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The best constant of Sobolev inequality corresponding to clamped-free
boundary value problem for (—1) (d/dx)*™
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Abstract: Green function of the clamped-free boundary value problem for (—=1)™ (d/dxz)*
on the interval (—1,1) is obtained. Its Green function is a reproducing kernel for a suitable set of
Hilbert space and an inner product. By using the fact, the best constant of Sobolev inequality cor-
responding to this boundary value problem is obtained as a function of M. The best constant is the

maximal value of the diagonal value G(y, y) of Green function G(z,y).
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1. Conclusion.
duce Sobolev space

H = H(M) = {u(z)|u(z),u" () € L*(~1,1),

For M =1,2,3,- -, we intro-

u(-1)=0(0<i<M-1)}
Sobolev inner product
1
(ol = [ (@) (2)ds
-1

and Sobolev energy

1
v 2
Jully = [ a0 @) e

(+,-)ps is proved to be an inner product of H in
section 4. H is Hilbert space with the inner product
('a ')M'

Our conclusion is as follows:

Theorem 1. For any function u(x) € H, there
ezists a positive constant C' which is independent of
u(z) such that the following Sobolev inequality holds.

2 1
(1) (sup |u(y)|> < C’/ |U(M)(9U)|2dx
lyl<1 -1
Among such C the best constant Cy is given by
Co = C(M) = max G(y, y)
lyl<1

22]&171

(2M —1)((M = 1))

=G(1,1) =
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If we replace C by Cy in (1), the equality holds for
u(z) = cG(x, 1)
for every complex number c.

Up to now, the best constant of Sobolev inequal-
ity has been studied by G. Bliss [1] and G. Talenti
[2]. They mainly used the functional analysis tech-
nique. Papers [7] and [8] are the early studies that
paid attention to a property as a reproducing kernel
of Green function. The technique is quite different
from that in the precedent studies. We calculated
the best constant of Sobolev inequality by using
Green function of the differential equation.

The engineering meaning of this result is that
the square of the maximum bending of a string
(M =1) or a beam (M = 2) is estimated from above
by the constant multiple of the potential energy [3].
We obtained the best constant of Sobolev inequality
which corresponds to Dirichlet, free and periodic
boundary value problems for (—1)"(d/dxz)*"" [4-6].
The purpose of this paper is to derive Sobolev in-
equality which corresponds to clamped-free bound-
ary value problem, and to obtain the best constant
by using the property as the reproducing kernel of
Green function.

This paper is organized as follows: In sec-
tion 2, we consider a boundary value problem for
(=)™ (d/dz)*™ with clamped-free boundary condi-
tion. In section 3, it is clarified that Green function
G(z,y) is the reproducing kernel for H and (-,-),,.
Finally, section 4 is devoted to the proof of Theo-
rem 1 by using the LU decomposition method.

(-l<z<1)
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2. Clamped-Free boundary value prob-

lem. We consider the following clamped-free
boundary value problem.
BVP (M)
(—D)Mu@M) = f(z) (-1 <z < 1)
u®(=1) =0

uM(1) =0 (0<i<M—1)

For later convenience sake, we introduce the mono-

mials {K;(z)}.
Kj(z) = Kj(M; x)

a1 2M 1= 5)! (0<j<2M—1)
{ 0 (2M < j)

Concerning the uniqueness and existence of the solu-
tion to BVP(M), we have the following theorem.
Theorem 2. For any bounded continuous func-
tion f(x) on an interval =1 < z < 1, BVP(M) has a
unique classical solution u(zx) expressed as follows:

ulz) = / Gla )iy (-1 <z <),

Green function G(z,y) = G(M;z,y) is given by the
following two equivalent expressions.

(-1

() Glay) =

Kulle )

— (K- )(x+1) <K1\17+’L'+]'> (2) (KJLIH > (1-vy)

—( K- )y +1) (KJ,HH]-) (2) (K]QH)(l — x)}

(Karsir) '(2) (0 < d,5 < M — 1) is the inverse of the
M x M matriz (Kyii;)(2).

M
(i) G(x,y)z( ;) [Ko(lw—yl)
[ B (2) ‘ Kyi(1—y)
T {‘Kj(xﬂ) | 0

K]\/[+Z‘+j(2) ‘ KMJri(l —{E) }:|
Kj(y+1) ‘ 0

(-l<zy<l)

where Kk = |Kyyi4](2) = (71)M<M*1>/2. Two terms
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on the right-hand side are determinants of (M+1) x
(M + 1) matrices.

Proof of Theorem 2. The equivalence be-
tween (i) and (ii) of Theorem 2 follows from the fol-
lowing well-known lemma.

Lemma 1. For any N x N regular matriz A

and N x 1 matrices b and ¢ the following formula

holds.
A c
hA e = — /
tp 0

Now we proceed to prove Theorem 2 (i). We
suppose that BVP(M) has a classical solution u(z).
We introduce new functions

A

u= t(“Ov"',UZM—l)
w =u? (0<i<2M—1)

and 2M x 2M nilpotent matrix

01
N =(bij-1) = ’ ;
o1
0
where ¢; ; is Kronecker delta symbol defined by
bij=1 (i=j), 0 (i#)).
BVP(M) is rewritten as follows:
(2) w'=Nu+'0,--,0,1)(-1)" f()
(-l<zx<l).

