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Abstract:

In this paper we construct Lowner chains which enable us to derive quasi-

conformal extension criteria for typical classes of univalnet functions. This method also provides

us explicit quasiconformal extensions.

Key words:

1. Introduction. Let A be the class of analy-
tic functions f on the unit disk D = {z € C: |z| < 1}
normalized so that f(0) = f/(0) — 1 = 0 and S be the
subclass of A consisting of functions univalent in D.
We say that f € S(k),0 <k <1, if fe Sand f has
a quasiconformal extension on the complex plane C
so that the complex dilatation py = f5/f. satisfies
|s(2)| < k almost every z in C, where f, = 0f/0z,
fz=0f/0z. Let U(k) be the closed hyperbolic disk
in the right half plane centered at 1 with radius
arctanh k, 0 < k< 1, i.e.

U(k){wGC:‘w—_l‘gk}

w+1
1+ k? 2k
{wGC:’wl——kﬂgl——k?}'

Note that w € U(k) if and only if 1/w € U(k).

The following is known;

Theorem A. For fe€ A, let h(z) represent
one of the quantities zf'(2)/f(2), 1+ zf"(2)/f'(2)
and f'(2). If

h(z) € U(K) (1)

for all z € D, then the function f can be extended to a
k-quasiconformal automorphism of C.

Brown [3] established this theorem for the case
when h(z) = zf'(2)/ f(2) by giving an explicit quasi-
conformal extension and Padmanabhan and Kumar
[9] for the case when h(z) = f'(z) with a Lowner
chain. Sugawa [12] presented a general method pro-
ducing the above quasiconformal extension criteria
(1) by constructing a suitable holomorphic motion
and applying the optimal M-lemma. Sugawa’s
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method, however, does not give explicit quasi-
conformal extensions.

On the other hand, Becker [1] provided quasi-
conformal extensions of univalent functions by
Lowner chains. In this paper, we construct Lowner
chains to prove Theorem A by employing Becker’s
theorem. Some more results are also obtained in Sec-
tion 4, which include quasiconformal extensibility for
subclasses of close-to-convex functions, Bazilevié
functions and a-convex functions.

2. Preliminaries. A function f(z,t) =elz+
>y an(t)z" defined on D x [0,00) is called a
Lowner chain if fi(z) = f(z,t) is holomorphic and
univalent in D for each t € [0,00) and satisfies
fs(D) s fi(D) for 0 < s <t < 0.

The following necessary and sufficient condition
for a Léwner chain is well known [10];

Theorem B ([10], Theorem 6.2). The func-
tion f(z,t) is a Lowner chain if and only if the fol-
lowing two conditions are satisfied;

1. The function f(z,t) is analytic in D,, =

{lz| < 7o} for each t € [0,00), absolutely continu-

ous in t € [0,00) for each z € D,, and satisfies

o

[f(z1)] < Koe' (2€ Dy, t€[0,00))  (2)

for some positive constants Ky and rg € (0,1).
2. There exists a function p(z,t) analytic in D and
measurable in t € [0,00) satisfying

Rep(z,t) >0 (z€D,te0,00))
such that

f&t)=2f"(z)p(z1) (2€Dy, t€[0,00)) (3)

for almost all t, where f = 8f /Ot and f' = df /L.
The next theorem due to Becker plays a crucial
role in our investigations;
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Theorem C ([1], see also [2]). Suppose that
fi(2) is a Lowner chain for which p(z,t) in (3) satis-
fies the condition

p(z,t) € U(k), z€ D, aet € [0,00).

Then fi(z) admits a continuous extension to D for
each t > 0 and the map defined by

r i wa 0 )
flreny = 3 1Y)
f(e,log),
s a k-quasiconformal extension of fy to C.
3. Lowner chains and extended functions.
We shall give the following theorem which implies

Theorem A as a corollary;
Theorem 1. For fe A, let h(z) represent

one of the quantities zf'(2)/f(2), 1+ 2f"(2)/f'(2)
and f'(2). If h(z) € U(k) for all z € D, then the func-
tion f can be extended to a k-quasiconformal auto-
morphism f of C by setting

),  lwl<1,
N e ®)

|w]
if h(w) = wf'(w)/f(w),
f(w)a |’UJ| <1,

i) +or () () iz

(6)

r<l1,
r>1,

(4)

flw) =

flw) =

if M(w) =1+ wf”(w)/f'(w) and
f(w), lw| <1,

) o) e

if h(w) = f'(w).

flw)=

Proof. Set
filz) = €' f(2). (8)
Then we have
1 zf'(2)
p(zt)  f(z)

Since the assumption implies Re{zf'(2)/f(z)} > 0,
we can see from Theorem 3 that (8) is a Lowner
chain. Furthermore, by the assumption and applying
Theorem C we conclude the assertion for the case
when h(z) = zf'(2)/ f(2).

If h(z) =1+ 2f"(2)/f'(z), then we set

filz) = f(2) + (¢ = 1)zf'(2). (9)
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This yields

1 1\ zf"(z
PPy =1+ <1 - E) ]]:’(i’)) =e 1+ (1—e"h(2).
Since 0 < e <1 for t€[0,00), we see that the
above 1/p(z,t) lies in the right half plane, in par-
ticular convex set U(k) for all t € [0,00) if 1+
2f"(2)/f'(2) € U(K).

