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Abstract: For a bounded linear operator A on a Hilbert space H, let kAk denote the

operator norm and wðAÞ the numerical radius. It is well-known that

1

2
kAk 5 wðAÞ 5 kAk:

For equalities, we consider linear operators A with A2 ¼ 0 and normaloid matrices.
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1. Introduction. Let H be a complex Hil-

bert space. Let BðHÞ denote the set of bounded

linear operators on H. For A 2 BðHÞ, we denote the
operator norm by kAk, the spectral radius by rðAÞ,
and the numerical radius by wðAÞ:

rðAÞ :¼ supfj�j : � 2 �ðAÞg;

where �ðAÞ is the spectrum of A, and

wðAÞ :¼ supfjhAx; xij : x 2 H; kxk ¼ 1g:

It is known that

1

2
kAk 5 wðAÞ 5 kAk; rðAÞ 5 wðAÞ:

(See [2], for instance.)

The purpose of this note is to study equalities

in these inequalities and related topics; although

most of the results are known to specialists, we

include them for this note to be self-contained.

In section 2, we study operators A 2 BðHÞ with
A2 ¼ 0 and equality kAk ¼ 2wðAÞ. In section 3, we

recall Pták’s theorem and observe normaloid ma-

trices and equality kAk ¼ wðAÞ. We also show that

for A 2 M2ðCÞ

kA2k ¼ kAk2 () A is normal:

2. Operator A with A2 ¼ 0. In this sec-

tion, we prove:

Theorem 2.1. For A 2 BðHÞ
A2 ¼ 0 ¼) kAk ¼ 2wðAÞ:

Bouldin [1, Theorem 1] gives the estimation of

wðAÞ in terms of the angle between the ranges of A

and A�, and as a corollary [1, Corollary 2] he has

Theorem 2.1 from the equivalent condition that the

ranges are orthogonal. See also [2, Theorem 1.3-4].

Kittaneh [5, Corollary 1] shows Theorem 2.1 as a

corollary of his norm inequality

wðAÞ 5
1

2
ðkAk þ kA2kÞ:

Haagerup and de la Harpe [3] observe nilpotent

operators A with An ¼ 0 and show

wðAÞ 5 kAk cos
�

nþ 1
:

In particular, when A2 ¼ 0, Theorem 2.1 follows.

We give an alternate proof using a block matrix

description of A:

Proof. Let M :¼ ranðA�Þ. On the orthogonal

decomposition H ¼ M�M?, let us consider a

block matrix representation of A:

A ¼
A11 A12

A21 A22

� �
:

Then A� is of the form

A� ¼
A�

11 A�
21

A�
12 A�

22

� �
:

Since M? ¼ kerðAÞ, A12 ¼ A22 ¼ 0. By as-

sumption, ðA�Þ2 ¼ 0; hence, A� ¼ 0 on M. This

means that A�
11 ¼ A�

12 ¼ 0. Therefore, we have

A ¼
0 0

A21 0

� �
:
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This representation implies that

kAk ¼ kA21k ¼ supfjhA21x; yij :
x 2 M; y 2 M?; kxk ¼ 1; kyk ¼ 1g:

Hence, we have

wðAÞ ¼ sup

�jhAðx� yÞ; x� yij
kx� yk2

:

x 2 M; y 2 M?; x� y 6¼ 0

�

¼ sup

� jhA21x; yij
kxk2 þ kyk2

:

x 2 M; y 2 M?; kxk2 þ kyk2 6¼ 0

�

¼ sup

� jhA21x; yij
kxk2 þ kyk2

:

x 2 M; y 2 M?; kxk ¼ kyk 6¼ 0

�

¼ sup

�jhA21x; yij
2

:

x 2 M; y 2 M?; kxk ¼ kyk ¼ 1

�

¼ kAk
2

:

Here, the first equality follows from the definition of

wðAÞ, the third one from the arithmetic-geometric

inequality, and the others from preceding argu-

ments. Therefore, the proof is complete. �

3. Normaloid matrices. An operator A 2
BðHÞ is said to be normaloid if kAk ¼ rðAÞ. We

recall the well-known fact (see [2,4]):

Proposition 3.1. For A 2 BðHÞ, the follow-

ing are equivalent:

ðiÞ kAk ¼ rðAÞ;
ðiiÞ kAnk ¼ kAkn ð8n 2 NÞ;
ðiiiÞ kAk ¼ wðAÞ.

In this section, we assume that dimH < 1 so

that we present statements in terms of matrices; let

MnðCÞ denote the set of n-square complex matrices.

We have a characterization of normaloid ma-

trices:

Proposition 3.2. For A 2 MnðCÞ with

kAk ¼ 1, A is normaloid if and only if there is a

reducing subspace K ðj CnÞ such that AjK is uni-

tary.

Proof. Sufficiency is clear. Necessity: by as-

sumption, we have a unit eigenvector x 2 Cn for an

eigenvalue � ðj�j ¼ 1Þ. Since

kA�x� �xk2 ¼ kA�xk2 � 2RehA�x; �xi þ kxk2

5 kxk2 � 2Rehx; �Axi þ kxk2 ¼ 0;

A�x ¼ �x: that is, x is a normal eigenvector. Hence,

the subspace K :¼ Cx reduces A, and the restriction

of A to K is unitary. Therefore, we get the

conclusion. �

Corollary 3.3. For A 2 M2ðCÞ,
A is normal () A is normaloid:

Note that this result is generalized: in fact,

spectraloid () normal

on M2ðCÞ and a short proof using Schur’s lemma

can be seen in [2, Theorem 6.5-1]. See [2] for related

results on M3ðCÞ and M4ðCÞ.

Proof. We assume that kAk ¼ 1. We show the

implication (. In Proposition 3.2, if K is of

dimension 2, A itself is unitary, hence A is normal.

If K is of dimension 1, then so is the orthocomple-

ment K?. Therefore, A ¼ AK � AK? is normal. �

For A 2 MnðCÞ, we recall Pták’s theorem

without proof:

Theorem 3.4. (Pták [6]). For A 2 MnðCÞ

kAnk ¼ kAkn () A is normaloid:

Combining this with Corollary 3.3, we have

Corollary 3.5. For A 2 M2ðCÞ

kA2k ¼ kAk2 () A is normal:

Halmos [4, p.110] says that the implication )
follows from ‘‘an unpleasant computation’’, and its

proof is omitted. Here we present an alternate proof

which seems to be simpler.

Proof. Assume that kAk ¼ kA2k ¼ 1. Then we

have a unit vector x 2 C2 such that

kA2xk ¼ kxk ¼ 1;

from which it follows that kAxk ¼ 1. Since

hð1� A�AÞx; xi ¼ 0; hð1� A�AÞAx;Axi ¼ 0;

and

1� A�A = 0;

we have

x;Ax 2 kerð1� A�AÞ:

If x and Ax are linearly independent, kerð1�
A�AÞ ¼ C2 or A�A ¼ 1: A is an isometry (and hence
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unitary) so that A is normal.

Suppose that x and Ax are linearly dependent:

Ax ¼ �x for some � 2 C. Since kAxk ¼ kxk ¼ 1,

j�j ¼ 1: It follows as in the proof of Proposition 3.2

that A�x ¼ �x or x is a normal eigenvector for A.

Hence, K :¼ Cx reduces A and AjK is unitary.

Applying Proposition 3.2 and Corollary 3.3, we

get the conclusion. �
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