac(C), in terms
of the usual Mumford coordinates (u(z),v(x)) of
weight one divisors (u(z) =z — x1, v(z) =y1) and
weight two divisors (u(z) = 2 + wiz + ug, v(x) =
viz + vg) ([4], page 307). Our aim in this paper is to
efficiently construct %Dg, namely the set of pre-
images

where

Dy = (ui(z),v1(2)) € Jac(C)(F,)
of any given Dy = (ug(z),v9(x)) €
Jac(C)(F,) under the multiplication-by-two map
[2] : Jac(C)(Fy) — Jac(C)(F,)
D1 — D2 = 2D1

divisor

We build on the ideas in [6], where a search for a
linear polynomial kiz + ky € F,[z] involved in the
reduction part of the addition law, was successful to
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determine %Dg for genus 2 curves over finite fields
of even characteristic.

We expect our method to be of some signifi-
cance for point counting techniques in genus 2, as
the results we present here should help to find
quickly the 2-power of the cardinal #Jac(C)(F,),
much as in the even characteristic case was done in
[7]. Ours is a much specific approach to the 2-part of
the cardinal only, but we expect that the natural
adaptation of [7] to odd characteristic allows to
compute the 2-part faster than the current algo-
rithms (see [5]).

The structure of the rest of the paper is as
follows: In section 2 we recall the role of the 2-
torsion subgroup of Jac(C)(F,)[2] in this problem,
then we set a classification of the rank of the 2-
torsion subgroup in terms of the factorization of
f(z), and finally we find § D, for some easy cases. In
section 3 we provide a constructive method to find
5 D, for any given D, € Jac(C)(F,) in terms of the
roots of certain polynomials py, (), pu,(z) of degree
16. In section 4 we describe the factorization of
P, (T), Pu, () in terms of the galois structure of the
2-torsion subgroup Jac(C)(F,)[2], in the same spirit
as in the genus 1 paper [8], where the factorization
of the ¢-division polynomials was given. In the final
section 5 we show some examples.

2. Two torsion. Since our base field’s char-
acteristic is odd, the subgroup
Jac(C)(F,)[2] is either trivial, or isomorphic to
(Z/2Z)", r =1,2,3,4. In this section first we recall
how the factorization of f(z) as a polynomial in
F,[z] determines the rank of Jac(C)(F,)[2].

The Weierstrall F,-points W of C are fixed
under the hyperelliptic involution ¢: (z,y) —
(x,—y). Hence 2W is the divisor of zeros of the
function x — x(W), and the degree zero divisor
2W — 2P, is therefore identified with the neutral

2-torsion
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element in Jac(C)(F,;). Therefore all weight one
divisors with an affine F-rational Weierstrafl point
in the finite support have order 2, and they generate
the F,-rational 2-torsion subgroup Jac(C)(F,)[2].
Analogously, any irreducible quadratic factor of
f(z) provides the first coordinate u(x) of a divisor in
Jac(C)(F,)[2].

Proposition 1. The rank of Jac(C)(F,)[2]
depends on the Fy-factorization of f(z) as follows:

factorization types of f(z) 2-rank

[1,4], [2,3] 1
1,1,3], [1,2,2] 2
[1,1,1,2] 3
[1,1,1,1,1] 4

Proof. Let m be the number of irreducibles of
degree 1 or 2 in the prime decomposition of f(x) in
F,[z]. Since the product of all the factors of f(x)
provides the divisor of zeros of a principal divisor, if
m = 0,1,2 then the rank of Jac(C)(F,)[2] is clearly
0, 1 or 2 respectively, and if m > 3, then the rank of
Jac(C)(F,)[2] is equal to m — 1. O

Remark 1. From now on we write all divi-
sors in Jac(C)(F,)[2] as W. Since 2W is principal
for all W € Jac(C)(F,)[2], it follows that

%DQ = {Di + W | W € Jac(C)(F,)[2]}.

We show %Dg in an easy example first. Take
(20, 70) € C(F,) with yo # 0 and consider the par-
ticular case of a divisor whose first Mumford
coordinate is a square u(z) = (z — 20)>. From any
such point on C(F,), working out the second
Mumford coordinate v(x) in Jac(C)(F,) one obtains
the weight two divisor

J' (o)
2yo

Dy = ((m—x0)27 (x—x())+yo)>.