Finally, set

F2) = ) + (e~ 1), (10)

Then
1 1 ’ 1 _e_f, P _e—f, .
=l (1-5) =@ - e

which implies the assertion for the case when
h(z) = f'(z). Explicit extensions (5), (6) and (7) are
obtained immediately by applying (4) to (8), (9) and
(10). O

Remark 3-1. The explicit extension (5) ap-
pears in [3] and (7) is in [7]. The Lowner chain (10)
is in [9]. On the other hand, (6) and (9) are new.

Actually, we can sometimes detect a Lowner
chain from an explicit quasiconformal extension. Let
Uk)={weC:|lw—1| <k} for 0<k<1 In [4],
they have shown that for fe€ A, if f'(2) € U'(k)
then f has a k-quasiconformal extension by giving
the explicit extension

f(w), lw| <1,
flw) = f(%) +w_%’ ol > 1.

(4) says that an explicit quasiconformal extension
F(w) is given by substituting w/|w| for z and log |w|
for t in f(z,t), where w € D* = {Jw| > 1}. The corre-
spondence can be described schematically by

(jzz> - (Qf/w)

Using these substitutions, we now obtain the Lowner
chain

(11)

fi(2) = fle7'2) + 2(e —e™),

and by Theorem C we have the same quasiconformal
extension criterion as in [4]. Similarly, we can see
that the explicit function

()
T s (2), iz,

lw| < 1,
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generates a Lowner chain

filz) = e f(e™'2)
under the assumption zf'(2)/f(z) € U'(k), and

R f(w)7

flw) = (%>+f(%>(w_%) o] > 1,

generates
filz) = fle'z) +2f(e2)(e =) (12)

under the assumption 1+ zf”(2)/f'(2) € U'(k) re-
spectively, here the form in (12) can be found in [1].

lw| < 1,

Remark 3-2. The above three criteria are
weaker than Theorem 1.
Remark 3-3. If the substitutions (11) are

valid, then a calculation shows equivalence of

’(3ft(2)/3t) — 2(0fi(2)/92)
(0f1(2)/0t) + 2(0(2)/02)
OF (w)/0w
OF (w) /0w

4. Other results. We shall give some more
results which relate to the previous section. A
sufficient condition for univalence can be deduced
from (9);

Theorem 2. Let f € A be a convex function,
i.e., [ satisfies that Re {1+ 2f"(2)/f'(2)} > 0 for all
z € D. Then for arbitrary « € [0, 1], the convex con-
bination

<k and

< k.

af(z) + (1 —a)zf'(2)
1s untvalent in D.

Proof. Tt is clear for the case a = 0. We have
seen in the proof of Theorem 1 that (9) is a Lowner
chain if f € A is a convex function. In particular,
f(2) is univalent in D for each t € [0,00), and so is
e~ ' f;(2). Therefore we obtain our theorem for the
case 0 < a < 1if we put a = e, |

Next, we will show the following theorem con-
cerning quasiconformal extensibility for -close-to-
convex functions;

Theorem 3. Let fe A Assume that there
exrists a g€ S such that zg'(2)/g(z) € U(k) and
2f'(2)/g(z) € U(k) for all z€ D. Then f can be
extended to a k-quasiconformal automorphism F of
C by setting

A flw),

lw| <1,

HorTA
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Proof. Let
fiz) = f(2) + (¢' = Dg(2).

Then we have

(AR

p(zt) e g(z) Cet) g(z)

We can see that 1/p(zt) € U(k) from the assump-
tion. Consequently, it follows from Theorem B that
(13) is a Lowner chain and from Theorem C that f
has a k-quasiconformal extension. O

Remark 4-1. The chain (13) appears in [10,
p. 52].

Remark 4-2. A similar result can be found in
[6] though they do not mention the dilatation k.

Remark 4-3. Theorem 3 includes Theorem 1.
Indeed, g(2) = z,9(z) = f(2) and g(z) = zf'(z) corre-
sponds to the case h(z) = f/(2),h(z) = zf'(2)/ f(2)
and h(z) =14 zf"(z)/f'(z), respectively.

Finally, another condition for quasiconformal
extensibility is given by;

Theorem 4. Leta > 0. Forf e A, if

1 " !/
1 [1 G 2f'(2)
f'(z) f(2)
for all z € D, then f can be extended to a k-quasicon-

formal automorphism of C.

Proof. Set

(13)

+(a—1)

] e U(k)

Zf—(z)> " (14)

o) = 1) 1+ (@ - T

Then the calculation shows

L1 1/
p(Z, t) - et o eot

(1432 oy )

f'(2) f(2)
and therefore the theorem follows from the assump-
tion, Theorem B and Theorem C. |

Remark 4-4. A chain similar to (14) appears
in [11].

Remark 4-5. Theorem 4 claims the quasi-
conformal extensibility for a subclass of Bazilevic
functions of type a which includes 1/a-convex func-
tions. Here, we say that f € A is an a-conver func-
tion (e.g. [8, p. 10]) if

a1+ ) (- (£9) oo e

and f € A is a Bazilevié¢ function of type o if
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1/«

) = o [ 1a(¢r¢a]

for a starlike function g € A and analytic function h
with h(0) = 1 satisfying Re(e’*h) > 0 in D for some
A € R. It is known that

2f"(2) 2f'(2)
f'(2) f(z)
is sufficient for f € A to be a Bazilevi¢ function of
type a (e.g. [5]). It is easy to see that f is 1/a-convex
and Bazilevic of type a under the assumption of
Theorem 4.
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+(a—1)

Re{1+ }>0 (€ D) (15)
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