The fundamental solution E(z) to an initial value
problem:

{E’(x) — NE(x)
E(0) = (4;)

is expressed as

where

Kia) = (Ko ) (@) (0 0j <20 -1

K(0) = = K(©0)".

Solving (2), we have
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u(z) = E(z + Du(~1)

+f " E( - ) (0,0, 1)(~1)™ f(y)dy

or equivalently, for 0 <¢ < 2M — 1,

2M—1
D Kigj(z+ Dugar—1-;(—1)

+ /f(—DMKi(w —y) f(y)dy

Z Kiﬂ-(x — 1)U2A1717j(1)

J=0

- / ()M Ki(z - 4)f ()dy.

T

Employing the boundary conditions w;(—1) =0,
up+i(1) =0 (0 <i < M —1), we have

M-1
m(w) = Z K7‘,+j(.%‘ + 1)u2]\1,1,j(—1)

M-1

ui(z) = Z Kursivj( — Dup—1-5(1)
=0

- / (1) Ki(z — y)f(y)dy

for 0 <i < M — 1. In particular if s = 0, we have

M-1

(3)  wo(w) =Y Kj(@+uan14(-1)
=0

+ [0 R ) )y

1

M-1

4 wo(@) =Y Karj(x — Duar14(1)
=0

1
- / (—1)" Ko(z — ) f(y)dy.

Using the boundary conditions wu;(—1) =0,
upr4i(1) =0 (0 <i < M — 1) again, we have
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M-1
0=u;(-1) = Z Krrivj(—2)unr—1-5(1)
=0

- / ()M (—1 — ) f(y)dy

1
M-1
0 =upyi(l) = Z Krsirj(2)uzn—1-5(1)
=0
! M
L R S

Solving the above linear system of equations with
respect to u]\,f,1,i(1), ’LLQ]L,/jflfi(—l) (0 S ) S M — 1)7
we have

(5) (unr—1-:)(1)
1 -1 :
= /_1(—1)M (KMHH)(_Q) (f:(z')(—l —y)f(y)dy
(6) (uanr—1-)(—1)

= —/_1(—1)M (KM+i+j> (2) <K§1+i ) (1 —19)f(y)dy.

Substituting (6) and (5) into (3) and (4), we
have

1
wi@) == [ (D6 Ky )
-1 .
<K1M+7Z+j> (2) <KA:I+7I > (1 —-y)f(y)dy

N [f"<_1>ﬂfKo<\x—y|>f<y>dy

1

wlo) = [ (0 Karg e - 1)

(KMHHL]') (—2) ( Kl > (=1 —y)f(y)dy

1
+ / (—1)M Ko (| — ) f(y)dy.

Taking an average of the above two expressions, we
have obtained the expression for a solution wu(z) =
up(z) to BVP(M).

M) ule) = / Glaa) )y (<1 <z <1)

where
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(1"
2

Gla.y) = [Koux )

- (KO, SR KM—l)(l' +1)

- Ky
(KM-&-HJ')Q)( : )(1 )
Koy

+ (K, Koy ) (= 1)

~1 K,
<K]\/I+i+j> (=2) < : ) (-1- y)}
Ky

(-l<zy<l).

Theorem 2 (i) follows immediately from the relation
Ki(—z) = (-1)""K(z) (0 <i< M—1).

Since the right-hand side of (7) includes only
a data function f(z), the solution to BVP(M) is
unique. Using the properties (i), (ii) and (iii) of the
following Theorem 3, we can show that u(z) defined
by (1) satisfies BVP(M), which guarantees the exis-
tence of the solution. O

Theorem 3. Green function G(z,y) satisfies

the following conditions.
(i) *MG(z,y) =0 (-1 <z,y<l,z#Y)
(i) 0,G(x,y)l,—y =0, 0}"G(z,y)|,y =0

0<i<M-1, -1<y<]1)
(111) a;G(fE, y) |y:1:—0 - aéG($7 y) |y:.’v+0

0 (0<i<2M—2)
B R L T T S
(iv) (i);G(l‘, y)|z:y+(} - aqu(gj7 y)|1:y70
0 (0<i<2M-2)
- { (- (i=2M-1) (-l<y<1).

Proof of Theorem 3. By rewriting Green
function G(z,y) in the form Theorem 2 (ii), it is
easy to show that G(z,y) satisfies properties (i) ~
(iv) through direct calculation. O

3. Reproducing kernel. In this section, it is
shown that Green function G(z,y) is a reproducing
kernel for a set of function space H and its inner
product (-,-),, introduced in section 1.

Theorem 4. For any u(z) € H, we have the
following reproducing relation.