One checks that the weight one divisor

Dl = (I - 170790)

trivially satisfies [2]D; = Dy (use Cantor’s algo-
rithms [3]). With the coordinates of one element
in %Dg, the rest are easily determined adding the
2-torsion divisors. In particular, one easily sees
that for every root w of f(z) in Fy, the set 1D,
contains a divisor with first coordinate equal to
(x —zg)(x — w).

For divisors Dy with a nonsquare first coordi-
nate, things are not as simple, since one does not
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have easy preimages D; at hand. Our goal in this
paper is to provide a method to find %D for a
generic D € Jac(C)(F,)— one whose first coordinate
is not a square. In Proposition 2 below, we show
that for our purpose it is enough to determine the
first coordinates of the elements in % D for almost all
divisors D.

Lemma 1. D;,—D; € %Dg if and only if
OT’d(Dg) = 2.

Proof. Since [2](—D;) = —([2]D;), then [2] D,
—[2] D1, so [4]Dy = 0, which is the same as [2] Dy = 0.

o<

Proposition 2. If Ord(Ds) # 2, then there
do not exist Dy, D} € %Dg with equal first coordinate.

Proof. We write P* for the image under the
hyperelliptic involution ¢ of any point P of the
curve. For any given divisor D= P+ Q — 2Py
there are at most 4 divisors in Jac(C)(F,) with the
same first coordinate u(z), namely

D=P+Q—-2P,, —-D=P +Q" —2P,,
D=P +Q-2P,, —-D=P+Q"' —2P,.

Assume [2]D = [2]D = D,. Then 0= [2)(D — D) =
[2](Q — Q). The divisor Q — Q" is equivalent to
2@ — 2P, since their difference is principal

(2Q-2Px) - (Q-Q)=Q+Q" — 2P
= (z —2(Q)).
But the divisor 2Q) — 2P, = 2(Q — Px) cannot have
order 2 since then f(x) would have a double root.
Hence D and D are not allowed to be both in any set
%Dg for any D,. Since Ord(Ds) # 2, by Lemma 1
above it is also forbidden for one divisor and its
opposite to be in %DQ at the same time. Therefore
our claim follows. O

3. Bisection polynomials. In this section
we show how to build up, for any given
D, € Jac(C)(F,), a degree 16 polynomial whose
roots provide the first coordinate of all the divisors
in % DQ.

The way we build such polynomial is to reverse
the reduction part in Cantor’s algorithm [4,pg.
308]. For a divisor with coordinates (u(z), v(x)), the
reduction steps consist in the iteration of
f@)—v*(2)

ri. u'(z) — S5, V(2) — —v(z) mod u/(z)

r2. u(z) — u'(x), v(z)— ()
until deg(u(z)) < 2.
The method we follow, as shown in [6], is to

run the steps r1 and r2 backwards once, starting
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with the coordinates (ua(x),vs(z)) of Dy, and then
to match the resulting “unreduced” coordinates
with the “doubled” coordinates (u)(x),v|(x)) =
(u(z)?,...) from the composition part of doubling
a potential divisor Dy = (u1(x), vi(x)).

In the reversing of the reduction part of
Cantor’s algorithms, we use a linear polynomial
k(x) = kyz + ko to find a representative of the class
—uvg(z) mod wus(z) of degree greater than 1. We
summarize the steps of our method below:

L. wh(a) — (@), vh(x) — vo(a)
2. find the unreduced coordinates v} (z), v (z) of a
representative in the class of a potential Dy

2
() o P o (@) — —0h (@) + uy(@)k()
3. equate u}(z) with u (z)*.
In the next paragraphs we follow this sketch, and
we obtain a pair of bivariate polynomials that our
wanted kg, k1 have to satisfy in case D; exists.
Then, instead of working with two bivariate poly-
nomials, we turn them into a single univariate
polynomial (of degree 16) in k;. We show the
computations explicitly when the input divisor Dy
has weight 2, the analogous applies in weight 1.
From the final reduction step in the duplication
algorithm, using k(z) = k1 + ko and uy(x) = 2% +
U1 X + Ugo one finds
V() = ky2® + (ko + kiug)z?
+ (koug1 + kiugo — va1)x + Kougo — vao-
It follows that
up () = 2t 4 2up2® + (2uip + u?))2?
+ 2’LL10’LL11(L’ + U%O
must be equal to
) (z) = o* —|—ka (=1 + 2koky + ugik7)
(k2 + ’LLQ()k + U921 + 2]€0U21]€1 + 21)21]{51)
kzx( f3 + us0 + 2kousoks + kjusr — u3,
+ 2u0ky1 + 2kgvar) + k—%(*fz + kjusg + faun
— 2ugoUo1 + ugl + 2koveo + U%l)'

