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Abstract:

For a bounded linear operator A on a Hilbert space H, let ||A| denote the

operator norm and w(A) the numerical radius. It is well-known that

1
SIAl < w(a) < Jaj.

For equalities, we consider linear operators A with A%> = 0 and normaloid matrices.
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1. Introduction. Let H be a complex Hil-
bert space. Let B(H) denote the set of bounded
linear operators on H. For A € B('H), we denote the
operator norm by ||A]|, the spectral radius by r(A),
and the numerical radius by w(A):

r(A) = sup{|A|: A € o(A)},
where o(A) is the spectrum of A, and
w(A) = sup{|{Az,a)| : = € H, 2] = 1}.

It is known that
1
Sl = w(d) = flAll, r(4) = w(A).

(See [2], for instance.)

The purpose of this note is to study equalities
in these inequalities and related topics; although
most of the results are known to specialists, we
include them for this note to be self-contained.

In section 2, we study operators A € B('H) with
A% =0 and equality ||A] = 2w(A). In section 3, we
recall Ptak’s theorem and observe normaloid ma-
trices and equality | A|| = w(A). We also show that
for A € My(C)

| A% = |A||* < A is normal.

2. Operator A with A% =0. In this sec-

tion, we prove:
Theorem 2.1. For A € B(H)

A2 =0 = ||A| = 2w(A).
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Numerical radius; normaloid matrix.

Bouldin [1, Theorem 1] gives the estimation of
w(A) in terms of the angle between the ranges of A
and A*, and as a corollary [1, Corollary 2] he has
Theorem 2.1 from the equivalent condition that the
ranges are orthogonal. See also [2, Theorem 1.3-4].
Kittaneh [5, Corollary 1] shows Theorem 2.1 as a
corollary of his norm inequality

w(A) £ 3 (1] + 14°])

Haagerup and de la Harpe [3] observe nilpotent
operators A with A” = 0 and show

w(A) < || A cos 11‘
n

In particular, when A% = 0, Theorem 2.1 follows.
We give an alternate proof using a block matrix
description of A:
Proof. Let M :=ran(A*). On the orthogonal
decomposition H =M @ M*, let us consider a
block matrix representation of A:

A A
Ao [ 11 12].
Ay Ag
Then A* is of the form
Pl
Aj, A5
Since ./\/ll = ker(A), A12 = AQQ =0. By as-

sumption, (A*)2 =0; hence, A*=0 on M. This
means that A}, = A}, = 0. Therefore, we have

o )
A= .
Ay O
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This representation implies that
Al = [| A2 || = sup{[(Aa1z, )] :
zeMye M |z =1yl = 1}.
Hence, we have
[(A(z @ y),z S y)|

w(A) :sup{ e :

xEM,yEML,xGBy;éO}

—sup{ |(Ag17, )| .
- 2 2"
™+ llyll

v Mye Ml + [yl # o}
o { |<A21$Jy>| .
=supy ————

2 2"
)™+ llyl

e Mye M|zl = gl # o}

_ {(Azmy)I
T

e M.y e M- all =yl = 1}

_ 4l
Al

Here, the first equality follows from the definition of
w(A), the third one from the arithmetic-geometric
inequality, and the others from preceding argu-
ments. Therefore, the proof is complete. O

3. Normaloid matrices. An operator A €
B(H) is said to be normaloid if ||A|| =r(A). We
recall the well-known fact (see [2,4]):

Proposition 3.1. For A € B(H), the follow-
ing are equivalent:

(i) [[A]l = r(A);
(ii) [[A™]] = [IA]" (Vn € N);
(iii) [|[A]l = w(A).

In this section, we assume that dimH < co so
that we present statements in terms of matrices; let
M,,(C) denote the set of n-square complex matrices.

We have a characterization of normaloid ma-
trices:

Proposition 3.2. For A€ M,(C) with
Al =1, A is normaloid if and only if there is a
reducing subspace K (S C") such that Ay is uni-
tary.

Proof. Sufficiency is clear. Necessity: by as-
sumption, we have a unit eigenvector x € C" for an
eigenvalue A (JA| = 1). Since
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|4 =X = [ A%a]]® — 2Re(A"x, Xa) + 2]}
< lz||* = 2Re(x, XAz) + ||z]|* = 0,
A*z = Xz: that is, = is a normal eigenvector. Hence,
the subspace K := Cx reduces A, and the restriction
of A to K is unitary. Therefore, we get the

conclusion. O
Corollary 3.3. For A€ My(C),

A is normal <= A is normaloid.
Note that this result is generalized: in fact,
spectraloid <= normal

on Ms(C) and a short proof using Schur’s lemma
can be seen in [2, Theorem 6.5-1]. See [2] for related
results on M3(C) and M, (C).

Proof. We assume that ||A| = 1. We show the
implication <. In Proposition 3.2, if K is of
dimension 2, A itself is unitary, hence A is normal.
If K is of dimension 1, then so is the orthocomple-
ment K. Therefore, A = Ax & Ajr is normal. [

For A€ M,(C), we recall Ptak’s theorem
without proof:

Theorem 3.4. (Pték [6]). For A € M,(C)
|A™ = ||A||" < A is normaloid.

Combining this with Corollary 3.3, we have
Corollary 3.5. For A € M(C)

| A% = ||A||2 < A is normal.

Halmos [4,p.110] says that the implication =
follows from “an unpleasant computation”, and its
proof is omitted. Here we present an alternate proof
which seems to be simpler.

Proof. Assume that ||A|| = [|A?|| = 1. Then we
have a unit vector z € C? such that

1A%2]| = Jlall = 1,
from which it follows that ||Az| = 1. Since
(1-A"A)z,z) =0, ((1-A"A)Az, Az) =0,
and
1-A"A =20,
we have
x, Az € ker(1 — A*A).

If x and Az are linearly independent, ker(1 —
A*A) = C? or A*A = 1: Ais an isometry (and hence
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unitary) so that A is normal.

Suppose that x and Az are linearly dependent:
Az = Az for some A€ C. Since |Az| = ||z| =1,
|A| = 1. It follows as in the proof of Proposition 3.2
that A*z = Az or x is a normal eigenvector for A.

Hence, K := Cz reduces A and A is unitary.
Applying Proposition 3.2 and Corollary 3.3, we
get the conclusion. O
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