(®) u(y) = (u(),G(,y)y (F1<y<1)

9) G(y,y) = 1GC )l (1 <y <),
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=

Proof of Theorem 4. For functions u =
u(z) and v =v(z) = G(x,y) with y arbitrarily fixed
in -1 <y <1, we have

WD (M) _ u(_l)MUQM)

M—1

!
= (Z (_I)A']_l_ju(j)v(Zlulj)) .

=0

Integrating this with respect to z on intervals
—l<z<yandy <z <1, wehave

[ 11 u™) (2)v™M) (z)dx — [ 1 w(x) (=1 (2)da

1

M-1
= [ (=1)M 1790 ()M —1=0) (x)]

=1
z=y-+0

_ U(2Mflfj)(y + 0)} ]

Using (i), (ii) and (iv) in Theorem 3, we have (8). (9)
follows from (1) by u(z) = G(z,y). We have proved
Theorem 4. ]

4. Sobolev inequality. In this section, we
give a proof of Theorem 1. Applying Schwarz in-
equality to (8) and using (9), we have

lu@)l* < IGC Il = Gy, w)llully-
Noting that
C(0 = max G(y7 y) = G(y07y0)7

lyl<1
we have following Sobolev inequality.
2
(10) (suwlu1) < ol
lyl<1

It should be noted that it requires Schwartz inequal-
ity but does not require “positive definiteness” of the
inner product in order to prove (10).
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In the second place, we apply this inequality to
u(z) = G(z,y9) € H and have

2
Gwmwwos%muWM=%.

ly|<1

Combining this and trivial inequality

2
%=@%MW§GmewO,

[yl<1

we have

2
%sGwG@wQs%wmm%=%

ly|<1

That is to say

2
(s 1Gw) = CollGteml
ly|<1

Lemma 2. Function space H is Hilbert space
with the inner product (-,-) ;-

Proof of Lemma 2. From Sobolev inequality
(10), we have (u,u),; >0 and (u,u),; =0 holds
if and only if supj,< [u(y)| =0, that is wu(y) =
0(-1<y<1). O

The best constant of Sobolev inequality can be
calculated by using the following theorem.

Theorem 5. For any y € R, the equality
holds.

Krti+(2) ‘ Kyi(1—vy)
Ki(l+y) |

( _ M

+ 1Kl (2)

2M -2
= + <4,i<M-—-1).
<M 1 )Ko(l y) (0<i,j<M-—1)

Proof of Theorem 5. Numerator of L.H.S.
~ ()"
oM—i—j—1 (1\172‘71) j! ‘ 1=V
j =i (M—i—1)!
W+ M -1-5) | o
(_1)]\1 M-1 1
C(2M —-1)! g (M —k—1)!
gM—i—j-1 <ijz>1>j! ‘ (1— gVt
(@M — ), + )| 0

where (a); is Pochhammer’s symbol defined by

T(a+j)

T(a) (j#£0,—-1,-2,--).

(a’)j =

K. TAKEMURA
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Replacing (M — 1 — ¢)-th line with é-th line (0 <i <
[((M —1)/2], we have

(M=D)M

B )T*M M-1 1
T @M -1) kI:[O(M—k—l)!
2077 ( 1) 51 1—y)
" (5)s -
T A

We use the following Lemma here.
Lemma 3. (M +1)x (M+1) matric A de-
fined by

29(})it | a-w

A =
a;(y) ‘ 0
0! 0 1
— | ou (M —1)! 1—y*
wl) o) |0
where

aj(y) = (2M — j),(1 + y)2M-1-
(0<ij<M-1)
has the following LU decomposition
A=LU

0! O 1
R S e e
0---0 | b(y)
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where max C,Y(y7 y)
oM — 2 V=
M-1)02M-1)! y<i
Proof of Lemma 3. We can easily decom- ’

pose A to the product of L and U by using the bino- _ (2M - 2) 22M- _ 22M-1
mial expansion: M-1)(2M-1)! (2M — l)I’(M)Q.

. ¢ g . This completes the proof of Theorem 1. |

i Geiif ? j p. p

(1-y)' = Z(_l) 2 (j ) (1+y) Acknowledgment. The author is supported

=0
0<i<M-1)
and the relation

oMLY M — ).
) =~ Y

J
(T D)

where the last equality follows from the next for-
mula; see Knuth [9, p. 165]

m

SQer-or()

k=0
Using Lemma 3, we rewritten (11) as follows:

SN M1

~1) 1
T M- ,!:[O(M—k—l)

Ala)

Since |L| =1, the equality can be rewritten as fol-
lows:

(M=OM | 77
WEDM A A=

em-1 k=W

1 @ar-0m (ON — 2 (1 + y)QM—l
_ 2 AL
M-1) 2M—1)!

(M-1)M

Since [Kareig|(2) = (—1) 5 and Ko(1+y) =
(14 y)*7'/(2M — 1)!, we obtain Theorem 5. O

From the Lemma 3, we can calculate the maxi-
mum value of G(y,y) in =1 <y < 1.

by J. S. P. S. Grant-in-Aid for Scientific Research
(C) No. 21540148.
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