Equating u1; and wujg from the degree 3 and 2 terms
respectively one obtains the coefficients

Uy = 2k9(k ugy + 2koky — 1)
U = 8k4( k:4(u21 4UQO) + k‘? (4k0U21 — 8U21)
+ GkIUQl + 4k1]€0 — 1),

and after substituting the values of uy; and wug
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above into the degree 1 and 0 monomials, we find
the multivariate polynomials

p1(ko, k1)

= k3 (—8K2) + ko(—2k] (u3, — dusn)
—12K3 Tug + 6k1) + kS uzl(u21 dugg)
+ 8k1 (ug1va1 — 2v99) + k‘ll(12u20 —8f3 —
- Ski’vgl + 7/{%1@1 -1

p2(ko, k1)

= K2(—16K0 (u3, — dug) — 32k ug; — 16K7)
+ kO(SkIugl(ugl — dugy) + 64/{:(13(11211)21 — 2uvy)
+ 8K7 (—dugy — 5u3,) + 64k {vy — 40k ugy + 8k )+
— KB (U3, — dugy)® — 16k vy (ud, — dus)
+ kS (=64 f2 + 64 fyugy — 176usgusy + T6uy,)
+ 96/4;?11211121 + 2k;‘11(4u20 — 19u§1)
— 16kva1 + 12kjup — 1,

of degrees 2,6 and 2,8 in kg and k; respectively. We

consider the (degree 16) resultant

Reskg (pl(kOa I),pg(ko, SC'))

of p; and py w.r.t. kg, which we show below:

puz( )
= "0 (u3) — duz)’ + 162" (u3; — dugg) vay
+8 9L‘14(u21 — 4u20) (8f2 — 12 f3ug
+ 20uggug; — 15u3))
+ 16 :Cl?’(ugl — 4uQ())2(32f3v20 — 40u9gv9g
+ 9Ou§1v20 — 16 f3us1v91 — 20u9gus ve — 35u§1v21)
— 4" (u3; — dug) (256 f§u20 — 768 fyus, + 576ul,
+ 1280 founguar — 64 fus, — 256 frusoud,
+ 1648uju3, — 320 fous, + 112 fyuy, —
+ 121u21 + 2560u211)20 — 512u9gv90v21
— 2432u2, V021 + 256unouz V3, + 576us v3;)
+ 16 2 (1536 foungvag — 1024 f3usgting vag
+ 2880uZ g1 Va0 — 384 foul vag + 256 faud vag
140u, vag + 204803,
+ 256fgu§0v21 — 448u§01)21 — T68 fousgua1 Va1
+ 384 faugous, va1 — 2064ud,uz,var + 192 foud, vay
— 112 f3uy,va1 + 4T6usguy, vay + 17uS va
— 3072u21v20v21 + 1536u21v20v21 256u211)21)
+ 82'(1024 f> fyuzn — 1664 foud, — 1536 f3usgua
+ 5056 fyu3,uz1 — 4160u§0u21 — 256 f> f3u3,
+ 192 fousgus, + 384 fiul, — 2848 fyugous,

15u3))

P, (I) =

932'LL20'LL31

- ].GOUQ()Ugl"UQO —
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+ 3600ujus, + 56 fouy, + 396 fud,

— 220uggu;, — 105us; + 2048 fyv5, — 3072uz0v3,

+ 5888u3, 5, — 2048 f3ua vagver + 1024ud,v3,

— 2048uogu921v20v21 — 4608u§1v20v21

+ 512 faul,v3, + 1280ugoud, va, + 896u;,v3;)

— 16 27 (256 faugnva — 352u3gv20 + 1280 fouaivag

— 1984 f3u2,v90 + 3216uz0u, vag — 2382us, vag

+ 256 fousgvar + 1408 faugoug vay — 1424ud ugivay

— T04 fous vy + 608 f3us, vy

— 328usou; var + 971ud va1 + 102403 va

— 1024ug vagv3, + 256u3,v3,)

+ 2 2%(2048 f; — 1024 fugg + 3072 f3ud, — 2240u3,

— 61445 fyug) + 15360 fousgusy + 4864 faud,

— 16896 fyusgus, + 18960usu3, — 8960 fous,

+ 11712 fyuy;, — 22660usgusy; + T715uy,

+ 5120us1v3, — 8192 f3va9v21 + 10240ug0v20v21

— 2560u3,vagv21 + 4096 f3uz1 v,

— 10240uggug va, + 1280u3, v3,)

+ 16 27 (128 fovag + 768 f3uaivag — 800usgus1 v

+ 440u3 v — 128 f3uggvay + 17613 v

— 704 foug vor + 608f3u§1v21 - 1208umu§1021

+ 9711[2111)21 - 5121}201131 + 2561@11}31)

— 82°%(256 f2f3 — 416 fousy — 384 f3ua1

+ 1264 fyusguar — 1040usgus; — 56 fou3,

— 396 fyuy, + 640usud, + 105u), — 25603,

— 1024ugv90v21 — 512 f305, + T68ugyv3,

— 896u3,v3,)

+ 16 2° (32 f3v909 — H6usgvag — 10613, v

— 192 fovgy + 112 fyugiv91 — 332ugpua1v21

— 17ud, vy + 25603))

+ 421 (643 — 192 faugo + 144u3, + 320 foun

— 112 f3u3; + 448uguj; — 121uy; — 128vs0v

— 576uzv3,)

+ 16 z?’(?()uzlvm + 16 f3vo; — 20usgvoy + 35u§1v21)

+ 82%(8f2 — 12 f3u91 + 20uggua; — 15uj))

+ 16 (2099 — u21v21) + (u%1 — 4dusyg).
Remark 2. Since ua(x) is not a square,

Pu, () has 16 roots in F,, none of which is 0.

Remark 3. The wvalues of ki for which

p1(x, k1) and pa(x, k1) are proportional are roots of
the degree 8 polynomial
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ﬂ(kl) = k"f(ugl — 4”U,2())2 - 10]%‘?11,21(’(1,%1 - 4’11,2[))
+ 16]{/‘?(UQ1’U21 — 21}20) + 16]@?1}21
— 10]€%U21 —1.

Theorem 1. Let Dy = (us(x),v2(z)) be a
weight 2 divisor of Jac(C)(F,) such that us(z) is
not a square and let py(ko, k1), p2(ko, k1) be as above.
Then the coefficients of the first coordinate ui(x) of
every Fy-rational divisor Dy = (u;(z),v1(z)) € § Dy
are

Uy = ﬁ(k%i@l + 2kok; — ].)
%ﬂ(—k%(ugl — 4u20) + k‘? (4]43()U21 — 8’[}21)
+ 6k u1 + 4kiky — 1),

U =

where ky € Fy is a root of py,(x), and ky = a(k1)/
(k15(k1)) with B(k1) as above and

alk) = Qkiougl(ugl — 4u2())2 — 16k?(24u20umvgl
—+ 8oy + uglvgl — 2u§1v20) — k§(80u30
+ 120uggu3; + 6dugg fs — 25uy, — 16u3, f3)
+ 32k‘zu21(u211}21 — 2090) + 8KS(20uggua;
— 15u, — 12usy f3 + 8 f2) — 16K° (Tugyva
— 2u90) + 2k (12un0 + 17ud;, — 8f3 — uzy) — 1

whenever B(k1) #0, and ky equals any of the two
roots of p1(x, k1) otherwise.

Proof. Since uy(x) is not a square, k1 = 0 is not
a root of p,,(z) because the independent term is
nonzero. The formulas for uq1,u;o follow from the
construction of py,(z). By definition, if k; is a root
of py,(x) then the quadratic polynomials p;(x, ki)
and pa(x, k1) share at least one root. If the root &y
satisfies also (k1) =0, then p;(z, k1) and po(x, ki)
are the same quadratic polynomial, and with the
two roots of it one obtains 2 divisors in %DQ. If
B(k1) # 0, there is only one kg and the formula
ko = a(ky)/(k18(k1)) follows at once. O

Corollary 1. The multiplicity of the roots of
Pu, () is at most 2, and the double roots satisfy
B(k1) = 0.

Proof. For every root k; of p,,(x), there are at
most 2 values ky which are roots of p;(z,k) and
p2(x, k1) at the same time. The number of shared
roots to be 2 implies that &y is a root of py, () of
multiplicity m > 1. Since k; counts for at most 2
different divisors and (over F,) the cardinal of § D,
equals deg(py, (2)), necessarily m < 2. If k; is double
then p; and py are proportional and S(k;) =0. O
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The same procedure yelds a bisection polyno-
mial for weight 1 divisors with the same properties.

4. Factorizations of the bisection polyno-
mials. In this section we relate the possible
factorizations of py, (z) and py,(x) with the possible
factorizations of f(x).

Theorem 2. The degrees of the irreducible
factors of py, (x) and py,(z) depend on the degrees of
the irreducible factors of f(x) as follows:

f(x) pwl(x)ai =1,2

) ) )

1,1,1,1,1] [1,...,1], [1,...,1,2,2,2,2],
1,1,1,1,2,...,2], [1,1,2,...,2],
2,...,2]
[1,1,1,2] [1,...,1,2,2,2,2],

1,1,1,1,2,...,2], [1,1,2,...,2],

[
[
[
[
[
[
[
1,2,2] [
[
[
[
[
[

[]‘7173] 1’ ]'7 171737 37 373]’ [1’1’2’656]’
1,1,1,1,6,6], [2,2,6,6]
1,1,1,1,2,...,2],
1,1,1,1,6,6],[4,4,4,4]

2,3] [1,1,2,3,3,6], [4,12],
1,1,1,1,3,3,6]

[1,4] [1,1,2,4,4,4], [8,8],
1,1,1,1,4,4,4]

Proof. Since the Frobenius automorphism =
commutes with the multiplication-by-two map [2],
the Galois action in the preimage [2] (D) is given
by addition of the elements in Jac(C)(F,)[2]. In
order to factor py,(z) and py, (z), the goal is to find
Galois orbits in [2]7'(Ds). There is a bijection
between the Galois orbits and the factors of py, ()
and py, (z), except for those double F;-roots k; such
that pi(x, k1) and po(x, k1) are quadratic irreducible
proportional polynomials.

We fix a natural set of basis in Jac(C)(F,)[2]
(one for every factorization type of f(x)), w.r.t.
which the Frobenius action is represented as follows:

100 0 1 00 1 100 1
0100 01 0 1 010 1
0010 00 1 1 000 1
000 1 000 1 001 1
[1,1,1,1,1] [1,1,1,2] 1,1,3]
1 00 1 01 0 1 100 1
0011 1 00 1 000 1
01 0 1 000 1 010 1}
000 1 0011 0011
1,2,2] 2,3] [1,4]
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and their orders are 1, 2, 3, 2, 6, 4 respectively.

We show the details for the case [2,3], the
other are completely analogous. The basis of
Jac(C)(F,)[2] established with our criterion consists
of two divisors Wj, Wy = W] defined over the
quadratic extension and two divisors W5, W, = Wy
over the cubic extension.

Take D; € Jac(C)(F,) such that 2D; = D,. If
D, € Jac(C)(F,) then clearly we also have D;+
Wi + Wy € Jac(C)(F,). This exhausts the single-
element orbits. By the shape the matrix, the only 2-
element orbit is

{D1 + Wi, Dy + Wa},
the two 3-element orbits are
{D1 + W3, Dy + Wy, Dy + Wy + Wy + W3 + Wy}
{D1 + Wy + Wy + W3, Dy + W7 + Wy + Wy,
Dy + W5 + Wy},
and the only 6-element orbit is
{Dy + Wi + W3, Dy + Wy + Wy, Dy + Wi + Wy
+ Wy, Dy + W3 + Wy, Dy + Wi + W + W,
Dy + Wi + Wy + Wy}
If D, is not defined over the base field F,, then the
Frobenius action adds a binary combination of the
basis W; to D;. The length of the orbit containing

Dy depends on the image DT of Dy under Frobenius.
Writing

DT = Dy +miWi + moWo + msWs + my Wy
with m; € {0,1} for ¢ =1,2,3,4, then one sees
.D71r2 = D1 + (m1 -+ mo + m4)W1 -+ (ml -+ meo
+ m4)Wg + (mg + ’I?’Z4)W3 + mgWjy.
From this, the only Fg-orbit of order 2 containing
D, is obtained with m; =mo =1, mz =my =0,
namely D] = D; + W, + Ws.
Similarly,
D71T3 =D+ (mz +ms3 + m4)W1
+ (my + mg + mg)Ws
and the only possibilities for orbits of order 3
containing D; arise if Dy under Frobenius is one
of
Dy + Wy + We + W3, Dy + Wy + W + Wy,
Dy +Ws + W,

The remaining DY for orbits with D, are
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order 4 order 12 over Fo5 with generator £ over Fs, and Dy = (1,2,0,
D+ W, D+ W, +Ws 0,£%). We find that p,,(z) splits as [1,1,1,1,3,3,3,3]
Dy + W, Dy + W, + W, with k€ {€2,3,£'9,2} and ky € {£°,£%,£"%,€°} and
order 6 Dy +Ws+ W, 1 21 (15 (22 (13 8 ¢2 (17 (T

_D - 1a ) I 9 ) 1) 9 9 ’
Dy + Wy + Wy + Wy + Wy Dy + Wy + W D2 = A 59 g ff )(165105 5235)
D1+W3 D+ Wy + Wy (17£a£7£7§),(1,£ 75 agag )}
D+ Wy Dy + Wy + W35 + Wy 5.3. Rank 2 over a big prime field. Take

With these, the remaining factors of py, (), pu, ()
follow at once. The full factor structure is [1,1,2,
3,3,6] when D; belongs to an orbit of order 1, 2, 3, 6
and [4, 12] otherwise. O

5. Examples. We gather in this final section
some examples worked out with MAGMA [2]. We
provide the coefficients of the Mumford coordinates
of several sets %D. We use the notation (1,wus,
ug,v1,v9) for the divisor (2?4 uix 4 ug, vi2 + vp)
and (0,1, uq,0,v9) for (z+ up,vg). We include an
example over a lengthy 60-bit prime field, an
example in weight 1, and an example in character-
istic 5, which requires the presence of the annoying
f1 terms in the curve’s equations (which makes the
bisection polynomials look quite larger than the
ones we showed above).

Since the most expensive step is to extract a
root of a (degree 16) polynomial over F,, Cantor
and Zassenhaus’ modification of Berlekamp’s algo-
rithm (see [1,Th. 7.4.6]) predicts an expected
running time of O(log®q) bit operations. We
checked the timings needed to find %D for fields
of cryptographic size in genus 2. For prime fields
of around 100 bits these were not higher than 1
second.

5.1. Rank 1. Consider

y? =2 +3152° + 3112% + 3142 + 311

over Figoo7, and the weight 1 divisor Dy = (0,1,
—18,0,5199). We obtain

Puy (2) = (z 4+ 7531)(z + 8008)(x* + 4475z + 4678)
x (2 + 152227 + 1784z + 105)
x (2° + 295327 + 4868z + 2792)
x (29 + 553227 + 38112 + 26372°
+ 223022 + 9108z + 6048),
1D, = {(1,8412,253, 7202, 6736),
(1,6870,7683,4792,8061)}
with k; € {1999,2476} and ko € {2587, 7975}.

5.2. Rank 2 in characteristic 5. Consider

= + 2zt + 32° + 32 + 4z + 2

=2 +223 +192° + 2z + 19
over the 60-bit prime field F11529215046068470097 and

Dy =(1,487047376486907768, 887399657010377162,
107397106367603060, 1046421023729122909).
We find that py, (x) splits as [1,1,1,1,3,3,3, 3] with
k1 € {1073327960591131715,312451317570481688,
173493032620927706, 125392561284629917},
ko € {57867538720497893, 585543712742483770,
397309658395539060, 786413003132741577},
and one of the 4 divisors in %Dg is
(1,889060526864891673, 1130483776820005303,
1152033329783565100, 271691093272385826).
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